
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll03/11llpp270–280
Volume 21, Number 3, June 2016

Private Proximity Detection for Convex Polygons

Bin Mu and Spiridon Bakiras�

Abstract: Proximity detection is an emerging technology in Geo-Social Networks that notifies mobile users when

they are in proximity. Nevertheless, users may be unwilling to participate in such applications if they are required

to disclose their exact locations to a centralized server and/or their social friends. To this end, private proximity

detection protocols allow any two parties to test for proximity while maintaining their locations secret. In particular,

a private proximity detection query returns only a boolean result to the querier and, in addition, it guarantees that no

party can derive any information regarding the other party’s location. However, most of the existing protocols rely on

simple grid decompositions of the space and assume that two users are in proximity when they are located inside

the same grid cell. In this paper, we extend the notion of private proximity detection, and propose a novel approach

that allows a mobile user to define an arbitrary convex polygon on the map and test whether his friends are located

therein. Our solution employs a secure two-party computation protocol and is provably secure. We implemented

our method on handheld devices and illustrate its efficiency in terms of both computational and communication

costs.

Key words: proximity detection; secure computations; location privacy

1 Introduction

The emergence of Geo-Social Networks (GeoSNs),
such as Foursquare (https://foursquare.com/), facilitates
the development of novel applications that combine
social networking features with location-based services.
In particular, a GeoSN enhances the traditional social
networking graph with spatial information, by allowing
users to “check in” at arbitrary geographic locations.
Mobile users may then utilize this information to
identify their social friends that are spatially close (e.g.,
in order to meet at a nearby coffee shop). This is
typically called a proximity detection query.

A trivial way to process such queries is to store all

�Bin Mu is with the Department of Computer Science, Graduate
Center, City University of New York, New York, NY 10016,
USA. E-mail: bmu@gc.cuny.edu.
� Spiridon Bakiras is with the Department of Computer Science,

Michigan Technological University, Houghton, MI 49931,
USA. E-mail: sbakiras@gmail.com.
�To whom correspondence should be addressed.

Manuscript received: 2016-02-05; accepted: 2016-03-07

location information at the GeoSN server, in plaintext
format. Alternatively, users may choose to bypass
the server and exchange their locations (in plaintext),
on-demand, in a peer-to-peer manner. Clearly, both
methods might reveal a lot of information about an
individual’s lifestyle to the GeoSN server and/or his
friends. If the leaked information is more than what
the user is willing to disclose, he may be discouraged
from registering with the GeoSN. Therefore, to protect
privacy, GeoSN queries should not disclose any
additional information regarding the location of a user,
besides the information that can be derived from the
query result.

To this end, private proximity detection protocols
allow any two parties to test for proximity while
maintaining their locations secret. In particular, a
private proximity detection query returns only a boolean
result to the querier and, in addition, it guarantees that
no party can derive any information regarding the other
party’s location. Nevertheless, the current state-of-the-
art private proximity detection protocols[1, 2] rely on
simple grid decompositions of the space and assume



Bin Mu et al.: Private Proximity Detection for Convex Polygons 271

that two users are in proximity when they are located
inside the same grid cell.

However, this approach may not be sufficient in
certain situations. Assume, for example, that Alice
is enjoying her free time in the Central Park area of
Manhattan. She wants to know whether Bob is also
visiting the park (the area marked with the dashed line
in Fig. 1), in order to pursue some outdoor activities
together. Traditional proximity detection queries are
only able to discover Bob within a (roughly) circular
area around Alice, as shown in Fig. 1. A naı̈ve solution
to overcome this limitation is to enlarge the search
range, so that it encloses the entire Central Park area.
Clearly, this approach is not optimal, as it may lead to a
large number of false positives. An alternative method
is to leverage the existing space partitioning protocols,
i.e., allow Alice to search for Bob in multiple grid cells,
instead of just one. While this is a viable solution, it has
two major shortcomings. First, to achieve an acceptable
accuracy level, the underlying grid has to be very fine,
thus leading to high query processing costs. Second, the
fine grid allows Alice to search for Bob on a very small
area, by submitting identical grid cells in the proximity
detection query.

To this end, this paper extends the notion of private
proximity detection, and introduces a novel approach
that allows a mobile user to define an arbitrary convex
polygon on the map and test whether her friends are
located therein. Returning to the example of Fig. 1,
Alice would simply specify the coordinates of the four
rectangular edges in order to detect Bob’s presence in

Fig. 1 Motivating example.

Central Park. Our solution employs a secure two-party
computation protocol that is based solely on public
key homomorphic encryption operations. In addition,
it offers the highest level of privacy to the involved
parties, since (1) Alice only learns the query result and
(2) Bob only learns the number of edges in Alice’s
polygon. We implemented our method on handheld
devices, and illustrate its efficiency in terms of both
computational and communication cost.

In summary, the main contributions of our work are
the following:
� We introduce a generalized proximity detection

query that incorporates arbitrary convex polygons
instead of fixed tessellations.
� We provide a secure and efficient solution based

on public key homomorphic encryption.
� We extend the basic approach, in order to enable

the target of the proximity detection query to
control her location disclosure.
� We show how to leverage the basic method to

handle arbitrary concave polygons.
� We implement the cryptographic primitives of our

protocol on handheld devices and present real
query processing times.

The rest of the paper is organized as follows. Section
2 describes the cryptographic primitives utilized in our
methods and summarizes previous work on private
proximity detection. Section 3 presents the formal
definition of the new proximity detection query and
describes the underlying threat model and security.
Section 4 introduces the details of our basic protocol
and Section 5 presents two extensions to that protocol.
Section 6 illustrates the results of our implementation
on mobile devices and Section 7 concludes our work.

2 Background

Section 2.1 introduces the cryptographic primitives
utilized in our methods and Section 2.2 surveys the
related work on private proximity detection.

2.1 Preliminaries

Homomorphic encryption. Most public key
cryptosystems in the literature are partially
homomorphic, i.e., they facilitate the evaluation of one
algebraic operation (either addition or multiplication)
directly on the ciphertext space. In our work, we
utilize additively homomorphic encryption, which
allows for the following computations. First, given
the encryptions E.m1/ and E.m2/ of two plaintext



272 Tsinghua Science and Technology, June 2016, 21(3): 270–280

messages m1 and m2, we can compute the encryption
of .m1 Cm2/ by multiplying the two ciphertexts:

E.m1 Cm2/ D E.m1/ �E.m2/:

Second, any message m can be multiplied with a
plaintext constant c as follows:

E.c �m/ D E.m/c :

In our implementation, we utilize two different
additively homomorphic cryptosystems, namely the
Paillier[3] and ElGamal[4] cryptosystems. The major
advantage of Paillier’s scheme (Fig. 2) is that it
can decrypt arbitrarily large plaintexts very efficiently.
However, all operations are computed in modulo n2

arithmetic, where n2 is typically a 2048-bit number.
As a result, the basic cryptographic operations, such
as modular multiplication and exponentiation, are
relatively expensive. On the other hand, the modulus
size in ElGamal’s scheme (Fig. 3) is typically 1024 bits,
so it is much more efficient in terms of computational
cost. The limitation of the ElGamal cryptosystem is
that it can only decrypt small plaintext values, because
the decryption function involves the computation of a
discrete logarithm, which is a very difficult problem
in cryptography. Both schemes produce ciphertexts
of size 256 bytes, so they are comparable in terms of
communication cost.

Note that, both cryptosystems are semantically
secure, i.e., it is infeasible to derive any information
about a plaintext, given its ciphertext and the public key
that was used to encrypt it. The security of Paillier’s
scheme is based on the decisional composite residuosity
assumption, while the security of ElGamal’s scheme is
based on the decisional Diffie-Hellman assumption.

Paillier cryptosystem

Key generation
1. Choose two large primes p and q of equal length, and

compute the RSA modulus n D pq
2. The public key is n
3. The private key is '.n/ D .p � 1/.q � 1/

Encryption
1. Let m be the private message
2. Choose r uniformly at random from Z�n
3. Compute ciphertext c D .mnC 1/rn mod n2

Decryption
1. Compute m D .c'.n/ mod n2/�1

n
� '.n/�1 mod n

Fig. 2 The Paillier cryptosystem.

ElGamal cryptosystem

Key generation
1. Instantiate a cyclic group G of prime order p, with

generator g (G, g, and p are public knowledge)
2. Choose a private key x, uniformly at random from Z�p
3. Publish the public key h D gx

Encryption
1. Let m be the private message
2. Choose r , uniformly at random from Z�p
3. Compute ciphertext .c1; c2/ D .g

r ; hrCm)

Decryption
1. Compute hm D c2 � .c

x
1
/�1

2. Solve the discrete logarithm to retrieve m

Fig. 3 The ElGamal cryptosystem.

Secure two-party computation. A secure two-party
computation protocol[5] enables two parties, Alice and
Bob, to jointly compute a function based on their
respective inputs, without having to reveal their input
to the other party. In other words, the two parties will
only learn the result of the computation and nothing
else. Yao’s garbled circuit technique[6] is a generic two-
party computation protocol that can evaluate securely
any function f , given its Boolean circuit representation.
In particular, Bob first generates an encrypted version
of the circuit that incorporates his own input, and sends
it to Alice. Then, Alice and Bob engage in a series of
Oblivious Transfer (OT)[7] executions that allow Alice
to retrieve securely the keys corresponding to her input
bits. Finally, Alice evaluates the circuit and learns the
result of the function. Even though the actual circuit
evaluation can be very efficient[8], the large number of
OT invocations is a performance bottleneck in terms of
both computational and communication cost.

Consequently, researchers have looked into more
specialized, i.e., application dependent, protocols that
are typically built around homomorphic encryption.
One such example is private equality testing, which
is used extensively in previous work[1, 2]. In this
protocol, Alice and Bob hold a pair of values a and
b, respectively, and want to know if the two values are
equal. Alice encrypts her input with her public key and
sends E.a/ to Bob. Next, Bob utilizes the properties
of homomorphic encryption to produce E.r � .a � b//,
where r is a random number that masks the result so
that it is infeasible for Alice to derive any information
regarding the value .a � b/. Finally, Alice decrypts the



Bin Mu et al.: Private Proximity Detection for Convex Polygons 273

the result and infers that a D b if and only if the result
is zero. The security of this protocol has been proven in
Refs. [2, 9].

2.2 Related work

Ruppel et al.[10] utilized a symmetric key cipher that
encrypts locations by applying a distance-preserving
transformation. A set of friends share a common key
and use it to encrypt their location prior to uploading it
to the server. Due to the distance-preserving property
of the transformation, the server can determine whether
any two friends are within a given proximity threshold.
Clearly, this approach leaks some location information,
as the server learns the actual distances among all
users. Furthermore, if a user colludes with the server
and reveals the shared key, all user locations are
compromised. Longitude[11] is a similar approach, but
the underlying transformation does not disclose the
exact distances (i.e., it results in a loss of accuracy).

Most private proximity detection algorithms in the
literature employ a tessellation method (typically a
regular grid) to partition the space into a fixed number
of cells. In this way, they reduce the proximity detection
problem into an equality testing problem: identify
whether the two parties are located inside the same or
nearby cells. FriendLocator[12] and VicinityLocator[13]

assume that the two parties share a secret key and use it
to encrypt (with a deterministic symmetric cipher) the
ids of certain cells nearby their location. The encrypted
values are uploaded to the server, who can determine
(by matching the ciphertexts) whether the two users lie
in the same or adjacent cells of the grid. Clearly, both
schemes are vulnerable to collusions with the server,
since the party that colludes can learn the approximate
location of the other party.

In C-Hide&Seek[14], every user shares his secret
key with his friends, and uses this key to encrypt
his up-to-date location. When another user issues a
proximity request, the server simply forwards all the
encrypted locations that it currently stores. Therefore,
the proximity detection is performed at the querier,
which enables him to identify (with a simple brute force
approach) the approximate locations of all his friends.
C-Hide&Hash[14] assumes a similar location update
procedure as C-Hide&Seek. However, for proximity
detection, it employs a secure computation protocol
between the server and the querier. Nevertheless, due
to the shared keys among the users, this scheme is also
vulnerable to collusions with the server.

Zhong et al.[1] proposed three schemes, namely
Louis, Lester, and Pierre that are based on secure
computations. The main idea in all protocols is to
compute the distance between two parties using the
properties of homomorphic encryption. First, Louis
computes the actual distance, but requires a trusted
third-party that only returns the result (i.e., true or
false) of the proximity detection query. Lester does
not require a third-party, but instead masks the actual
distance d in a way that its computation time increases
linearly with d (i.e., d is retrieved efficiently only when
its value is relatively small). Finally, Pierre utilizes a
regular grid to discretize the users’ locations. It then
employs a secure two-party computation protocol to
determine whether the users lie within the same or
adjacent cells in the grid. Narayanan et al.[2] partitioned
the space with three overlapping tessellations, in order
to improve the accuracy of the proximity detection.
When two parties want to test for proximity, they
employ a secure computation protocol (similar to
Pierre) to identify whether they are located in the same
cell of at least one tessellation.

Among all the aforementioned protocols, Pierre[1]

and Narayanan et al.’s[2] provide the strongest privacy
guarantees, i.e., the querier only learns the proximity
result, while all remaining parties learn nothing.
However, as mentioned in Section 1, these schemes are
not directly applicable to our problem setting, because
they can not handle arbitrary polygonal shapes.

More similar to our work are protocols for the
secure point inclusion problem. This problem was first
introduced by Atallah and Du[15] as part of a collection
of protocols for secure multiparty computational
geometry. The two-party protocol for the secure point
inclusion problem leverages a number of basic sub-
protocols (such as scalar product and vector dominance)
that are also proposed in Ref. [15]. Nevertheless,
these protocols are computationally expensive and lack
formal security proofs. Thomas[16] solved the secure
point inclusion problem for star-shaped polygons, while
Ye et al.[17] addressed convex polygons. However, these
methods are not secure in our problem setting, because
the proximity result is computed by the party that owns
the fixed point, and has to be transmitted to the querier
in an additional round. This property enables collusions
among the participating entities that may leak location
information regarding the querier’s polygon. On the
other hand, our method avoids such collusions, because
the proximity result is computed at the querier.



274 Tsinghua Science and Technology, June 2016, 21(3): 270–280

3 Problem Definition

Alice (the querier) holds a convex polygon P consisting
of N vertices p0; p1; : : : ; pN�1. The vertices are
labeled in a counterclockwise order, as shown in Fig. 4.
The coordinates of vertices pi are denoted as .px

i ; p
y
i /.

Bob holds a single point q D .qx; qy/ that represents
his current location. Alice wants to know whether Bob
is located inside or on the boundary of P . The privacy
guarantees provided by our protocol are the following:
� Alice learns only the result of the proximity

detection query (a boolean value). Bob’s exact
location remains secret.
� Bob does not learn the query result. Furthermore,

the only information he can derive about Alice’s
polygon is the number of edges N . The location,
shape, and size of P remain secret.

We assume that both parties can be the adversaries
in this protocol. Alice’s goal is to pinpoint Bob in an
area smaller than the one that can be inferred from
the outcome of the protocol. On the other hand, Bob
wants to deduce any additional information regarding
Alice’s polygon, besides the number of edges. Finally,
we assume that both parties run in polynomial time
and are “semi-honest”, i.e., they will follow the
protocol correctly, but will try to gain any advantage
by analyzing the information exchanged during the
protocol execution.

Note that Bob may have his own privacy requirement,
namely that he does not want to be found within an area
smaller than a certain threshold. We address this issue
in our enhanced protocol in Section 5. Furthermore, it
is possible for Alice to locate Bob with a brute-force
attack, i.e., she can initiate a sequence of proximity
detection queries that cover the entire space where
Bob might be located. A straightforward solution here
is for Bob to decline successive queries that are not
sufficiently apart in time.

4 Private Proximity Detection

4.1 Geometric solution

Our proximity detection query can be solved by

p0p5

p4

p3 p2

p1
q

Fig. 4 Proximity detection example.

performingN point orientation computations[18]. Given
an ordered triple of points hpi ; q; piC1i on the plane, we
say that they have (Fig. 5):
� Positive orientation if their angle is a

counterclockwise turn;
� Negative orientation if their angle is a clockwise

turn; and
� Zero orientation if they are collinear.
Given the coordinates of the three points, the

orientation is computed by the sign of the following
determinant:

�i D

ˇ̌̌̌
ˇ̌̌ 1 px

i p
y
i

1 qx qy

1 px
iC1 p

y
iC1

ˇ̌̌̌
ˇ̌̌ D qx.p

y
iC1 � p

y
i /C

qy.px
i � p

x
iC1/C .p

y
i p

x
iC1 � p

x
i p

y
iC1/

(1)

Therefore, the following algorithm computes the
correct proximity result:

(1) For i 2 f0; 1; : : : ; N � 1g and j D .i C 1/ mod
N , compute the orientation �i of point q with
respect to the line segment pipj . The vertices
are visited in a counterclockwise order, as shown
in Fig. 4.

(2) If �i 6 0, 8i 2 f0; 1; : : : ; N � 1g, return true;
otherwise, return false.

The correctness of this algorithm (for convex
polygons) follows from the point orientation property.
That is, the orientation result determines the half-plane
where point q is located if you infinitely extend the line
segment pipj in both directions. In other words, q lies
in the intersection of the N half-planes. When all point
orientations are negative, this area is equal to the convex
polygon.

4.2 Secure protocol

We assume that, prior to the protocol execution, Alice
has published her public keys for the Paillier and
ElGamal cryptosystems. In what follows, we use EP.�/

to denote encryption under Paillier’s scheme and EG.�/

to denote encryption under ElGamal’s scheme. The
protocol consists of three major steps. First, Bob

pi

pi+1

q

pi

pi+1

q

Positive orientation Negative orientation

pi

pi+1

q

Zero orientation

Fig. 5 Point orientation.



Bin Mu et al.: Private Proximity Detection for Convex Polygons 275

computes the encryptions of all �i under Alice’s public
key. Next, Alice and Bob engage in a series of secure
comparison protocols that allow Bob to compute the
encryptions of the signs for all �i . Finally, Bob merges
these results into a single message that he sends to
Alice. The detailed protocol is shown in Fig. 6.

Initially, Alice uses her Paillier public key to encrypt
(for each edge) her own input, as dictated by Eq. (1).
She then sends a total of 3N ciphertexts to Bob (Step
1). Bob cannot decrypt any of these ciphertexts because
he does not have Alice’s public key. However, he is
able to incorporate his own input, using the properties
of additively homomorphic encryption (Step 2). Note
that, the final result in Step 2 is not the encryption of �i ,
as it is shown in Eq. (1). The last term adds the value�1
to the result, in order to produce the encryption of .�i �

1/. The reason behind this approach is to enforce the
points that lie on a polygon edge to produce a negative
orientation result, instead of zero.

Next, Alice and Bob employ a secure comparison
protocol (which is introduced in the next section) to
compute an encrypted representation of the sign of each
�i (Step 3). Specifically, the protocol allows Bob to
compute the encryption of �i , where �i D 0 if and
only if �i < 0 (otherwise, it has a fixed value t > 0).
During the protocol execution, no party can derive any
information regarding the actual value or the sign of
�i . Bob then combines all orientation results into one
ciphertext, i.e., EP.�/ D EP.�0 C �1 C � � � C �N�1/.
However, he can not send this value to Alice because,
if � > 0, Alice can figure out the number of edges

PPD Convex

Input: Alice has polygon P with N vertices p0; p1; : : : ; pN�1

Bob has point q
Output: true if q in P , false otherwise
1. For i 2 f0; 1; : : : ; N � 1g and j D .i C 1/ mod N , Alice sends

to Bob EP.p
y

j
� p

y

i
/, EP.p

x
i
� px

j
/, and EP.p

y

i
px

j
� px

i
p

y

j
/

2. For i 2 f0; 1; : : : ; N � 1g and j D .i C 1/ mod N , Bob
computes EP.�i / D EP.p

y

j
� p

y

i
/q

x
�EP.p

x
i
� px

j
/q

y
�

EP.p
y

i
px

j
� px

i
p

y

j
/ �EP.�1/

3. Alice and Bob engage in a series of secure comparison
protocols and Bob computes, 8i 2 f0; 1; : : : ; N � 1g, EP.�i /,
where �i > 0 if �i > 0 and �i D 0 if �i < 0

4. Bob chooses r uniformly at random from Z�n, computes
the masked result EP.r � �/ D Œ

QN�1
iD0 EP.�i /�

r , and
sends it to Alice

5. Alice decrypts EP.r � �/ with her private key and,
if r � � D 0, she returns true; otherwise, she returns false

Fig. 6 The private proximity detection protocol.

that produced a positive orientation and, thus, she can
eliminate some areas from the search space. Therefore,
Bob multiplicatively masks the aggregate result (Steps
3 and 4), by computing EP.r � �/. Finally, Bob sends
the masked result to Alice who decrypts it with her
private key (Step 5). If the decrypted value is zero, q
is located inside (or on the boundary of) P . Otherwise,
it is impossible for Alice to determine how many point
orientations were positive.

4.3 Secure comparison protocol

In Step 3 of the PPD Convex protocol, Bob holds the
encryptions of all point orientation results and wants to
compute the encryptions of their corresponding signs.
For this task, we borrow a secure comparison protocol
(Fig. 7) that is introduced by Erkin et al.[19] as part of
their privacy preserving face recognition protocol.

Suppose we use `-bit numbers to represent the
orientation. In Step 1, Bob computes the encryption of
s D .�i C 2

`/, which is an (` C 1)-bit number whose
Most Significant Bit (MSB) determines the sign of �i :
if it is 1, �i > 0; otherwise, �i < 0. The value of the

Sec Comp

Input: Bob has EP.�i / under Alice’s public key
` is the max bit-size of �i

Output: Bob computes EP.�i / where �i > 0 if �i > 0 and
�i D 0 if �i < 0

1. Bob computes EP.s/ D EP.�i C 2
`/ D EP.�i / �EP.2

`/

2. Bob generates a uniformly random .k C `C 1/-bit number
r (where k D 100), computes EP.s C r/ D EP.s/ �EP.r/,
and sends it to Alice

3. Alice decrypts the message, computes a D .s C r/ mod 2`,
and sends EP.a/ to Bob

4. For i 2 f0; 1; : : : ; ` � 1g, Alice sends to Bob EG.ai /, i.e.,
the ElGamal encryption of the i -th bit of ai

5. Bob computes b D r mod 2`

6. For i 2 f1; 2; : : : ; ` � 1g, Bob sets EG.wi / equal to EG.ai /

if bi D 0, or EG.1/ �EG.ai /
�1 if bi D 1 (the i -th bit of b)

7. Bob chooses d 2 f1;�1g and, for i 2 f0; 1; : : : ; ` � 1g, he
computes EG.ci / D EG.ai / �EG.bi /

�1 �EG.d/�

Œ
Q`�1

jDiC1EG.wj /�
3

8. For i 2 f0; 1; : : : ; ` � 1g, Bob chooses vi uniformly at
random from Z�p , computes EG.vi � ci / D EG.ci /

vi , and
sends a permuted version of the results to Alice

9. Alice decrypts all messages and, if one of them is zero, she
sets ı D 1; otherwise ı D 0. She sends EP.ı/ to Bob

10. If d D �1, Bob sets EP.ı/ D E.1/ �EP.ı/
�1

11. Bob computes
EP.�i / D EP.s/ � ŒEP.a/ �EP.b/

�1 �EP.ı/
2`
��1

Fig. 7 The secure comparison protocol.



276 Tsinghua Science and Technology, June 2016, 21(3): 270–280

MSB can be inferred from the result of Œs�.s mod 2`/�,
which is 0 if MSB D 0 and 2` if MSB D 1. Therefore,
Alice and Bob engage in a series of steps to securely
compute .s mod 2`/. Initially (Step 2), Bob generates a
uniformly random number r in order to additively mask
s, i.e., he sends the encryption of .sC r/ to Alice. Alice
decrypts the message, reduces it modulo 2`, and sends
the encryption of a D Œ.s C r/ mod 2`� back to Bob
(Step 3).

Bob now needs to subtract b D .r mod 2`/ from
a, in order to compute .s mod 2`/. However, this
is not sufficient, as the subtraction may cause the
result to underflow when a < b. Instead, the correct
approach is to securely compute the outcome of the
above comparison (ı D 1 if true, ı D 0 if false) and
then compute the desired result:

.s mod 2`/ D a � b C ı � 2`:

Consequently, we are left with an instance of Yao’s
millionaire problem, i.e., we need to determine whether
a (held by Alice) is smaller than b (held by Bob).
Both inputs are `-bit numbers, so we use index i 2
f0; 1; : : : ; ` � 1g to represent the individual bits. First
(Step 4), Alice sends to Bob the encryptions of all her
bits ai . Note that, at this point, Alice switches to the
more computationally efficient ElGamal scheme. Bob
then chooses a random value d (either 1 or �1) and
computes the following encryptions (Steps 6 and 7),
where wj D aj ˚ bj :

ci D ai � bi C d C 3

`�1X
jDiC1

wj :

Suppose that d D 1. If a > b, then all ci will be non-
zero. On the other hand, if a < b, then exactly one ci

will be zero (at the most significant bit position where
the corresponding bits differ). If d D �1 the situation is
identical, except that the zero value occurs when a > b.
Next, Bob multiplicatively masks the individual ci by
raising them to a random power vi . He also permutes
the encryptions and sends them back to Alice (Step 8).

Alice decrypts all the ci and checks whether one of
them is zero. If this is the case, she sets ı D 1;
otherwise she sets ı D 0. Note that, Alice does not
know the value of d that Bob has selected, so she
can not determine whether an underflow has occurred.
Finally, she switches back to Paillier’s cryptosystem and
sends the encryption of ı to Bob (Step 9). If d D �1,
Bob adjusts the value of ı (Step 10) and eventually
computes (Step 11) the encryption of

�i D s � .a � b C ı � 2
`/;

where �i D 0, if �i < 0 and �i D 2
`, if �i > 0.

4.4 Security

We will prove the security of the PPD Convex
protocol (which also includes the Sec Comp protocol)
for semi-honest adversaries, following the simulation
paradigm[5]. In particular, we need to show that, for
each party, we can simulate the distribution of messages
that the party receives, given only the party’s input and
output in this protocol. This is true because, if we can
simulate each party’s view from only their respective
input and output, the messages themselves reveal no
additional information.

First, Alice’s input consists of N vertices and her
output is r �� . In Step 2 of Sec Comp, Alice receives the
encryption of a uniformly random number from Bob.
The simulator knows Alice’s public key, so it can simply
generate the encryption of a random .k C ` C 1/-bit
number. Furthermore, in Step 8 of Sec Comp, Alice
receives ` numbers that are either all random or there is
a single one with value zero. The simulator knows how
the protocol works, so it can either generate ` random
encryptions, or .` � 1/ random encryptions plus an
encryption of zero. Finally, in Step 4 of PPD Convex,
Alice receives the encrypted result from Bob. The
simulator knows Alice’s output and can, thus, produce
the corresponding ciphertext (an encryption of either
zero or a random number).

In Bob’s case, the input is a point q and there is no
output. In Step 2 of PPD Convex, Bob receives 3N
encryptions from Alice. Here, the simulator can simply
generate 3N encryptions of zero. Given the assumption
that the underlying encryption scheme is semantically
secure, Bob can not distinguish these ciphertexts from
the ones that are produced by Alice’s real input.
Similarly, Bob receives a number of encryptions in
Steps 3, 4, and 9 of Sec Comp. This is also simulated
by multiple encryptions of zero.

5 Protocol Extensions

In this section, we present two improvements over our
basic protocol. Section 5.1 introduces a method that
enables Bob to control his location disclosure during
protocol execution and Section 5.2 describes how to
handle concave query polygons.

5.1 Limiting Bob’s location disclosure

While the PPD Convex protocol protects Bob’s privacy
when he lies outside Alice’s proximity region, it may



Bin Mu et al.: Private Proximity Detection for Convex Polygons 277

potentially reveal sensitive information when he is
located inside that region. The reason is that Alice
could define a polygon that surrounds a very small
area on the map, such as a hospital or a church,
without proving to Bob that the area is larger than his
preferred privacy threshold. To this end, we propose an
enhanced version of the basic protocol that allows Bob
to (blindly) compute the area of the proximity polygon,
before agreeing to participate in the remainder of the
protocol. The key observation is that in Step 1 of the
basic protocol (Fig. 6) Bob has all the information he
needs to compute the encrypted value of the polygon’s
area. Specifically, the area w of a convex polygon
with N edges, when the edges .i; j / are processed in
a counterclockwise order, is equal to

w D �

PN�1
iD0 .p

y
i p

x
j � p

x
i p

y
j /

2
:

Figure 8 shows the enhanced version of our protocol
that enables Bob to participate in a proximity detection
query, only if the area of the query is larger than a
threshold W (Bob’s location disclosure threshold). At

PPD Convex Enhanced

Input: Alice has polygon P with N vertices p0; p1; : : : ; pN�1

Bob has point q
Output: true if q in P , false otherwise
1. For i 2 f0; 1; : : : N � 1g and j D .i C 1/ mod N , Alice sends

to Bob EP.p
y

j
� p

y

i
/, EP.p

x
i
� px

j
/, and EP.p

y

i
px

j
� px

i
p

y

j
/

2. Bob computes EP.2w/ D EP.�
PN�1

iD0 .p
y

i
px

j
� px

i
p

y

j
//

D
QN�1

iD0 EP.p
y

i
px

j
� px

i
p

y

j
/�1, where j D .i C 1/ mod N

3. Bob chooses r 0; r 00 uniformly at random from Z�n, computes
the masked result EP.r

0.r 00 C 2w// D ŒEP.r
00/ �EP.2w/�

r 0 ,
and sends it to Alice

4. Alice decrypts the masked result and sends to Bob r 0.r 00 C 2w/
5. Bob retrieves w and, if w > W , the protocol continues;

otherwise, Bob informs Alice that he does not wish to participate
6. For i 2 f0; 1; : : : ; N � 1g and j D .i C 1/ mod N , Bob

computes EP.ri � �i / D ŒEP.p
y

j
� p

y

i
/q

x
�EP.p

x
i
� px

j
/q

y
�

EP.p
y

i
px

j
� px

i
p

y

j
/ �EP.�1/�

ri , where ri is chosen
randomly in Œ1; d �

7. Alice and Bob engage in a series of secure comparison
protocols and Bob computes, 8i 2 f0; 1; : : : ; N � 1g, EP.�i /,
where �i > 0 if ri�i > 0 and �i D 0 if ri�i < 0

8. Bob chooses r uniformly at random from Z�n, computes
the masked result EP.r � �/ D Œ

QN�1
iD0 EP.�i /�

r , and
sends it to Alice

9. Alice decrypts EP.r � �/ with her private key and,
if r � � D 0, she returns true; otherwise, she returns false

Fig. 8 The enhanced protocol.

Step 2, Bob computes EP.2w/, which he then masks
(with random values r 0 and r 00) in order to make it
infeasible for Alice to manipulate the result (Step 3).
He then sends the masked result to Alice, who decrypts
it and returns the result back to Bob (Step 4). Next, Bob
removes the random values and computes the polygon
area w. If this area is larger than his privacy threshold
W , the protocol continues; otherwise, Bob informs
Alice that he is not willing to participate in this instance
of the proximity detection query (Step 5).

Nevertheless, if Alice and Bob simply follow the
remaining steps of the basic protocol (Steps 2–5 of
PPD Convex), Alice can cheat by forcing Bob to
compute a value w that is larger than the actual
query area. In particular, instead of sending ciphertext
EP.p

y
i p

x
j � p

x
i p

y
j / for each of the N edges (Step 1),

Alice sends to Bob EP.p
y
i p

x
j � p

x
i p

y
j � v/, where v

is a positive integer. In this way, the area w0 that Bob
computes is actually equal to w C N � v=2. Clearly,
Alice can make the query area appear arbitrarily large to
Bob. Furthermore, Alice can still get the correct query
result (for the smaller area w) by adding v in Step 3 of
the secure comparison protocol (Fig. 7). That is, Alice
computes a D .s C r C v/ mod 2` and sends EP.a/ to
Bob.

To mitigate this problem, we need to modify the
protocol so that it is difficult for Alice to get a correct
proximity result if she tries to cheat. To this end, when
Bob computes the encrypted orientation value EP.�i /

for a polygon edge, he multiplies it with a random
value ri that is chosen uniformly in the range Œ1; d �
(Step 6 of Fig. 8). Note that this does not affect the
correctness of the protocol, as we only care about the
sign of the result. However, this makes it difficult for
Alice to remove the effect of v in the orientation result,
since she has to (correctly) guess ri and add ri � v

when computing a in the secure comparison protocol.
Therefore, for a polygon with k edges, the probability
that Alice computes the correct query result is 1=dk .
Moreover, even if Alice guesses all k random values
correctly, she still has no way of knowing whether the
query result is correct. Consequently, the value of d can
be very low, which is important since the bit length of
ri � �i affects the performance of the secure comparison
protocol.

5.2 Handling concave polygons

In certain cases, the querier may need to define
a concave polygon, in order to better approximate



278 Tsinghua Science and Technology, June 2016, 21(3): 270–280

the underlying proximity region. The PPD Convex
protocol of Fig. 6 is not applicable in this scenario,
as it may produce some false negatives. Nevertheless,
using well-known algorithms for the optimal convex
decomposition problem[20] in computational geometry,
we can decompose any concave shape into the
minimum number of convex polygons. An example is
shown in Fig. 9, where P is decomposed into convex
polygons Pa and Pb .

A straightforward algorithm to evaluate private
proximity detection queries would then be to invoke
PPD Convex multiple times, and have Bob return all
results (permuted) back to Alice. Alice would then
decrypt the results and infer that Bob lies within P if
and only if there is a zero value among the plaintexts.
Furthermore, the permutation prevents Alice from
identifying the exact polygon where Bob is located.
While this approach would work in most cases, it is not
secure if Bob lies on an edge that is shared between
two convex polygons. In the example of Fig. 9, if Alice
decrypts two zero values she can be certain that Bob lies
somewhere along the line segment p1p4.

However, with a minor adjustment in our basic
protocol, we can ensure that, when Bob lies on a
common edge, only one of the neighboring polygons
returns true in the proximity detection query. In
particular, Bob has to modify the computation of the
point orientation �i for one of the two polygons, such
that it returns false when the point lies on that specific
edge. This is done trivially, by removing EP.�1/ in
Step 2 of the PPD Convex protocol. In this way, a point
that lies on that edge will produce a value of 0, instead
of �1, and the query will return false. Note that, this
modification also works for the enhanced version of our
protocol.

6 Implementation Results

In this section, we present our results from an actual
implementation of the PPD Convex protocol on iOS

p0

p4 p3

p2

p1

P

(a) Concave polygon

p0

p4 p3

p2

p1

Pb

Pa

(b) Convex decomposition

Fig. 9 Optimal convex decomposition.

devices. The implementation of the cryptographic
primitives is written in C, and leverages the GMP
(http://gmplib.org/) multiple precision arithmetic
library and the OpenSSL (http://www.openssl.org/)
cryptographic library. In particular, we cross
compiled both libraries for the ARM architecture
and incorporated them in our app. We deployed the
app on two devices (an iPhone 6 and an iPad air) and
connected the devices over a WiFi network using a
secure SSL connection.

Before running the actual protocol, we created a
benchmark program to test the performance of the two
homomorphic encryption schemes. Specifically, we
deployed the benchmark app on the iPhone 6 device and
measured the cost of the basic cryptographic operations.
The results are shown in Table 1. The two modular
exponentiation entries correspond to the size of the
exponent, which is the deciding factor for the cost of
this operation. Small exponents are involved when
a party multiplies its plaintext input into an existing
ciphertext, e.g., as Bob does in Step 2 of protocol
PPD Convex. Large exponents are normally necessary
during a multiplicative masking operation, such as
the one in Step 4 of PPD Convex. The advantage
of ElGamal’s scheme is very clear in this table (as
explained in Section 2.1), and justifies the usage of two
different cryptosystems in the same protocol.

Next, we investigate the impact of the domain
size (i.e., the number of bits required to store one
coordinate) on the performance of a single point
orientation computation. Figure 10 illustrates the CPU
time required at the two parties, as well as the overall
communication cost. Both costs grow linearly with the
domain size, because the bit-size ` of the orientation
result increases. This, in turn, increases the cost of the

Table 1 Cost of cryptographic primitives.
(ms)

Paillier cryptosystem
Encryption 17.14
Decryption 15.69
Modular exponentiation (small exponent) 0.52
Modular exponentiation (large exponent) 16.15
Modular multiplication 0.017

ElGamal cryptosystem
Encryption 1.40
Decryption 0.96
Modular exponentiation (small exponent) 0.28
Modular exponentiation (large exponent) 1.38
Modular multiplication 0.01



Bin Mu et al.: Private Proximity Detection for Convex Polygons 279

(a) CPU time

(b) Communication cost

Fig. 10 Cost vs. domain size (for a single edge).

Sec Comp protocol that has a linear complexity with
respect to `. Nevertheless, the CPU time is affected less
than the communication cost, due to the dominant effect
of the Paillier operations that are not influenced by the
domain size. Also, Bob’s CPU time increases more
sharply than Alice’s, because Bob needs to perform a
lot of public key operations in Steps 6 and 7 of the
Sec Comp protocol.

Figure 11 shows the CPU time and the
communication cost as a function of the number
of edges N in the proximity region (for a domain
size of 30 bits). Clearly, both costs scale linearly
with N , since the proximity detection query involves
exactly N point orientation computations. We expect
that, in a real application, a rectangular region would
probably be the most common query type. In this case,
the query could be answered in around 2 s and incur a
communication cost of 90 KB. We believe that this is an
acceptable cost for privacy preserving query processing
on handheld devices.

7 Conclusion

Traditional private proximity detection protocols are
very restrictive in the definition of the proximity region.
In particular, they typically constrain users to select

(a) CPU time

(b) Communication cost

Fig. 11 Cost vs. number of polygon edges.

(at most) a few cells from a fixed grid decomposition
of the space. To this end, this paper extends the
notion of private proximity detection, by allowing users
to define regions of arbitrary convex shapes. We
propose a novel solution, based on a secure two-party
computation protocol that is provably secure. With
a slight modification to our basic protocol, we show
that it is also possible to protect the privacy of the
query target, by enabling her to abort the protocol if
the area of the query is below a desired threshold.
Furthermore, we outline a solution that leverages our
basic protocol to handle arbitrary concave polygons.
Finally, we implement our protocol on handheld devices
and illustrate its applicability in a real-life application.

Acknowledgment

This research was supported by the National Science
Foundation CAREER Award IIS-0845262.

References

[1] G. Zhong, I. Goldberg, and U. Hengartner, Louis, Lester
and Pierre: Three protocols for location privacy, in Privacy
Enhancing Technologies. Springer Berlin Heidelberg,
2007, pp. 62–76.

[2] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh, Location privacy via private proximity



280 Tsinghua Science and Technology, June 2016, 21(3): 270–280

testing, in Proceedings of NDSS, 2011.

[3] P. Paillier, Public-key cryptosystems based on composite
degree residuosity classes, in EUROCRYPT, 1999, pp.
223–238.

[4] T. ElGamal, A public-key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Transactions
on Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

[5] Y. Lindell and B. Pinkas, Secure multiparty computation
for privacy-preserving data mining, Journal of Privacy and
Confidentiality, vol. 1, no. 1, pp. 59–98, 2009.

[6] A. C.-C. Yao, How to generate and exchange secrets,
in Foundations of Computer Science, 1986, 27th Annual
Symposium on, 1986, pp. 162–167.

[7] M. Naor and B. Pinkas, Computationally secure oblivious
transfer, Journal of Cryptology, vol. 18, no. 1, pp. 1–35,
2005.

[8] Y. Huang, D. Evans, J. Katz, and L. Malka, Faster secure
two-party computation using garbled circuits, in USENIX
Security Symposium, 2011.

[9] H. Lipmaa, Verifiable homomorphic oblivious transfer and
private equality test, in ASIACRYPT, 2003, pp. 416–433.

[10] P. Ruppel, G. Treu, A. Küpper, and C. Linnhoff-Popien,
Anonymous user tracking for location-based community
services, in Location- and Context-Awareness. Springer
Berlin Heidelberg, 2006, pp. 116–133.

[11] S. Mascetti, C. Bettini, and D. Freni, Longitude:
Centralized privacy-preserving computation of users’
proximity, in Secure Data Management (SDM). Springer
Berlin Heidelberg, 2009, pp. 142–157.

[12] L. Siksnys, J. R. Thomsen, S. Saltenis, M. L. Yiu, and
O. Andersen, A location privacy aware friend locator, in
Advances in Spatial and Temporal Databases. Springer
Berlin Heidelberg, 2009, pp. 405–410.

[13] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu,
Private and flexible proximity detection in mobile social
networks, in 2010 Eleventh International Conference on
Mobile Data Management, 2010, pp. 75–84.

[14] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and
S. Jajodia, Privacy in geo-social networks: Proximity
notification with untrusted service providers and curious
buddies, VLDB Journal, vol. 20, no. 4, pp. 541–566, 2011.

[15] M. J. Atallah and W. Du, Secure multi-party computational
geometry, in Algorithms and Data Structures. Springer
Berlin Heidelberg, 2001, pp. 165–179.

[16] T. Thomas, Secure two-party protocols for point inclusion
problem, International Journal of Network Security, vol. 9,
no. 1, pp. 1–7, 2009.

[17] Y. Ye, L. Huang, W. Yang, and Y. Zhu, Efficient protocols
for point-convex hull inclusion decision problems, Journal
of Networks, vol. 5, no. 5, pp. 559–567, 2010.

[18] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars,
Computational Geometry: Algorithms and Applications,
3rd edition. Springer-Verlag, 2008.

[19] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft, Privacy-preserving face
recognition, in Privacy Enhancing Technologies. Springer
Berlin Heidelberg, 2009, pp. 235–253.

[20] J. M. Keil, Decomposing a polygon into simpler
components, SIAM Journal of Computing, vol. 14, no. 4,
pp. 799–817, 1985.

Spiridon Bakiras received the BS degree
in electrical and computer engineering
from the National Technical University
of Athens in 1993, the MS degree
in telematics from the University of
Surrey in 1994, and the PhD degree in
electrical engineering from the University
of Southern California in 2000. Currently,

he is an associate professor in the Department of Computer
Science at Michigan Tech. Before that, he held teaching
and research positions at the City University of New York,
the University of Hong Kong, and the Hong Kong University
of Science and Technology. His current research interests
include database security and privacy, mobile computing, and
spatiotemporal databases. He is a member of the ACM and
a recipient of the U.S. National Science Foundation (NSF)
CAREER award.

Bin Mu is currently a PhD student at the
Graduate Center of the City University of
New York (CUNY). He received the BS
degree in computer science from Nankai
University, China in 2007, the MS degree
in geological information systems from
Peking University, China in 2010, and
MS in computer science from CUNY in

2014. His major research areas include privacy in location based
services and privacy-preserving image search.


