
Privacy-preserving Location-aware Mobile

Advertisement

Erald Troja

The Graduate Center

City University of New York

Email: etroja@gradcenter.cuny.edu

Spiridon Bakiras

Dept. of Computer Science

Michigan Technological University

Email: sbakiras@mtu.edu

Abstract—Location-aware mobile advertising is expanding
very rapidly and is forecast to grow much faster than any
other industry in the digital era. Unfortunately, with the rise
and expansion of online behavioral advertising, consumers have
grown very skeptical of the vast amount of data that is extracted
and mined from advertisers. As a result, the consensus has shifted
towards stricter privacy requirements. In this paper, we introduce
a novel privacy-preserving location-aware mobile advertisement
framework that is built with privacy in mind from the ground
up. Our proposed methods ease the tension that exists between
privacy and advertising by guaranteeing, through cryptographic
constructions, that (i) mobile users receive advertisements relative
to their location and interests in a privacy-preserving manner,
and (ii) the advertisement network can only compute aggregate
statistics of ad impressions and click-through-rates. Through ex-
tensive experimentation, we show that our methods are efficient in
terms of both computational and communication cost, especially
at the client side.

I. INTRODUCTION

The rise in popularity of smartphone applications has led

to an exponential growth in privacy concerns, mainly due to

the constant consumer tracking and profiling that stems from

abusive data capturing and sharing strategies. According to

a recent study [23], 66% of location-aware applications have

privacy policies that actually amount to very little when it

comes to protecting the privacy of the data that is collected

and shared by the application. A classic case study is that of

the Google engineer who violated the company’s strict privacy

policy rules, by breaking into the Gmail and Voice accounts

of Google users [3].

To eliminate the privacy concerns of online targeted adver-

tisement, a privacy-preserving ad network should address two

important issues, namely ad delivery and statistics collection.

First, ad delivery should guarantee that the network is oblivi-

ous to the content sent to the clients. Second, statistics collec-

tion should keep track of the aggregate number of times that a

certain ad is displayed to the users (known as ad impression or

click-through-rate) without knowledge of individual statistics.

These aggregate measurements are essential, because they

form the basis on which the ad network bills the advertisers.

Although several privacy-preserving ad networks exist in the

literature, some do not support location-aware ads [12], [22],

others do not encrypt the ads sent to the clients [9], [10],

[22], a few employ a trusted third-party in their architecture

[8], [22], others rely on non-colluding servers [10], [12], and

some require specialized network infrastructures [9].

In this paper, we introduce a novel privacy-preserving

location-aware mobile advertisement framework that is built

with privacy in mind from the ground up. Our methods

ease the tension that exists between privacy and advertising

by guaranteeing, through cryptographic constructions, that (i)

mobile users receive advertisements relative to their location

and interests encrypted with their own public keys, and (ii)

the ad network can only compute aggregate statistics of ad

impressions and click-through-rates (CTRs). Unlike previous

work, we do not employ trusted third-parties and all our

protocols are secure against collusions. To the best of our

knowledge, this is the first privacy-preserving location-aware

ad network in the literature with such properties.

Our basic ad delivery method leverages a simplified version

of the private stream searching protocol by Ostrovsky and

Skeith III [17]. Specifically, we partition space into a regular

grid, and allow clients to privately retrieve the ads from the

grid cell that they currently reside in. This is done by sending

to the ad network’s server one Paillier [18] ciphertext for each

grid cell. All ciphertexts contain encryptions of 0, except for

the one corresponding to the client’s cell that contains an

encryption of 1. With these ciphertexts, the server prepares an

encrypted ad buffer that is then decrypted by the client with

his private key. Next, we identify a performance bottleneck

at the client side when the number of cells is large, which

leads to significant computational and communication costs.

To this end, we introduce an improved protocol, based on the

“somewhat” homomorphic cryptosystem of Boneh, Goh, and

Nissim (BGN) [2]. The properties of the BGN cryptosystem

allow us to identify the cell of interest through its row/column

id and, therefore, does not require a unique ciphertext for each

grid cell.

Our final contribution includes a privacy-preserving aggre-

gation protocol that collects ad impression/CTR statistics at the

ad network server, without leaking any information regarding

individual customers. It is based on a distributed version

of the ElGamal cryptosystem [4] and has several desirable

properties. First, it is very efficient for dynamic membership

groups, i.e., when new customers join or existing customers

leave the system. Furthermore, it is resistant against collusions

among the clients, and is computationally efficient. Through

extensive experimentation, we show that our protocols are

efficient in terms of both computational and communication

cost, especially at the client side.

II. RELATED WORK

The earliest work towards privacy-preserving advertisement

is due to Juels [12]. He proposes the notion of a negotiant,

which serves as a client-side proxy to protect user information

and direct the targeting of advertisements. The idea is to

allow each customer equipped with a public/private key to

publish his ad request on a bulletin board. When enough ads

are accumulated or some other triggering criterion occurs, a

network of m non-colluding servers (advertisers) mixes the

requests, and then uses distributed plaintext equality test to

perform a blind lookup of consumer ad requests. The scheme

by Juels does not consider other aspects of online advertising,

such as privacy-preserving aggregation of ad statistics.

Adnostic [22] proposes a practical advertisement archi-

tecture that enables ad targeting without compromising user

privacy. Specifically, behavioral profiling and ad targeting is

privately done in the user’s browser. The ad network period-

ically selects a number of ads that are sent (in plaintext) to

the user’s browser, where a rendering module chooses an ad

for display. Adnostic’s main goal is to complement existing

behavioral advertising infrastructure, by providing efficient

cryptographic billing based on homomorphic encryption and

efficient zero-knowledge proofs (ZKPs). Nevertheless, their

aggregation scheme makes use of a trusted third-party for

decrypting the ad impression counters. In a similar fashion to

Adnostic, Privad [8] preserves privacy by maintaining profiles

on the user’s computer instead of the server. Furthermore,

it employs an anonymizing proxy, called dealer, which sits

between the clients and the ad network in order to hide any

personally identifying information. The main limitation of

Privad is that it trusts that the ad network does not collude

with the dealer.

MobiAd [9] proposes that end users keep a local private

profile of categories of interest on their mobile devices. Ads

are constantly broadcast on the local mobile base station, and

the device’s profile is responsible for downloading ads that

are relevant to the user’s interests. Statistics, such as CTRs

or ad impressions, are updated via anonymization techniques.

Finally, Hardt and Nath [10] provide a privacy-aware personal-

ization scheme for mobile advertising. The main contribution

of their work is the formalization of a common framework

for personalized ad delivery, which can be instantiated at any

required trade-off point between ad relevance, privacy, and

efficiency. First, in an interactive manner, the client releases

limited information to the ad network, such as a broad category

of interest over a cloaked region. The server then pushes (in

plaintext) the most relevant ads to the client, who filters them

based on private criteria held at the device.

In the realm of privacy-preserving aggregation protocols,

numerous approaches in the literature leverage a trusted

third-party to perform specific tasks [10], [11], [15], [21].

Although trusted third-parties simplify the construction of

privacy-preserving protocols, they are not realistic for practical

applications. To this end, Acs and Castelluccia [1], and Erkin

and Tsudik [5] generate random secrets in a distributed manner

among the participating users. While their underlying encryp-

tion protocols are different, both methods are very similar

in the way they construct the secrets. Their main limitation,

however, is that they are prone to collusions among the users.

Jung et al. [13] and Yang et al. [24] allow each user to

compute a random key that is used to mask the underlying

measurement. The keys are computed in a way, such that

they cancel out once they are aggregated at the server. Even

though these schemes are not prone to collusions, they are

very inefficient because they necessitate expensive re-keying

operations for every aggregation instance.

III. PRIVACY-PRESERVING AD DELIVERY

We consider a system where mobile users receive ads, in

a streaming fashion, from businesses in their proximity. The

streaming nature of the data discourages the use of private

information retrieval (PIR) protocols [7], [14], since such

protocols assume a static database whose exact specifications

are known to all users. Instead, our goal is for each user

to submit a single query to the ad network (representing

their current location) and have the ad network filter out the

streaming ads based on each user’s location. Ads are delivered

through a dedicated ad network that bills the advertisers based

on the number of times their ads are displayed to the users (ad

impressions). To determine proximity, we assume that space

is partitioned into a regular N ×N grid, where each grid cell

stores the ads that are physically located therein. Similarly,

users map their GPS coordinates into a unique cell, and use

the cell’s position as an input to their query.

Ads consist of a tuple 〈id, cid, loc, text〉, where id is the

ad’s unique identifier, cid identifies the advertisement category

(e.g., food, shopping), loc contains the GPS coordinates of

the ad’s product, and text is the message that is displayed

to the user. We assume that the text part of the ad is a few

hundred bytes in size, and is padded (if needed) so that all

ads have identical text size. At the client side, we assume

the existence of a profiling engine that monitors the user’s

browsing behavior and builds a private profile for that user.

Table I contains a summary of symbols used in the remainder

of this paper.

TABLE I
SUMMARY OF SYMBOLS

Symbol Description

n Number of users in the system

N Grid granularity

A The set of all advertisements

L The set of all locations

Al ⊂ A The set of ads matching location l ∈ L
|Al|max Max number of ads across all locations l ∈ L
Q,R, C Encrypted query vectors

PK Any public key

P Any private key

B Encrypted buffer

m Number of ciphertexts required to store one ad

Threat model. We consider the ad network (or any entity

that has compromised the network’s server) as the adversary,

whose goal is to pinpoint a user’s location into an area

smaller than the whole data space. In this work, we aim at

perfect privacy, i.e., the adversary should remain oblivious to

the location of the users. We assume that the adversary is

polynomial time and follows the honest-but- curious (or semi-

honest) model, i.e., it will execute the protocol correctly, but

will try to gain an advantage by examining the transcript of

the messages that are exchanged during protocol execution.

A. Basic protocol

Our basic scheme is roughly based on the private stream

searching protocol by Ostrovsky and Skeith III [17]. The

intuition is to allow the client to specify the location of

interest through an encrypted vector, and then use the additive

homomorphism of the Paillier cryptosystem to encode the

results into an encrypted buffer. We assume that all clients

generate their Paillier keys locally when they first register in

the system, and send the corresponding public keys to the

server along with their queries. In what follows, we present

our method in terms of three phases, namely, query generation,

query processing, and result extraction.

Query generation. The client uses his public key PK to

construct a vector Q of length |L| = N2, as shown in

Algorithm 1. Every element in the vector is an encryption of 0,

except for the element that corresponds to the user’s location l,

which is an encryption of 1. Due to the semantic security of the

Paillier cryptosystem, these ciphertexts are indistinguishable to

the adversary.

Algorithm 1 Query generation (Paillier)

1: procedure GEN-QUERY-PAILLIER(PK, loc)
2: map GPS location loc into cell l ∈ L;
3: for each location i ∈ L do
4: if i == l then
5: Qi ← EPK(1);
6: else
7: Qi ← EPK(0);
8: end if
9: end for

10: return Q;
11: end procedure

The query generation algorithm incurs an O(N2) computa-

tional and communication cost, which is significant when N is

large. However, one way to eliminate the online computational

cost is to precompute offline (e.g., during night time, when

the phone is charging) encryptions of 0, which is the major

performance bottleneck at the client.

Query processing. After receiving the query vector Q and

public key PK, the ad network must process all the ads in

A and return the relevant ones to the client. We assume that

every ad fits in exactly m ciphertexts, where m depends on the

underlying cryptosystem and key size. For example, if we use

a 1024-bit RSA modulus (for Paillier), a 512-byte ad requires

m = 4 ciphertexts. The main idea is to construct an encrypted

buffer B that is capable of holding the maximum number of

ads across any location l ∈ L, i.e., |Al|max. That is, the buffer

should consist of exactly m · |Al|max ciphertexts.

Algorithm 2 illustrates the procedure that generates the

encrypted buffer at the ad network server. B is initially

populated with encryptions of 0 (lines 2–3) that are computed

with the client’s public key (for efficiency, we use the same

ciphertext for all entries). Next, the server processes the ads

on a per cell basis. Each ad is split into m pieces, which are

subsequently added into m consecutive locations on the buffer

(lines 9–12). Note that, when Ql is an encryption of 0, the

process has no effect on the buffer contents. It is also worth

noting that the round-robin manner in which we iterate over

the buffer guarantees that there are no collisions when writing

back the results. Consequently, when the procedure terminates,

B contains (i) the encrypted ads corresponding to the queried

location in successive order starting from a random position

in the buffer, and (ii) encryptions of 0 at all the remaining

positions.

Algorithm 2 Query processing (Paillier)

1: procedure GEN-BUFFER(PK,Q,A)
2: for i in 1 to m · |Al|max do
3: Bi ← EPK(0);
4: end for
5: i← 0;
6: for each cell l ∈ L do
7: for each ad a ∈ Al do
8: split advertisement a into m pieces;
9: for k in 1 to m do

10: Bi ← Bi · Ql
ak ;

11: i← (+ + i)%(m · |Al|max);
12: end for
13: end for
14: end for
15: return B;
16: end procedure

The computational cost at the server is O(m · |A|) modular

exponentiations and multiplications, while the communication

cost entails the transmission of O(m·|Al|max) ciphertexts. The

Paillier cryptosystem is an ideal choice in this case, because

it can decrypt arbitrarily large plaintexts (i.e., the value of m

is small).

Result extraction. The result extraction procedure is fairly

straightforward, i.e., the client simply decrypts with his private

key P the ciphertexts that comprise buffer B. Algorithm 3

summarizes the decryption process. Starting with the first

ciphertext, the client decrypts it and checks whether it con-

tains a useful ad. In particular, if the resulting plaintext M

is 0, the corresponding position is empty. Furthermore, by

decrypting the first part of the ad, the client recovers its cid

value, thus determining (with the help of the profiling engine)

whether the ad matches the user’s profile. If the ad is not

helpful to the client, the algorithm skips the remaining m− 1
ciphertexts and moves to the next ad (lines 4–6). Otherwise,

the remaining ciphertexts are decrypted to reconstruct the

entire ad (lines 8–12). When the algorithm terminates, the

profiling engine moves the decrypted ads into the queue that is

scheduled for display. The computational cost of this algorithm

is O(m · |Al|max) decryption operations.

Algorithm 3 Result extraction

1: procedure GET-RESULTS(P ,B)
2: for i in 1 to m · |Al|max do
3: M ← DP(Bi);
4: if M == 0 or ad does not match interest then
5: i← i+m;
6: continue;
7: else
8: initialize new ad with M ;
9: for j in 1 to m− 1 do

10: M ← DP (Bi+j);
11: add M to currently constructed ad;
12: end for
13: i← i+m;
14: end if
15: end for
16: return ads;
17: end procedure

Security. Note that the three phases of our basic scheme

constitute a secure two-party computation protocol between

the client and the server. As such, we can prove the security

of the protocol for honest-but-curious adversaries, following

the simulation paradigm [16]. It suffices to show that we

are able to simulate the distribution of the messages that

each party receives, given only the party’s input and output

in the protocol. The intuition is that, if we can simulate a

party’s messages knowing only their input and output, then the

messages themselves cannot reveal any additional information.

First, the client’s input consists of a binary query vector,

and the output contains a number of ads matching a location.

The only messages that the client receives from the server

are a series of Paillier ciphertexts corresponding to B. The

simulator has knowledge of the client’s public key and it also

knows the decrypted ads. Therefore, it can simply reconstruct

a version of the encrypted buffer from scratch. For the server,

the input is the set of ads A and there is no output. The server

only receives N2 Paillier ciphertexts from the client, so the

simulator can simply generate N2 encryptions of 0. Given the

semantic security of Paillier’s cryptosystem, the server cannot

distinguish these ciphertexts from the ones that are produced

by the client’s real input.

B. Query-efficient protocol

Our basic scheme is very efficient in terms of query pro-

cessing and result extraction, but suffers from a O(N2) cost

in the query generation phase. As a result, it does not scale

well for finer grids and is impractical for online queries, i.e.,

without offline pre-computations. To this end, we propose an

enhanced version of the protocol that eliminates the need to

send a unique ciphertext for every cell of the grid. The main

idea is to identify the cell of interest with two encrypted binary

vectors: one representing the rows and the other representing

the columns. The server would then need to multiply the

corresponding bits for every cell, in order to determine whether

the user is interested in that location or not (i.e., whether the

result is 1 or 0). Next, we present the query generation and

processing algorithms of this approach. Note that the result

extraction phase is identical to the one in the basic protocol

and is, thus, omitted from our discussion.

Query generation. Clearly, our idea necessitates a cryp-

tosystem that allows for both multiplication and addition of

plaintexts in the ciphertext domain. This is the definition of

fully homomorphic encryption [6] which, unfortunately, is not

practical yet for real world applications. Fortunately, in our

case, we only need to perform a single multiplication and

an arbitrary number of additions, which is precisely what the

BGN cryptosystem offers. Therefore, as shown in Algorithm

4, the client uses his BGN public key PK to construct two

encrypted vectors, R and C, of length N . All the elements

contain encryptions of 0, except for the ones that correspond

to the user’s row/column id. Due to the semantic security of

the BGN cryptosystem, the ciphertexts are indistinguishable

to an adversary. The algorithm is clearly more efficient than

its Paillier counterpart, incurring a O(N) computational and

communication cost at the client.

Algorithm 4 Query generation (BGN)

1: procedure GEN-QUERY-BGN(PK, loc)
2: map GPS location loc into cell (i, j);
3: for k in 0 to N − 1 do
4: if k == i then
5: Rk ← EPK(1);
6: else
7: Rk ← EPK(0);
8: end if
9: if k == j then

10: Ck ← EPK(1);
11: else
12: Ck ← EPK(0);
13: end if
14: end for
15: return R, C;
16: end procedure

Query processing. The query processing phase is identical to

the one described in the basic protocol, i.e., the server prepares

an empty (encrypted) buffer B that eventually stores the ads

that are relevant to the user’s location. However, in this case,

the server must first compute the query vector Q corresponding

to all locations l ∈ L. As shown in Algorithm 5, for each

location l ∈ L, the server computes Ql = EPK(bi · bj), where

bi and bj are the query bits of the location’s row and column

ids. The ciphertext is computed through a bilinear map of the

respective elements in R and C (line 4).

Algorithm 5 Query processing (BGN)

1: procedure GEN-BUFFER-BGN(PK,R, C,A)
2: for each location l ∈ L do
3: map l into cell (i, j);
4: Ql ← e(Ri, Cj);
5: end for
6: GEN-BUFFER(PK,Q,A);
7: end procedure

The above algorithm entails O(N2) bilinear map operations,

as well as O(m · |A|) modular exponentiations and multiplica-

tions for constructing the encrypted buffer. On the other hand,

the communication cost involves the transfer of O(m·|Al|max)

ciphertexts. Compared to the basic scheme, we make the fol-

lowing two observations. First, the BGN-based protocol shifts

the computational burden from the clients to the server. Instead

of having the clients compute the query vector Q, we provide

the server with the minimal information needed to compute

Q locally. This is significant improvement, because mobile

devices have limited computational capabilities compared to a

state-of-the-art many-core server.

Second, due to the discrete log nature of BGN, the value of

m is significantly larger compared to the basic scheme. In our

implementation, we choose to encrypt ads in 3-byte chunks,

in order to take advantage of a pre-computed table to speed

up the discrete log computation at the client. As a result, for

a 512-byte ad, m is equal to 171, as opposed to 4 in the

case of a 1024-bit Paillier key. Nevertheless, as we show in

our experimental results, the overall cost is considerably lower

compared to the basic scheme.

IV. PRIVACY-PRESERVING COLLECTION OF AD

IMPRESSIONS

A fundamental component in a privacy-preserving ad net-

work is its ability to compute aggregate statistics regarding

the ads that are displayed to the users (ad impressions). In our

system, we assume that the ad network collects the statistics

at the end of each day, when most users’ devices are idle and

connected on the home WiFi network. The server first informs

the clients of the total number of ads |A| that were scheduled

that day and, for every ad in A, each user must submit

(privately) a bit indicating whether that ad was displayed or

not. The server then aggregates the bits from all users, and

updates the billing information for the underlying advertiser.

Our aggregation protocol is based on a distributed version of

the ElGamal cryptosystem, as given by Pedersen [20]. We

chose the ElGamal cryptosystem, because of its simple key

generation process and overall computational efficiency. The

protocol consists of two phases, namely key generation and

interactive aggregation.

Threat model. We consider both the ad network and the

clients as adversaries in this setting. They all follow the

semi-honest adversarial model, and their goal is to identify

any non-trivial information regarding individual measurements

submitted by users. Note that, semi-honest behavior does not

prohibit collusions among the different players, so users may

collude by sharing private information. Our protocol has two

desirable properties: (i) it does not employ a trusted third-party

and (ii) it is secure against any number of colluding parties.

Key generation. All users and the server share a description

of a cyclic group G of prime order q, and two generators of G,

namely g and y. The objective is for the n users to collectively

compute a public key h = gx, such that x =
∑n

i=1
xi is the

private key and xi is user i’s secret share of the key. In other

words, the private key is distributed to all users in the system

and, therefore, decryption necessitates input from all n users.

Algorithm 6 illustrates the key generation process. Initially,

each user selects a random secret xi ∈ Zq and commits [19] to

input gxi , by sending a commitment Ci(g
xi , ri) to the server.

The commitment is simply an encryption of the user’s input

with a random key ri (line 4), and its purpose is to prohibit

users from modifying their inputs in the later stages of the

algorithm. After a user downloads the set of all commitments,

he reveals his public input by sending the tuple (gxi , ri) to the

server (lines 7–8). Finally, each user verifies all commitments

and computes locally the ElGamal public key h (lines 11–13).

In terms of performance, the algorithm requires O(n) modular

exponentiations and multiplications, and involves the exchange

of O(n) ciphertexts and random secrets.

Algorithm 6 Distributed key generation

1: procedure GEN-KEY(G, q, g, y)
2: for each user i do
3: select xi and ri uniformly at random from Zq ;
4: upload commitment Ci(g

xi , ri) = gxi · yri ;
5: end for
6: for each user i do
7: download commitments C1, . . . , Cn;
8: upload (gxi , ri);
9: end for

10: for each user i do
11: download (gxi , ri) for i ∈ {1, . . . , n};
12: verify Ci(g

xi , ri) = gxi · yri for i ∈ {1, . . . , n};
13: compute public key h =

∏n

i=1
gxi ;

14: end for
15: end procedure

An important feature in a privacy-preserving aggregation

protocol is efficient key management. Prior methods that do

not employ trusted third-parties, such as [13] and [24], require

expensive re-keying operations for each aggregated value. On

the other hand, our approach leverages the ElGamal cryptosys-

tem with a pre-established key, so all values are aggregated

under the same public key. Furthermore, our method handles

user deletions trivially. In particular, when user i leaves the

system, the public key is updated as h′ = h · (gxi)−1, i.e., the

user’s secret share is removed from the private/public key. New

users, however, necessitate the invocation of the distributed

key generation algorithm. To reduce the cost of frequent key

generation operations, the server may choose to perform batch

insertions.

Interactive aggregation. Having established the public en-

cryption key h, the aggregation of the ad impressions is

performed at the ad network’s server. Algorithm 7 summarizes

the aggregation protocol for a single ad. The first step is for

all users to upload their encrypted bits bi at the server (lines

3–4). Next, the server leverages the additive homomorphism

of ElGamal to produce the encryption of b =
∑n

i=1
bi (lines

6–7). However, the server is unable to decrypt the result, and

has to rely on the n users to perform the decryption. Ob-

serve that the decryption function necessitates the computation

of h−r, which is equal to (gr)−x. To this end, each user

downloads gr and submits to the server (gr)−xi (lines 9–10).

Finally, the server aggregates these values to compute h−r

and proceeds to recover b (lines 12–14). The overall (across

all ads) computational cost at the client consists of O(|A|)
ElGamal encryptions and O(|A|) modular exponentiations,

while the communication cost entails the exchange of O(|A|)

ciphertexts. At the server side, each client contributes O(|A|)
modular multiplications, while the discrete log computations

can be avoided by using a hash table of pre-computed values.

Algorithm 7 Aggregation protocol for a single value

1: procedure GEN-AGGREGATE(G, q, g, h)
2: for each user i do
3: select ri uniformly at random from Zq;

4: upload encrypted bit bi as tuple (gri , hbi+ri);
5: end for
6: server: compute gr =

∏n

i=1
gri ;

7: server: compute hb+r =
∏n

i=1
hbi+ri ;

8: for each user i do
9: download gr;

10: upload (gr)−xi ;
11: end for
12: server: compute h−r =

∏n

i=1
(gr)−xi ;

13: server: compute hb = h−r · hb+r;
14: server: solve discrete log to recover b =

∑n

i=1
bi;

15: RETURN b;
16: end procedure

Security. Our aggregation protocol inherits the semantic se-

curity of the underlying ElGamal cryptosystem. Furthermore,

the distributed implementation guarantees that no group of less

than n users is able to decrypt a submitted bit. As such, to

compromise the privacy of a single user, all other n− 1 users

have to reveal their own bits, which is not a weakness of the

protocol itself. Note that, to maintain privacy across dynamic

populations, we may easily apply the concept of differential

privacy [1], by having each user submit noisy measurements.

Nevertheless such methods are orthogonal to this work.

V. EXPERIMENTAL EVALUATION

We implemented the three homomorphic cryptosystems

with the C programming language, using the GMP1 multiple

precision arithmetic library. For the BGN cryptosystem, we

leveraged Ben Lynn’s PBC library2 that is also written on top

of GMP. We tested the protocols on two different architectures,

namely a 3.5 GHz Intel i7 CPU (x86 64) representing the

server, and an Apple A8 CPU (arm64) representing the client.

Note that, due to some porting problems with GMP’s source

code, we were unable to compile GMP with the assembly

optimizations for the arm64 device. As a result, the client CPU

times may be underestimated.

For security, we chose a 1024-bit RSA modulus for the

Paillier and BGN cryptosystems, and a 160-bit ElGamal key.

Table II summarizes the computational cost of the basic cryp-

tographic primitives at the two different architectures. Missing

values imply that the underlying operation is not required.

The resulting ciphertext sizes are 256 bytes for Paillier and

ElGamal, and 260 bytes for BGN.

In the following section, we measure the computational and

communication costs of the various components of our meth-

ods, at both the client and server. Table III lists the parameters

that control our experiments. In each experiment we vary a

single parameter and keep the remaining ones to their default

1https://gmplib.org/
2https://crypto.stanford.edu/pbc/

TABLE II
COST OF CRYPTOGRAPHIC PRIMITIVES AT CLIENT AND SERVER (ALL

TIMES IN ms)

Crypto primitive Server Client

Paillier encryption – 15.7

Paillier decryption – 15.7

Paillier exponentiation (128-byte exponent) 1.2 –

Paillier multiplication 0.002 –

BGN encryption – 9.8

BGN decryption – 7.2

BGN exponentiation (3-byte exponent) 0.013 –

BGN multiplication 0.002 –

BGN bilinear map 5.5 –

ElGamal encryption – 1.4

ElGamal exponentiation (20-byte exponent) – 0.7

ElGamal multiplication 0.001 0.01

values (the ad size is fixed to 512 bytes). Note that, given the

unique properties of our mobile advertisement framework, we

do not compare against other, more computationally efficient

approaches, because they do not provide the same level of

security.

TABLE III
EXPERIMENTAL PARAMETERS

Parameter Values Default

Grid granularity (N) 50, 100, 200, 300 100

Number of ads (|A|) 1K, 2K, 5K, 10K 2K

Number of users (n) 10K, 20K, 50K, 100K 20K

Max ads per location (|Al|max) 20, 50, 100, 200 50

In the first experiment, we investigate the performance

of the client’s query generation algorithm for the two ad

retrieval protocols. Fig. 1a shows the CPU time at the client

(logarithmic scale) as a function of the grid granularity. For

the default 100 × 100 grid, the Paillier-based scheme takes

over 150 seconds of compute time, whereas BGN terminates

in just 2 seconds. For finer grids, the cost of the basic protocol

becomes prohibitive. This is due to the quadratic complexity

of Algorithm 1 that generates one ciphertext for each of the

N2 cells. On the other hand, the BGN-based protocol is very

efficient, requiring less than 7 seconds of compute time even

for the 300× 300 grid. Fig. 1b illustrates the communication

cost for the same experiment. Paillier’s quadratic cost is again

evident, as it necessitates 0.6–23 MB of data transfer per query.

Alternatively, the BGN-based scheme incurs less than 160 KB

of communication cost under all settings.

50 100 200 300

1

100

1000

Grid size

C
P

U
 ti

m
e

(s
)

Paillier
BGN

(a)

50 100 200 300

1

10

100

Grid size

C
om

m
un

ic
at

on
 c

os
t (

M
B

)

Paillier
BGN

(b)

Fig. 1. Query generation cost at the client vs. grid size (a) CPU time (a)
Communication cost

Staying at the client side, we measure the cost of the result

extraction procedure (i.e., buffer decryption) as a function

of the buffer size (|Al|max). We assume that approximately

20% of the total ads in each location will match the client’s

profile. Therefore, approximately 80% of the ads entail a

single decryption operation, while the rest invoke all m de-

cryptions (as explained in Algorithm 3). Fig. 2a demonstrates

the computational efficiency of the basic scheme, which is

about 12 seconds faster than BGN for all buffer sizes. This

is due to the discrete log nature of BGN that necessitates

numerous ciphertexts to encrypt a single ad. In particular,

for our default settings, m = 171 for BGN and m = 4 for

Paillier. Even though the decryption operation is twice as fast

with BGN (Table II), the sheer amount of operations needed

negate this advantage. Fig. 2b shows the communication cost

for downloading the encrypted buffer B from the server. Both

methods scale linearly with the buffer size, but the basic

protocol is clearly superior, due to its better m value.

20 50 100 200

2

4

6

8

10

12

14

Buffer size (max ads/location)

C
P

U
 ti

m
e

(s
)

Paillier
BGN

(a)

20 50 100 200

0

2

4

6

8

Buffer size (max ads/location)

C
om

m
un

ic
at

on
 c

os
t (

M
B

)

Paillier
BGN

(b)

Fig. 2. Result extraction cost at the client vs. buffer size (max ads/location)
(a) CPU time (b) Communication cost

To get a concrete picture of the relative performance of the

two ad delivery protocols, Fig. 3 shows, in logarithmic scale,

the cumulative cost (query generation plus result extraction)

at the client as a function of the grid size. In terms of CPU

time (Fig. 3a), the BGN protocol is the clear winner in all

settings. Even for a coarse 50× 50 grid, BGN is three times

faster than Paillier (41 vs. 14 seconds), with that gap growing

fast as N increases. The only advantage of the basic scheme

is in the cumulative communication cost (Fig. 3b), where it

slightly outperforms BGN for coarse grids. Note that the com-

munication cost of BGN remains almost constant at around 2.2

MB, i.e., the cost of downloading the encrypted buffer. Even

though the basic scheme is clearly outperformed by its BGN

counterpart, it could still be very useful in certain situations,

given its efficiency in the result extraction phase. As explained

in Section III-A, the bottleneck of the Paillier query generation

algorithm is the computation of N2 ciphertexts. However,

these ciphertexts consist almost entirely of encryptions of 0,

and are independent of the client’s location. Therefore, it is

not inconceivable to imagine a scenario where the client pre-

computes offline a large pool of ciphertexts that can be used

in future queries.

We next shift our focus towards the server, and investigate

its performance in the query processing phase of our protocol.

50 100 200 300

10

100

1000

Grid size

C
P

U
 ti

m
e

(s
)

Paillier
BGN

(a)

50 100 200 300

1

10

100

Grid size

C
om

m
un

ic
at

io
n

co
st

 (
M

B
)

Paillier
BGN

(b)

Fig. 3. Cumulative cost at the client (query generation + result extraction)
vs. grid size (a) CPU time (b) Communication cost

Fig. 4 illustrates the query processing time at the server as

a function of the total number of ads |A|. As expected, both

methods scale linearly with |A|, since the server must perform

m modular exponentiations and multiplications for every ad in

the system. Recall that the intuition behind the BGN protocol

was to shift the computational burden from the mobile devices

to the server. As such, the server must perform N2 bilinear

map computations before processing the actual ads (Algorithm

5). As shown in Table II, this is by far the most expensive

cryptographic operation at the server and, for the 100 × 100
grid, this preprocessing alone takes 55 seconds. Nevertheless,

the actual processing of the ads is faster with BGN, so the

performance gap against Paillier closes when |A| increases.

1000 5000 10000

10

20

30

40

50

60

70

80

Number of ads

C
P

U
 ti

m
e

(s
)

Paillier
BGN

Fig. 4. CPU time at server vs. number of ads.

In the last set of experiments, we measure the costs associ-

ated with the privacy-preserving collection of ad impressions.

We start by examining the cost of the distributed key gener-

ation algorithm. Fig. 5a illustrates the CPU time spent at the

client as a function of the total number of users n. This cost

is dominated by the modular exponentiations that are required

to verify the commitments submitted by the remaining n− 1
users. As such, the cost grows linearly with n, ranging from

14 to 141 seconds. This is also true for the communication

cost (Fig. 5b) that consists of the cost of downloading the

users’ commitments and public key shares (Algorithm 6). The

communication cost is moderate, ranging from 2.7 to 27 MB.

There are two observations to be made here. First, the key

generation algorithm is not invoked frequently (only when new

users enter the system), and the ad network has the option

to delay this process in order to perform batch insertions. In

10000 50000 100000
20

40

60

80

100

120

140

Number of users

C
P

U
 ti

m
e

(s
)

Client

(a)

10000 50000 100000

5

10

15

20

25

Number of users

C
om

m
un

ic
at

io
n

C
os

t (
M

B
)

Client

(b)

Fig. 5. Key generation cost at the client vs. number of clients in the system
(a) CPU time (b) Communication cost

addition, key generation can be performed at night, when the

clients’ devices are idle. The second observation is that the

ad network could split users into multiple groups, in order to

speed up the key generation process. That is, every group of

users (say 10,000) would generate their own public key to use

in the aggregation algorithm.

Finally, Fig. 6 shows the cost of the interactive aggregation

process at both the client and server, as a function of the total

number of ads |A|. Clearly, both the CPU and communication

costs are linear in |A|, because the client has to submit one ci-

phertext (ad impression) for every ad in the system, regardless

of whether that ad was displayed or not. In addition, the client

is involved in the decryption process of |A| ciphertexts that

contain the aggregated ad impressions by all users. The CPU

time at the client (Fig. 6a) is dominated by the |A| encryption

operations, each costing 1.4 ms. On the other hand, the de-

cryption process necessitates just |A| modular exponentiations.

At the server side, the computational cost per client is very

low, as it entails 2 · |A| modular multiplications (with just 1

µs per operation). The communication cost (Figure. 6b) for

the two parties is low, ranging from 0.5–5 MB. It consists of

the interactive exchange of ciphertexts between the client and

the server (Algorithm 7).

1000 5000 10000

0

5

10

15

20

Number of ads

C
P

U
 ti

m
e

(s
)

Client
Server

(a)

1000 5000 10000

1

2

3

4

5

Number of ads

C
om

m
un

ic
at

io
n

C
os

t (
M

B
)

Client or Server

(b)
Fig. 6. Aggregation cost vs. number of ads (for one client) (a) CPU time (b)
Communication cost

VI. CONCLUSIONS

In this paper, we proposed the first location-aware mobile

advertising framework that offers stringent privacy guarantees

through cryptographic constructions. Unlike previous work,

our methods guarantee that the ad network is oblivious to

both the content sent to the clients, and the ad impressions

submitted by the clients. Furthermore, we do not employ

trusted third-parties and our protocols are secure against any

number of colluding parties. We implemented the underlying

cryptographic primitives on mobile devices and showed that

our framework is practical for real world applications. Cur-

rently, our methods are secure against semi-honest adversaries.

In the future, we want to address malicious users, particularly

the case of click-fraud where users submit incorrect ad im-

pressions to the server.

ACKNOWLEDGMENTS

This research has been funded by the NSF CAREER Award

IIS-0845262.

REFERENCES

[1] G. Acs and C. Castelluccia. I have a dream! (differentially private smart
metering). In Information Hiding, pages 118–132, 2011.

[2] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on
ciphertexts. In TCC, pages 325–341. 2005.

[3] CNN. Google fires engineer for privacy breach, 2010. http://www.cnn.
com/2010/TECH/web/09/15/google.privacy.firing/index.html?hpt=T2.

[4] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology, pages 10–18, 1985.

[5] Z. Erkin and G. Tsudik. Private computation of spatial and temporal
power consumption with smart meters. In ACNS, pages 561–577, 2012.

[6] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM

STOC, volume 9, pages 169–178, 2009.
[7] C. Gentry and Z. Ramzan. Single-database private information retrieval

with constant communication rate. In ICALP, pages 803–815, 2005.
[8] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in online

advertising. In NSDI, 2011.
[9] H. Haddadi, P. Hui, and I. Brown. MobiAd: private and scalable mobile

advertising. In ACM MobiArch, pages 33–38, 2010.
[10] M. Hardt and S. Nath. Privacy-aware personalization for mobile

advertising. In ACM CCS, pages 662–673, 2012.
[11] M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving

statistics. In PETS, pages 221–238, 2012.
[12] A. Juels. Targeted advertising... and privacy too. In CT-RSA, pages

408–424. 2001.
[13] T. Jung, X. Li, and M. Wan. Collusion-tolerable privacy-preserving sum

and product calculation without secure channel. IEEE Transactions on

Dependable and Secure Computing (TDSC), 12(1):45–57, 2015.
[14] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE

database, computationally-private information retrieval. In FOCS, pages
364–373, 1997.

[15] Q. Li, G. Cao, and T. F. La Porta. Efficient and privacy-aware data
aggregation in mobile sensing. IEEE Transactions on Dependable and

Secure Computing (TDSC), 11(2):115–129, 2014.

[16] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality, 1(1):59–
98, 2009.

[17] R. Ostrovsky and W. E. Skeith III. Private searching on streaming data.
In CRYPTO, pages 223–240, 2005.

[18] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In EUROCRYPT, pages 223–238, 1999.

[19] T. P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In CRYPTO, pages 129–140, 1991.

[20] T. P. Pedersen. A threshold cryptosystem without a trusted party. In
EUROCRYPT, pages 522–526, 1991.

[21] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-
preserving aggregation of time-series data. In NDSS, 2011.

[22] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas.
Adnostic: Privacy preserving targeted advertising. In NDSS, 2010.

[23] J. Y. Tsai, P. G. Kelley, L. F. Cranor, and N. Sadeh. Location-sharing
technologies: Privacy risks and controls. ISJLP, 6:119, 2010.

[24] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving classification
of customer data without loss of accuracy. In SDM, pages 92–102, 2005.

