IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008 363

DCMP: A Distributed Cycle Minimization
Protocol for Peer-to-Peer Networks

Zhenzhou Zhu, Panos Kalnis, and Spiridon Bakiras, Member, IEEE

Abstract—Broadcast-based peer-to-peer (P2P) networks, including flat (for example, Gnutella) and two-layer superpeer
implementations (for example, Kazaa), are extremely popular nowadays due to their simplicity, ease of deployment, and versatility.
The unstructured network topology, however, contains many cyclic paths, which introduce numerous duplicate messages in the
system. Although such messages can be identified and ignored, they still consume a large proportion of the bandwidth and other
resources, causing bottlenecks in the entire network. In this paper, we describe the Distributed Cycle Minimization Protocol (DCMP), a
dynamic fully decentralized protocol that significantly reduces the duplicate messages by eliminating unnecessary cycles. As queries
are transmitted through the peers, DCMP identifies the problematic paths and attempts to break the cycles while maintaining the
connectivity of the network. In order to preserve the fault resilience and load balancing properties of unstructured P2P systems, DCMP
avoids creating a hierarchical organization. Instead, it applies cycle elimination symmetrically around some powerful peers to keep the
average path length small. The overall structure is constructed fast with very low overhead. With the information collected during this
process, distributed maintenance is performed efficiently even if peers quit the system without notification. The experimental results
from our simulator and the prototype implementation on PlanetLab confirm that DCMP significantly improves the scalability of
unstructured P2P systems without sacrificing their desirable properties. Moreover, due to its simplicity, DCMP can be easily
implemented in various existing P2P systems and is orthogonal to the search algorithms.

Index Terms—Network protocols, distributed systems, peer-to-peer.

1 INTRODUCTION

PEER-TO-PEER (P2P) technology is attracting a lot of
attention since it simplifies the implementation of large
ad hoc distributed repositories of digital information. In a
P2P system, numerous nodes are interconnected and
exchange data or services directly with each other. There
are two major categories of P2P architectures: 1) Hash-
based systems (for example, CAN [1] and Chord [2]),
which assign a unique key to each file and forward queries
to specific nodes based on a hash function. Although they
guarantee locating content within a bounded number of
hops, they require tight control of the data placement and
the topology of the network. 2) Broadcast-based systems
(for example, Gnutella [3]), which use message flooding to
propagate queries. There is no specific destination; hence,
every neighbor peer is contacted and forwards the
message to its own neighbors until the message’s lifetime
expires. Such systems have been successfully deployed in
practice to form worldwide ad hoc networks due to their
simplicity and versatility. Here, we focus on broadcast-
based P2P architectures. Our methods are also applicable
to two-layer networks based on superpeers (for example,

e Z. Zhu and P. Kalnis are with the Department of Computer Science,
National University of Singapore, 3 Science Drive 2, Singapore 117543.
E-mail: {zhuzhenz, kalnis|@comp.nus.edu.sg.

® S. Bakiras is with the Department of Mathematics and Computer Science,
John Jay College of Criminal Justice, City University of New York, 445
West 59th Street, New York, NY 10019. E-mail: sbakiras@jjay.cuny.edu.

Manuscript received 6 Feb. 2007; revised 10 May 2007; accepted 29 May
2007; published online 3 July 2007.

Recommended for acceptance by C. Shahabi.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0042-0207.
Digital Object Identifier no. 10.1109/TPDS.2007.70732.

1045-9219/08/$25.00 © 2008 IEEE

Kazaa [4]), since the superpeer layers resemble Gnutella-
style protocols.

Assume the network topology in Fig. 1a and let peer D
initialize a query message msg. D broadcasts msg to A, C,
and E. C returns any qualifying results and propagates msg
to A and B. Similarly, E propagates msg to A and F; this
procedure continues until the maximum number of hops
(typically seven or eight) is reached. Note that A receives
the same message five times. Existing systems tag query
messages with a unique identifier, and each peer maintains
a list of recently received messages. When a new message
arrives, the peer checks whether it has already been
received through another path. If this is the case, it simply
ignores the incoming message. We call this method Naive
Duplicate Elimination (NDE).

The motivation of this work is that most real-life
networks exhibit a power-law topology [5]; there is a small
number of peers with many neighbors (A4 in our example),
whereas most peers have fewer neighbors. If we employ
NDE in our example, most of the overhead due to duplicate
elimination will occur in A. Overloading A is likely to affect
many other nodes since A is the hub between the two parts
of the network.! To verify this claim, we deployed a 3,000-
node Gnutella-style power-law network and counted the
number of duplicates, useful messages, and total messages
(see Section 5 for details). The data are sorted by total
messages first and then by useful messages, as shown in
Fig. 1b. Nodes appear in descending workload order;
therefore, x = 0 corresponds to the node that receives the
most messages. It is clear from the graph that a large

1. Obviously, our methods apply to any topology that contains cycles.
We focus on power-law topologies because they are more common, and the
gain is more prominent.

Published by the IEEE Computer Society

364 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

3
N
R

q =

=)

ON

Number of Messages (Log Scale)
>

"'a
!

0
10 0 500 1000 1500 2000 2500 3000
Peer Sorted by Number of Messages (Descending Order)

(b)

Fig. 1. Cycles introduce numerous duplicate messages. (a) Example
network. (b) Total versus duplicate messages.

proportion of the transmitted messages are duplicates that
will be ignored; similar results appear in [6]. Observe that
several low-degree nodes (that is, peers with few neighbors)
do not receive any duplicates because they do not
participate in any cycle. On the other hand, our investiga-
tion revealed that the high-degree nodes (that is, peers with
many neighbors) receive most of the useless messages (the
graph is in logarithmic scale) since the probability of being
involved in cycles is higher.

Duplicate messages severely affect the response time and
scalability of P2P systems since they consume bandwidth
and system resources, primarily from high-degree peers,
which are crucial for the connectivity of the network. In this
paper, we describe the Distributed Cycle Minimization
Protocol (DCMP), which aims at cutting the cyclic paths at
strategic locations in order to avoid introducing duplicate
messages in the network. In DCMP, any peer that detects a
duplicate message can initiate the cutting process. This
involves two steps: First, the peers in the cycle elect a leader,
called GatePeer. At the second step, the cycle is cut at a well-
defined point with respect to the GatePeer. GatePeers are
also important for maintaining the connectivity and optimal
structure of the network when peers enter or quit without
notification. Since any peer can become a GatePeer via a
distributed process, the system is resilient to failures.

The main characteristics of DCMP are the following:

1. It reduces duplicate messages by as much as
90 percent.

2. It requires few control messages; therefore, the
overhead is minimal.

3. DCMP is suitable for dynamic networks with
frequent peer arrivals and departures/failures since
it is fully distributed and requires only localized
changes to the network’s structure.

4. There is a trade-off between eliminating the cycles
and maintaining the connectivity of the network.

DCMP performs symmetric cuts and includes mechanisms
to detect network fragmentation. As a result, the connectiv-
ity and average path length remain relatively unaffected.

We performed an extensive experimental evaluation of
our protocol in a simulator using flat and superpeer
network topologies. We also implemented a prototype,
which was deployed on PlanetLab [7]. Our experiments
indicate that DCMP achieves a substantial reduction in
network traffic and response time, hence improving the
scalability of broadcast-based P2P systems. Due to its
simplicity, DCMP can be implemented in many existing
P2P systems such as Kazaa or Gia [8]. Moreover, DCMP is
orthogonal to the search algorithms.

The rest of the paper is organized as follows: Section 2
presents the related work. Next, in Section 3, we describe
the main aspects of DCMP, whereas in Section 4, we discuss
how DCMP deals with dynamic networks. In Sections 5 and
6, we present the experimental results from our simulation
and the PlanetLab implementation, respectively. Finally,
Section 7 concludes the paper and discusses directions for
future work.

2 RELATED WORK

Research in the P2P area was triggered by the success of
systems like Gnutella [3] and Kazaa [4]. Gnutella is a pure
P2P system that performs searching by Breadth-First
Traversal (BFT) of the nodes around the initiator peer. Each
peer that receives a query propagates it to all of its
neighbors up to a maximum of d hops. By exploring a
significant part of the network, it increases the probability
of satisfying the query. BFT, however, overloads the
network with unnecessary messages; moreover, slow peers
become bottlenecks. To overcome these problems, Kazaa
implements a two-layer network. The upper layer contains
powerful peers, called superpeers (or ultrapeers); slower
peers connect only to superpeers. The upper layer forms a
Gnutella-like network among superpeers. Searching is
performed by BFT at the upper layer only, since superpeers
contain the indices of their children. Reference [9] contains a
detailed analysis of such configurations.

Yang and Garcia-Molina [10] observed that the Gnutella
protocol could be modified in order to reduce the number
of nodes that receive a query without compromising the
quality of the results. They proposed three techniques:
1) Iterative Deepening, where multiple BFTs are initiated
with successively larger depths, 2) Local Indices, where
each node maintains an index over the data of all peers
within r hops of itself, allowing each search to terminate
after d —r hops, and 3) Directed BFT, where queries are
propagated only to a beneficial subset of the neighbors of
each node. Several heuristics for deciding these neighbors
are described. This method is extended in [11] and [12],
where the network is reconfigured dynamically based on
the query statistics. A similar technique, called Interest-
based Locality [13], directly contacts the most promising
peer, which is not necessarily a neighbor of the query
initiator. If this process does not return enough results, a
normal BFT is performed. Note that none of these
techniques deals with duplicate elimination, but they are
orthogonal to our protocol.

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 365

\ Connection —_———

/ Query Route —_—

Fig. 2. Example of duplicate messages in Gia.

Limewire [14] maintains a table where it stores the IDs of
duplicate messages and the directions (that is, neighbor
peers) from where they arrive. Once a message is identified
as a duplicate, it is discarded. Further message propagation
avoids the directions from where duplicates have arrived.
Keeping (ID, Direction) information for each duplicate
message requires additional memory, especially in high-
degree peers as they tend to receive a lot of duplicates.
Therefore, Limewire also implements a simplified version
that disables those connections from where “a lot” of
duplicates are arriving. In practice, it is difficult to
unambiguously define the disconnection threshold. More-
over, this method may compromise the connectivity of the
network, as we show in our experiments.

Gia [8] improves the scalability of Gnutella by using a
combination of topology adaptation, flow control, and 1-hop
replication. Topology adaptation means that a node will
prefer to connect to high-capacity peers (capacity depends
on bandwidth, processing power, etc.), even by rejecting
some of its current neighbors. Gia performs search by biased
random walks (RWs), where each peer forwards the query
to the neighbor with the highest capacity. Nevertheless, the
possibility of duplicates still exists. Consider, for instance,
the network in Fig. 2, where the order of the peers based on
capacity is A, B, C, and D (A has the highest capacity). Let
peer A receive a query message. Gia routes the message as
follows: A — B — C — A. Therefore, A receives a duplicate.
Since A knows that it has already sent the message to B,
this time, it chooses D. The message follows the path
A — D — B; thus, B also receives a duplicate. Although the
message is propagated to one peer at a time, there may be
many duplicates because the maximum number of hops d is
much larger than that in Gnutella. Gia also implements a
flow control mechanism by assigning tokens to neighbors.
The aim is to prevent overloading the peers beyond their
capacity. Flow control, however, allows or blocks useful and
duplicate messages without distinction. Our protocol, on the
other hand, can be implemented on top of Gia in order to
eliminate the cycles that cause duplicates.

In order to reduce the unnecessary traffic (that is,
duplicates), ACE [15] and LTM [16] use network delay as
a metric to reconstruct the Gnutella network topology. In
ACE, each peer uses the PRIM algorithm to build a
multicast tree around itself. In LTM, each peer periodically
broadcasts detection messages to discover and cut the
connections that have the maximum delay. Disagreement of
measured delay due to unsynchronized clocks causes

problems when deciding the cut positions, which can
influence the network connectivity. Moreover, the network
delay metric mainly focuses on disabling the connections
between peers that are physically far away (for example,
different countries), without considering the shortcuts
created by powerful peers, which are beneficial for
exploiting large parts of the network.

The previous discussion applies to ad hoc dynamic P2P
networks without any guarantee on the availability of
resources; the majority of P2P systems in use belong to this
category. Alternatively, by allowing strong control over the
topology of the network and the contents of each peer,
Distributed Hash Table systems (for example, CAN [1] and
Chord [2]) can answer queries within a bounded number of
hops. Such configurations are outside the scope of this
paper. Moreover, this paper focuses on the search process;
we do not consider the downloading of files after they have
been located.

3 PRrotocoL DESIGN

In this section, we describe our protocol in detail and
explain why it is superior to existing approaches. To assist
our discussion, first, we present the notation we use
throughout this paper:

e When a node generates a query message msg, the
message is assigned a globally unique ID denoted as
GUID(msg).

o Let A and B be two neighbor nodes (that is, they
have a direct overlay connection). The connection
between them is denoted as AB.

e Let a message travel from A to B. We denote the
direction of the traveled path as A — B and the
reverse direction as B — A.

e Let A receive a message msg from its neighbor B.
Then, A places the following pair into the history
table: (GUID(msg), B — A).

3.1 Simplistic Cycle Elimination (SCE)

To motivate our approach, here, we describe a straightfor-
ward method for eliminating cycles and explain its draw-
backs. Consider Fig. 3a and let peer B receive the same
message msg from A and A’. B identifies msg as a duplicate
by searching its GUID in the history table. Both the
direction A — B of the first msg (which is recorded in the
table) and the direction of the duplicate msg, A’ — B, are
parts of a cycle. A simplistic approach is to disable either
connection AB or A’'B in order to eliminate the cycle.

This approach, however, is prone to problems when
multiple nodes in a cycle perform this cycle elimination
operation simultaneously. Consider a different case, where
nodes C and D receive duplicates and decide to eliminate
the cycle at the same time by disabling CE and DE,
respectively; then, regions 1 and 2 will be disconnected. The
reduced connectivity has a negative effect on response time
and on the ability of returning enough results. One way to
tackle this problem is to force the disconnected pair of peers
to continue exchanging information frequently about each
other’s status and reconnect if necessary. Obviously, this
poses a considerable overhead on the network.

366 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

®
\\ A
— @

\
\ N 4 \ X
IC y IC‘
Message Message

Duplicates Detected

(b)
Fig. 3. Cycle elimination methods. (a) SCE. (b) DCMP.

3.2 DCMP: Distributed Cycle Minimization Protocol

In contrast to SCE, our protocol requires negotiation among
all peers involved in a cycle about the optimal way to cut
the cycle. Therefore, the probability of generating a
disconnected network is minimized. The negotiation pro-
cess is efficient, requiring only two messages per peer per
cycle. Also, the information gathered during negotiation is
used to repair the network with low overhead when peers
join or fail/quit without notification.

The negotiation process can be initiated by any peer that
receives a duplicate. Fig. 3b provides an example. Assume
that peer A receives a message msg from B — A, and, soon
after, it receives the same message2 (that is, same GUID)
from F — A. Peer A identifies msg as a duplicate by
performing a lookup in its history table. The first step of our
protocol is to gather information from all peers in the cycle.
To achieve this, we introduce a new type of control
message, called Information Collecting (IC) message.

Fig. 4 illustrates the structure of a typical IC message. Let
icm be the IC message of our example. We set GUID(icm)
to be the same as the GUID of the duplicate msg. This is
done in order to facilitate the propagation of icm by the
same mechanism that handles query answers in a Gnutella-
style network. Note that if msg travels through many cyclic
paths, multiple peers will detect the duplicates. To ensure

2. Note that msg and its duplicate are not shown in the illustration.

s Node Information Vector ~a

Node Node
Information Information

‘ GUID ‘ Detection ID

Fig. 4. Structure of the IC message.

Precondition: Node NV receives an IC message icm, from direction M — N
1. Search the history for a recent IC message icm/ which satisfies:
GUID(icm) = GUID(icm') and
DetectionI D(icm) = DetectionI D(icm')
2. if icm/ is found, then // a duplicate IC message is found
3. Combine NIV of icm and icm/ into a single vector v
At this point, v contains information about all the nodes in the cycle
4 Using v, decide which connection in the cycle will be disabled
5 Forward the decision to all the nodes in the cycle
6. else // no duplicate IC found
7 Append the node information of IV to the NIV field in icm
8 Find in the history a message msg such that
GUID(msg) = GUID(icm)
9. Assume that icm is an answer message for msg
Use Gnutella protocol to send icm towards the reverse path of msg

Fig. 5. Algorithm for handling the IC message.

that each IC message is unique, we introduce another field,
called DetectionID, which represents the direction of the
connection where the duplicate was identified. In our
example, DetectionID(icm) = F — A. The last field of the
IC message is the Node Information Vector (NIV). NIV
contains information about the peers that propagated the IC
message. This includes the bandwidth of each peer, the
processing power, the IP address, and the topology
information about the peer’s degree and its neighbors. In
our example, the NIV of icm initially contains information
only about peer A.

Peer A sends one copy of icm toward A — B and another
toward A — F. Each peer that receives icm appends its own
information to the NIV field and then treats icm similar to
an answer message; therefore, icm is propagated following
the reverse path of the original message msg. Since two
copies of icm are sent, at some point, a peer will receive a
duplicate of icm; in our example, this happens at peer D.
The algorithm for handling IC messages is shown in Fig. 5.

Observe that D is not necessarily the origin of msg.
Assume that a node D’ farther away (not shown in the
illustration) initiated msg. Also, assume that icm arrives
from C' — D faster than from E — D. Since D has not
received a duplicate of icm yet, it will propagate icm
toward D — D'. Therefore, potentially, there will be an
overhead of at most TTL — 1 messages per cycle.’ Similarly,
if for any reason, the cycle ceases to exist (for example, node
failure), it is possible that no peer receives a duplicate icm.
In this case, icm is simply propagated toward the origin
of msg. We could avoid both cases by using a more
complicated protocol. However, TT'L is between three and
seven in practice, so the potential overhead is very low.

Recall that our protocol does not eliminate all cycles.
Obviously, if the cycle contains more than 2 - T'T'L edges, it
will not be detected since there will be no duplicates.
Moreover, we introduce a parameter T7TL; where
0<TTLy; <TTL.If a duplicate msg is detected more than
TTL; hops away from the origin of msg, then we do not
eliminate the cycle. The intuition is that there is a trade-off

3. TTL: Time To Live. It is synonymous to the maximum number of
hops d.

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 367

Precondition: Node N receives a cut message cm
1. if N is involved in the connection to be disabled then
2 if the corresponding connection is still active then disable it
3. else
4 Search the history for an IC message icm such that
GUID(icm) = GUID(cm) and
Detectionl D(icm) = Detectionl D(cm)
if such icm is found then forward cm to the reverse direction of icm
6. else ignore cm // N was the initiator of icm

L

Fig. 6. Algorithm for handling CM.

between preserving the connectivity of the network and
minimizing the duplicates. Therefore, we allow some large
cycles (some duplicates as a consequence) in the network. In
Section 5, we will discuss how we select the TT'L; value.
Note that the introduction of TT'L; does not require any
modification of the Gnutella-style query message.

From the NIVs of the icm messages, D has information
about all nodes in the cycle, namely, A, B, C, D, E, and F.
Using this information, D decides which connection should
be disabled; we will discuss the exact criteria in the next
section. For now, assume that D decides to cut the EF
connection. In order to inform the other peers in the cycle
about the decision, we introduce one more message type
called Cut Message (CM). CM contains the GUID and
DetectionI D, which are set equal to the GUID and
DetectionI D of the corresponding IC message. Addition-
ally, there is a field that identifies the connection to be cut.
Direction is not important in this field since any of the two
nodes in the pair can disable the connection. Peer D
sends two copies of the CM toward D — C and D — E,
respectively. These are the reverse directions from where
iem arrived previously. Similarly, CMs received by any
peer are propagated toward the reverse path of the
corresponding IC. Eventually, the CM will reach either £
or F, and one of these peers will cut the connection, thus
eliminating the cycle. The algorithm for handing CMs is
presented in Fig. 6.

Observe that D could initiate only one copy of the CM to
traverse the cycle. The reason for sending two copies is
threefold: 1) Our approach uses the standard Gnutella
protocol to envelope the messages. If one message was
used, we would need to consider special cases for handling
the CMs, thus complicating the protocol. 2) The delay until
cutting the cycle is minimized since the average number of
hops for CMs is reduced. 3) The total number of transmitted
messages is the same since the CM carries useful informa-
tion for all the peers and must traverse the entire cycle, as
we will discuss in the next section.

3.3 Deciding the Cutting Position

Here, we explain how we choose the connection to disable
in order to cut a cycle. This decision is made at the peer that
receives two copies of the same IC message (that is, D in our
example). This peer is the coordinator; in DCMP, any peer
can act as coordinator. A straightforward way is to
eliminate randomly one edge of the cycle. However, our
experiments indicate that this approach does not preserve
the connectivity of the network. In order to achieve better
results, we rely on the properties of the peers in the cycle.
Recall that the IC messages that arrive at the coordinator
have gathered this information.

Precondition: Node N receives two IC messages icm and iem’ which
satisfy the conditions: GUID(iem) = GUID(icm') and
DetectionI D(icm) = DetectionI D(icm’)

Calculate the power P; of each peer in NIVs using Definition 2

Let the peer with Max(P;) be the GatePeer

In case of a tie, the GatePeer is the one with the largest GUID

Find the position to be disabled based on the GatePeer and Definition 1

Generate C'ut message(s) accordingly

Nk W=

Fig. 7. Algorithm for selecting the GatePeer in a cycle.

Q

The following definitions are necessary:

Definition 1 (opposite edge). Let Sy be the set of nodes that
form a cycle. For a node N € Sy, the edge opposite to it is an
edge MM’ such that M € Sy, M' € Sy, and there is a path p
from N to M and a path p’ from N to M' such that p C Sy,
p C Sy, and

W)= TSwl
bl = { 1= |Sxl/2

if |Sy] is odd,
if |Sn| is even.

(1)

Definition 2 (peer power). The power P of a node N is given
by the following formula:

P(N) =B+ cC+ 3D, (2)

where B is the bandwidth, C is the CPU processing power, D is
the peer’s degree (that is, the maximum number of simulta-
neous connections), and ¢, 3 are predefined constants.

It is obvious why the bandwidth and CPU power
characterize how powerful a peer is. The degree factor is
used because a peer that accepts many neighbors is
beneficial for low network diameter. There are several
other factors that can influence the characteristics of the
network. For example, Bustamante and Qiao [17] suggest
that the distribution of the lifespan of peers follows the
Pareto distribution and propose several methods to im-
prove the network stability according to this observation.
Such factors can be easily incorporated in our protocol.

Definition 3 (GatePeer). The most powerful peer in a cycle is
called the GatePeer.

The heuristic we use in our protocol is to cut cycles by
disabling the connection that is opposite to the correspond-
ing GatePeer. The intuition is that our method minimizes
the average number of hops from the GatePeer to any peer
in the cycle. The GatePeer, in turn, will most probably be
the hub that connects the cycle to many other peers;
therefore, the connectivity will be largely preserved. Also,
since the GatePeer can process messages fast, the response
time will not suffer.

Recall that the GatePeer is elected by the coordinator.
The coordinator is the only peer that knows the character-
istics of all members in the cycle. All peers must be
informed about their corresponding GatePeer, including the
GatePeer itself, which does not know its status yet; for this
reason, the IP address of the GatePeer is appended in the
CMs. As we explain later, this is also beneficial for the fast
recovery from failures. The algorithm for selecting a
GatePeer is shown in Fig. 7.

368

3.4 Disseminating GatePeer Information

GatePeers assist to recover from node failures and are used
as entrance points in a dynamic network (refer to
Section 4.1); therefore, it is beneficial for other peers outside
the cycle to know which are the nearby GatePeers. To
disseminate this information with minimal overhead, we
use a piggyback technique. Each GatePeer appends the
messages passing through it with the following informa-
tion: (NIVgp, HopsNumber), where N1Vgp is the informa-
tion vector of the GatePeer (including its IP address), and
HopsNumber is an integer indicating the distance (in hops)
from the message origin to the GatePeer. We call this
process tagging. Although the overhead of tagging is only a
few bytes per message, the GatePeer information remains
relatively stable for most of the time. Therefore, we can
achieve our goal by tagging messages periodically. Observe
that, immediately after a cycle is eliminated, most probably,
a new GatePeer is elected. In order to advertise fast its
identity, the GatePeer performs tagging frequently. Later,
the GatePeer tags messages infrequently to let peers up to
TTL hops away realize that it is still alive. We investigated
different values for the tagging frequency and length of the
tagging process in the simulation. Our results suggest that
the following settings provide a good trade-off between cost
and efficiency: for a period of 1 minute after a new GatePeer
is elected, a message is tagged every 5 seconds; after that,
the tagging frequency is lowered to 1 message every
10 minutes. Note that the exact values are not crucial, and
the overhead of tagging is small (refer to Section 6.1.3 for
details).

Definition 4 (transitive peer). A peer that continuously
receives tagged messages from more than one direction is
called a transitive peer.

Peers may receive tagged messages from several Gate-
Peers continuously. If the tagged messages do not come all
from the same direction, it is possible that the peer is a hub.
An example is shown in Fig. 8a, where B and F are
GatePeers and D receives messages tagged by both B and
F; peer D is a transitive peer. Due to the strategic position
of transitive peers, they are important for the connectivity
of the network should a node fail/quit. Therefore, transitive
peers must also advertise their presence. To keep the
protocol simple, transitive peers use the same tagging
mechanism as GatePeers and are treated by other nodes as
GatePeers.

Any peer that is not a GatePeer or a transitive peer is
called a normal peer. Normal peers may receive tagged
messages from multiple GatePeers (or transitive peers), but
all come from the same direction. In the example in Fig. 8a,
peer H receives tagged messages from D and F, but all
arrive through £ — H. We call the closest GatePeer in this
direction the referred GatePeer of the normal peer. Note that
the referred GatePeer is not necessarily a neighbor of the
normal peer.

Definition 5 (primary direction). Let N and M be two
neighbor peers. Let the messages tagged by the referred
GatePeer of N arrive from direction M — N. The reverse of
this direction (that is, N — M) is the primary direction of N.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

Fig. 8. Transitive peers and network splits. (a) Example of transitive
peer D. (b) Example of a network split in DCMP.

Continuing our example, the referred GatePeer of H is F,
and the primary direction of H is H — E. Note that both D
and F' are considered as GatePeers by H; however, F is
closer.

3.5 Concurrent Cycle Elimination

In Section 3.1, we demonstrated how SCE may split the
network into two unconnected parts. In DCMP, this
problem is greatly reduced, mainly because the cutting
position is defined deterministically. Nevertheless, as we
show in Fig. 8b, it is still possible to split the network. For
simplicity, in this example, we measure the power P of a
node only by its degree; therefore, the GatePeer in the
cycle ABCDEA is C, and the one in the cycle ABGFFEA is
F. The connection opposite to C is AE, whereas the one
opposite to F' is AB. Hence, if the two connections are
disabled simultaneously, nodes A and H are isolated from
the network.

We propose an effective yet simple solution to this
problem. Immediately after a connection is disabled due to
a cycle, the nodes at both ends of this connection start
listening for a tagged message from their corresponding
GatePeer.* For example, A and E will listen for a tagged
message from C (similarly, A and B also expect a tagged
message from F). Recall that after eliminating the cycle, C
will tag messages frequently. If either A or £ do not receive
any tagged message from C for some time,” they reestablish
the AE connection. Then, they start listening again for a
message tagged by C. If they still cannot receive such a
message (because, for instance, D failed in the meanwhile),

4. Tagging is beneficial during peer failures (see the next section).
Concurrent cycle elimination is rare in our protocol and, by itself, would not
justify the tagging mechanism.

5. The waiting period is set to 30 seconds in our prototype, but the exact
timing is not crucial.

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 369

TO Rejoln

Grant
connectlon

Connect
Promoted”

//Gatel\\

Norma

K

[In Network\

[Wait G\
(NQ or NGQ)

\Gatepeer .
‘ J0|n \ Response
Cannot offer Conniact
connection Backup GP “*’
Ping A;
\ / Pong
/

/ network
Walt Pong | \ @
\\ 4

(@)

(b)

Fig. 9. Join and quit in dynamic networks. (a) State diagram to handle
node quit/join. GP is GatePeer. NGQ means Neighbor GatePeer Quit.
NQ@ means that the departing node is in the primary direction of a peer.
TO: time-out period. (b) Failure of normal peer B.

both A and E attempt to connect directly to C. During this
process, new cycles may be formed. However, our experi-
ments indicated that, in practice, this happens rarely.
Moreover, even if a new cycle is generated, it will be
identified and eliminated soon after.

4 DynAmIC NETWORKS

The previous discussion assumes a static snapshot of the
network; here, we explain the handling of node arrivals and
departures. Node arrivals are easy to handle. The departure
case, however, is more complex. To improve fault tolerance,
our protocol allows nodes to depart without notification;
therefore, both proper departures and failures are handled
in the same way. DCMP uses the information about
GatePeers to maintain the connectivity of the network
without imposing additional overhead. The entire process is
summarized in Fig. 9a.

4.1 Peer Arrival
In existing Gnutella-style networks, joining nodes first
contact some well-known peers and send ping messages,
which are broadcasted in the network. Peers willing to
accept the new connection reply with a pong message.
Unfortunately, there is a considerable overhead due to ping
messages. For this reason, DCMP uses a slightly different
technique. First, the node attempts to connect to some
GatePeers (from previous cache and/or well-known peers).
Only if this process fails does it use the ping/pong protocol.
Assuming that the newcomer peer N was in the network
before, it is possible that it has cached the IP addresses of
some GatePeers. N attempts to contact the GatePeers,

hoping they are still in the network. The intuition is that
GatePeers are powerful and, most probably, can accept the
new connection. Even if there are no free resources at the
moment, a GatePeer G can recommend to N a new set of
GatePeers in G’s vicinity. Given that this process succeeds,
N is able to join the network without the overhead of
broadcasting a large number of ping messages. The savings
can be substantial if nodes join/leave the network
frequently.

4.2 GatePeer Departure

All peers, including GatePeers, receive tagged messages
periodically; therefore, they have a list of nearby GatePeers
(recall that transitive peers are also handled as GatePeers).
From this information, a GatePeer G knows its distance to
each of the nearby GatePeers. Taking into account the
distance and power of these GatePeers, G’ generates an
ordered list of backup GatePeers. Then, G broadcasts this list
to its direct neighbors (that is, only 1 hop away). The
guideline for selection is that the backup GatePeers should
be powerful enough to accept the direct neighbors of G in
case G quits. In our experiments, we found that two to five
backup GatePeers were usually selected, depending on the
degree of G and the capacity of its neighboring GatePeers.
To maintain the backup list up to date, backup GatePeers
selection is performed periodically, and information broad-
casting is only needed when there is an update.

If G quits/fails, its neighbors attempt to repair the
network. The backup GatePeers of G connect to each other.
The rest of G’s neighbors attempt to connect to some
backup GatePeers randomly. Therefore, only a small
number of peers (that is, the direct neighbors of G) are
affected, and the network topology does not change
significantly. If, for some reason, this process is not
successful (for example, none of the backup GatePeers can
accept more connections because of simultaneous GatePeer
failures), then the affected peers simply rejoin the network
using the peer arrival procedure described above.

4.3 Departure of a Normal Peer

If a normal peer quits/fails, we must also ensure that the
network remains connected. In contrast to GatePeer fail-
ures, this case affects only neighbors whose primary
direction includes the quitting node. To explain this,
consider the network in Fig. 9b. Peer A is a GatePeer, and
it is also the referred GatePeer of both C' and D. Assume that
B fails (B is a normal peer) and note that the primary
direction of C' and D is C — B and D — B, respectively.
Recall that the primary direction indicates the preferred
path toward the rest of the network. Therefore, B’s failure is
likely to affect the connectivity for the subgraphs under C
and D. In our protocol, the affected peers attempt to connect
to their referred GatePeer; hence, C' and D will connect to A.

5 EVALUATION BY SIMULATION

We developed an event-driven simulator, which is accurate
down to the message transmission layer and takes into
account the processing latency and the network delay. We
simulate the latency caused by network congestion at the
overlay layer; however, we do not simulate the TCP/IP

370 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

3000 100

— Gnutella

2500
2000 —A&— TTLd=All

1500

1000

Network Coverage (%)

o
=3
=]

x10

Messages)

N
o
i

{MNumber of
o
i

Received Traffic
o
@0
b

Average Duplicate Query per Peer in 10 Minutes

GnutellaTTLd=1TTLd=2TTLd=3TTLd=4TTLd=All 0 2

@

4 6
Number of Hop

(b) (©

00 fom o w1

1000 o

10 Time |mmuteJ4 5 2000
Peer Sorted by Traffic Workload

Fig. 10. Analysis of traffic workload and effect of using different 7T L, (static networks). (a) Duplicate messages. (b) Connectivity. (c) Received traffic

(DCMP).

layer. The simulator is written in C++ and was executed on
a Linux machine (with a 3.0-GHz CPU and 3 Gbytes of
RAM). We used a power-law topology with an average
degree of 3.4, whereas the network size varied from 500 to
10,000 peers (results are based on 3,000 nodes by default in
this section). The bandwidth of each peer ranged from
56 Kbps (that is, modem) to 45 Mbps (that is, T3 connection),
following also a power-law distribution. The TT'L for the
messages was set to eight (except for the RW algorithm).
Peers initiated queries with a uniform distribution and a
mean query frequency of 3.6 queries per peer per hour. Each
experiment was executed with six different seeds, and the
results show the average of all runs.

5.1 Topology and Workload Analysis

In the first set of experiments, we generate a power-law
network with 3,000 peers and count the number of
duplicate messages before DCMP starts to eliminate cycles.
Then, we allow DCMP to reach a stable state and count the
number of duplicate messages again. In Fig. 10a, we show
the number of duplicate messages after eliminating cycles
by using different 71'L,; values. Recall that TT'L; guides the
process of eliminating the cycles that are shorter than
certain lengths. Therefore, cycles that have more that 2 -
TTL; edges are largely maintained. TTLg = All will
eliminate all cycles causing the network to degenerate to a
tree. From the graph, we observe that the number of
duplicate messages is reduced considerably for T7TL; = 2
(that is, more than 90 percent of the duplicate messages are
eliminated). Further increasing T7'L; does not result in a
significant improvement.

However, there is a trade-off between the number of
cycles and the network connectivity. If we eliminate too
many cycles, the average distance (in hops) between any
pair of nodes will increase and so will the average delay.
Moreover, the system’s resilience to node failures will
suffer. In Fig. 10b, we present the average connectivity of
the network for varying 77'L,. For instance, if 7TL; =1, a
message can reach almost 65 percent of the peers in the
network within 4 hops on the average; however, if
TTLg = All (that is, tree topology), messages can reach
only 43 percent of the peers. From the two diagrams in

Fig. 10, we conclude that 77'L,; = 2 provides a good trade-
off between the number of duplicates and connectivity;
therefore, we use this value for the following experiments.

Recall that duplicate messages mostly affect the high-
degree peers. This is obvious in Fig. 10c, where peers are
sorted according to their workload. As time passes, DCMP
eliminates a large number of small cycles around high-
degree peers, significantly reducing their workload. On the
other hand, the workload for the rest of the peers remains
almost unaffected.

5.2 Influence of Network Size

In this experiment, we vary the number of peers in the
network. Fig. 11a shows the network coverage. The graph
reveals that DCMP preserves short routing paths as the
network size increases. DCMP eliminates only the small
cycles around GatePeers, achieving coverage almost as
good as that by Gnutella.’ In Fig. 11b, we present the
average number of duplicates for various network sizes.
Observe that, for DCMP, the number of duplicates increases
very slowly since the number of cycles with a length larger
than 2 - TTL, (that is, the ones that introduce duplicates in
DCMP) is small.

5.3 Symmetric Cut versus Random Cut

Here, we investigate the effectiveness of the symmetric cut
heuristic employed by DCMP. We compare our method
against cutting the cycle at a random position. The results
are shown in Fig. 12a, where we draw the network coverage
for varying numbers of hops. By cutting cycles symme-
trically to GatePeers, DCMP manages to closely follow the
good coverage of Gnutella. The random heuristic, on the
other hand, creates long chains of peers and network
fragments since all peers in a cycle may decide to break the
cycle concurrently. Therefore, the coverage drops signifi-
cantly; for instance, less than 40 percent of the peers are
reachable within 8 hops.

5.4 Failure and Attack Analysis
In P2P systems, peers are usually unstable, and the network

is very dynamic. One important requirement of the system
is to be resilient to failures. To test the robustness of DCMP,

6. The default TT'L = 8. For other TTL values, the graph follows the
difference between the Gnutella and TT'L; = 2 lines in Fig. 10b.

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 371

% — Gnutella
g —— DCMP
T 100>
© 2
£
£
3 80
o]
o
2 60
o
Q
)
o 40
o
>
3
_g 20
3
z
0 2000 4000 6000 8000 10000
Number of Peers
(a)
3
£ 12000
£ — Gnutella
3 —— DCMP
2 10000
£
8
2 8000
]
o
2 6000
o
S
c
o
.S 4000
=
S
Q2000
(0]
[=]
5 ,_A_/O/—‘
o o
z 72000 4000 6000 8000 10000

Number of Peers

(b)

Fig. 11. Scalability for Gnutella and DCMP (static networks).
(a) Connectivity. (b) Duplicate query.

we force 5-40 percent of all peers to fail simultaneously. All
peers (that is, both normal peers and GatePeers) have the
same probability to fail. We calculate the network coverage
immediately after dropping these peers and once a minute
in the following 10 minutes. The failure can be detected
either when a peer sends a message or when the
“KeepAlive” timer of the TCP layer expires (in our
simulation, the timer expires in 4 minutes). By utilizing
the backup and referred GatePeer information, the network
fragments can connect to each other efficiently even when
40 percent of the peers fail at the same time. Fig. 12b shows
that the network coverage restores to almost 100 percent
after 5 minutes. Interestingly, if there were more messages
to be sent via the area where some GatePeers fail, the
failures would be detected and repaired faster. The graph
depicts the worst case, where many peers rely on the TCP
layer for failure detection. During the experiment, there
were cases where all the backup GatePeers of a normal peer
failed simultaneously. In these cases, the peer had to rejoin
the network.

A drawback of our protocol is that, compared to
Gnutella, it is more vulnerable to well-orchestrated attacks.
To verify this, we sorted all peers according to their power
and failed simultaneously the top 1 percent. The coverage of
the network dropped to around 20 percent, and the system
needed around 5 minutes to recover (very similar to
Fig. 12b). Gnutella, on the other hand, is less affected
because many nodes remain connected via longer paths.
The protection of high-degree GatePeers against malicious
attacks is an important issue of our future work, but it is
outside the scope of this paper. Notice, however, that one
could implement various methods on top of DCMP for, for
example, detecting malicious peers [18] or defending

5]
S
L
L
L
L

80

— Gnutella
—+ BalanceCut
= RandomCut

60

40

Average Network Coverage (%)

20

0 5 10 15 20 25
Hop Number
(@)
100 PP PPN
—+ Drop 5%
-©- Drop 10%
8 =%~ Drop 20%
Q -8~ Drop 40%
601

40

Network Coverage within 8 Hops (%)

0 1 2 3 4 5 6 7 8 9
Time after Dropping Peers (In Minute)

(b)

Fig. 12. Comparison of symmetric/balance cut and random cut and
failure analysis. (a) Balance versus random cut. (b) Random failure
analysis.

against DoS attacks [19]. This is possible, since these
protocols work independently of each other.

5.5 Comparison with Other Approaches

Lv et al. [6] use RWs for searching in unstructured P2P
networks. The algorithm initiates & random walkers. In
order to reduce the system load, the walkers contact the
initiator node periodically to check whether the search
should stop. Despite the overhead of contacting the query
initiator, this approach reduces the total number of
messages compared to flooding and reduces the duplicate
messages as a consequence. The trade-offs are increased
user-perceived delay and fewer answers, since RW favors
searches for popular objects but exhibits poor performance
for rare ones. Nevertheless, Gkantsidis et al. [20] observed
that, if RW is forced to transmit the same number of
messages as flooding approaches, it achieves almost the
same network coverage (the delay problem remains).
Obviously, RW does not alter the network’s structure.
Nevertheless, we study it here, since it has the potential to
minimize the duplicate messages.

LTM [16] is a different approach that periodically
broadcasts detection messages to discover and cut the
connections that have the maximum delay. In LTM, the
following two steps are performed at each peer: 1) Forward
a detection message. If a detection message (received or
self-created with initial 77'L = 2) has not expired, the peer
inserts a new time stamp and broadcasts the message to the
neighbor peers. 2) Cut a connection. Upon receiving two
detection messages with the same GUID, the peer drops the
link with the largest delay among all traversed links using
the time stamps to calculate delays.

372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

S

o,
®
o

—— DCMP
—— RW

—— DCMP 1800

—— RW —o— DCMP

-+ RW

¢
¢

%

o
N
(=]

N
N
=]

N

®
=]

S,
3
3

<

<

4

Average Number of QueryHit
o]
o (=]

>
R 3
R 3

2 3
. 1400

o

(=%

21200

o

3

<1000

N
S
+
$
4

IS
¥l

Average Hop Count fg[QueryHit (Log Scale)
o

o
©

N

o

"

Average Duplicate

N

32 64

N

4 8 16 2
Number of Walkers

(a)

4 1
Number gf Walkers6

32 64 1 2 4 8 16 32 64
Number of Walkers

(b) ()

Fig. 13. Comparison of RWs and DCMP (dynamic network). (a) Path lengths of a query hit. (b) Number of query hits. (c) Number of duplicate queries.

5.5.1 QoS and Duplicate Reduction Analysis

In our experiments, we varied the number of walkers from
1 to 64 and forced RW to transmit the same number of
messages as DCMP (similar to [20]). For LTM, we followed
the optimal frequency of broadcasting detection messages
suggested in [16]. In Fig. 13, we compare RW and DCMP.
First, the average delay is shown in Fig. 13a (delay is
measured as the number of hops from the moment a query
is sent until each answer arrives to the querying peer). We
observe that the delay of RW is about four times larger than
DCMP, even when many walkers are used. Increasing the
number of walkers reduces the delay, which is expected
since RW tends to flood the neighbors. In our experiments,
there are around 150 replicas of each object in the network.
Fig. 13b shows that DCMP can find almost all of them, but
RW discovers less than 33 percent of the copies. Finally,
Fig. 13c shows the number of duplicates. For all the cases,
RW generates more duplicate messages than DCMP if both
methods transmit the same number of messages.

Table 1 summarizes the results for the four techniques.
DCMP, RW, and LTM transmit fewer messages for each
query compared to Gnutella, since many duplicates are
avoided. DCMP incurs a lower delay, returns more results,
and decreases the number of duplicate messages by
22 percent, compared to LTM. Furthermore, DCMP gen-
erates much less overhead than LTM, as we will explain in
the next experiment.

5.5.2 Overhead Analysis and Effect of
Peer Session Time

In order to reduce useless traffic, both DCMP and LTM
transmit special messages to construct and maintain the
desired network topology; however, the resulting overhead
is different. To investigate this, we conducted the following
experiment: We generated a power-law network with
3,000 online peers and placed 3,000 additional peers in a

TABLE 1
Comparison of RWs, DCMP, Gnutella, and LTM

Hop count for QueryHit | QueryHit Number | Duplicate Query

Gnutella 9.96 149.4 3100
DCMP 10.33 148.8 415
RW (8 Walkers) 206.67 45.1 1240
LT™M 11.49 145.3 535

waiting list. When the session time of an online peer P had
expired, P would fail, and it would be placed at the back of
the waiting list. At the same moment, a random peer from
the waiting list would join the network at a random
location; therefore, the number of the online peers was
remaining constant. The peer session time followed the
exponential distribution; we varied the mean between 10
and 80 minutes. We run the simulation long enough for
each of the original 3,000 online peers to have had the
chance to quit and reenter.

Compared to LTM, DCMP has much smaller overhead
(that is, control messages), which is due to the fact that LTM
adopts an “eager” approach (that is, broadcasts control
messages periodically), whereas DCMP adopts a “lazy”
one. As shown in Fig. 14a, LTM’s overhead is one to two
orders of magnitude greater than that of DCMP (notice that

o
w

10 — DCMP (10 Minute)
—#— DCMP (20 Minute)
—&- DCMP (40 Minute)
—6— DCMP (80 Minute)
—e— LTM 'Flooding’ Traffic

Average Control Message Per Peer (Log Scale)

0 20 40 60 80 100 120 140 160
Time (minute)

(@)

—— Session Time 10 Minutes
—e— Session Time 20 Minutes
5r —8— Session Time 40 Minutes
—6— Session Time 80 Minutes

Average Ping Pong Message per Peer
w

80 100 120 140 160
Time (minutes)

(b)

00 20 40 60

Fig. 14. Overhead analysis and effect of session time on control and
ping/pong messages. (a) Overhead analysis. (b) Ping and pong
messages.

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 373

we counted all tagged messages in DCMP as separate
messages). In the same graph, we analyze the effect of peer
session time. We observe that the overhead increases when
the network becomes more dynamic. This is caused by the
unstable GatePeers, which tend to create more cycles.
Fig. 14b confirms this phenomenon. When peers join and
quit/fail with increasingly higher frequency, the GatePeer
information used to maintain the network connectivity is
outdated faster. As a consequence, joining peers rely more
on the Gnutella-style ping/pong protocol. However, by
joining at a random position, the probability of introducing
a cycle (thus, the overhead for cycle elimination) increases.
Nevertheless, if the mean session time is more than
10 minutes (this number is consistent with most of the
observations in the literature, for example, [21]), the joining
overhead for DCMP is reasonably small.

6 PROTOTYPE EVALUATION ON PLANETLAB

We implemented DCMP in a prototype and deployed it on
PlanetLab [7]; our prototype implements all the features
except the downloading of files after they are located. There
are 665 nodes that are distributed over 315 locations in
PlanetLab at the time of writing this paper. Unfortunately,
some nodes are problematic, so our experiments use up to
400 nodes scattered worldwide. This number may be
considered small for a P2P network. However, we believe
it is important to show accurate measurements (especially
response time) from a real system.

We generated two network topologies that appear in
real-life P2P networks [5] in order to test DCMP: 1) One is a
power-law topology with an average degree of 3.4. We used
the PLOD [22] method to construct the network. This
topology reflects the original Gnutella network (that is,
protocol v0.4). 2) The other is a two-layer network with
power-law distribution at the superpeer layer and quasi-
constant distribution at the leaf layer. This topology
corresponds to the latest version of the Gnutella protocol
(that is, v0.6). We used statistics from Limewire [23] to
generate a realistic network.

In our experiments, we use a small set of five nodes as the
network seed. The IP addresses of the seed nodes are known
to all peers. The seeds are used as entry points to propagate
ping messages in order to assist other nodes to join. We also
use a coordinator peer that transmits configuration para-
meters to other nodes, starts or stops the experiment, and
gathers statistics from all nodes. The seeds and the
coordinator are used to assist the experimental setup;
otherwise, they are not required by our protocol.

We compare DCMP with the Gnutella protocol, which
also represents the upper layer of superpeer P2P networks
(for example, Kazaa). We also evaluate our protocol against
the SCE technique (similar to the approach suggested by
Limewire). Finally, we compare DCMP with RWs. We use
the following metrics:

1. Number of duplicate messages. This metric indicates
how much unnecessary traffic is eliminated.

2. Delay (or response time). It is the delay from the
moment a query is initiated by a peer until the
moment the first result reaches the peer. In our
setup, each query can be answered by 5 percent of
the nodes (answers are uniformly distributed).

— Power-law
----- Power-law & quasi—constant

)

o N B

Number of Duplicate Messages

8
6
4l
2
0

150 200 250
Peers Sorted by Number of Messages (Descending Order)

(a)

»
x
N
o,

>

-9~ DCMP
— Gnutella

o

S

N

Number of Duplicate Messages
w

s
<

=}

S,

Fig. 15. Duplicate distribution and timeline of duplicates. (a) Duplicate
distribution in Gnutella and super-peer architectures. (b) Number of
duplicates versus elapsed time for DCMP and Gnutella.

Although this is not an accurate representation of
files in a real P2P system, it is adequate for our
experiments since we are interested in the network
structure instead of the search algorithm.

3. DCMP overhead. These are the control messages (IC,
CM, and message tagging), which are essential in
our protocol.

In the following, we present the results of our
experiments. In order to understand the behavior of
DCMP, first, we consider a static snapshot of the network
(that is, peers do not enter/leave). Next, we deploy a
realistic dynamic network and measure the actual delay
perceived by the users.

6.1 Static Peers

For the static snapshot, first, we allow all peers to enter the
network. Then, the coordinator peer broadcasts the com-
mand to start the experiment. From that point on, peers
send messages to each other as usual, but no peer can
enter/leave the network.

6.1.1 Duplicates Analysis

In Fig. 15a, we analyze the duplicates” distribution in two
topologies: power law (that is, Gnutella) and power law
quasiconstant (that is, superpeer architectures). The z-axis
represents individual nodes appearing in descending work-
load order; therefore, x = 0 corresponds to the node that
receives the most duplicates.” Both topologies are prone to a
large number of duplicates; however, the two-layer network

7. Recall from Fig. 1b that duplicates account for more than 50 percent of
the total messages.

374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

TABLE 2
Average Number of Hops in Static Networks

| Average Hops
DCMP 2.8
Gnutella 39

suffers most. In two-layer architectures, about 10 percent of
the nodes are superpeers [23] having a large number of
neighbors that are also superpeers. Therefore, cycles are
formed with high probability, and they introduce numerous
duplicate messages.

Fig. 15b shows the number of duplicates for both DCMP
and Gnutella. The z-axis represents the elapsed time since
the beginning of the experiment. Nodes record the number
of duplicates they receive in 20 second intervals. The y-axis
represents the sum of duplicates in all nodes. Initially, both
systems experience a large number of duplicates. As time
progresses, DCMP eliminates the cycles; therefore, dupli-
cates are reduced. Gnutella, on the other hand, continu-
ously generates numerous duplicates. Note that, in DCMP,
the number of duplicates drops significantly after about
20 seconds and almost all duplicates are eliminated after
100 seconds. The actual time for eliminating these cycles is
affected by the size of the network and the exact number of
cycles; in practice, it takes no more than a few minutes.
Similar results were obtained for superpeer architectures.

6.1.2 Delay Analysis

DCMP eliminates cycles by disabling the connections
symmetrical to GatePeers in order to keep the network
diameter small. Here, we investigate how DCMP affects the
average number of hops; the actual delay is measured in the
next section.

In our experiments, each peer generates traffic by
initiating 10 query messages; the mean time between
queries is 30 seconds. Incoming messages are placed in a
queue until it is processed. Every peer has a maximum
queue size; if the queue is full, incoming messages are
discarded. A peer that receives a message uses the
message’s TT'L to calculate the distance (in hops) to the
origin. Obviously, if a duplicate arrives, it is ignored, and
the distance is not computed.

The average number of hops is shown in Table 2.
Contrary to our intuition, the average number of hops for

DCMP is smaller than that for Gnutella, although the
network contains fewer connections. To understand this,
assume that there is a path from peer A to B consisting of
several hops, and there is a shorter path that goes through
another peer C. Let A send a message msg and let C be
overloaded. When msg reaches C, it will be delayed. In the
meanwhile, msg reaches B, and B calculates its distance
from A. Eventually, msg will be propagated by C toward B,
where it will be rejected as a duplicate. Therefore, the longer
path is observed.

To verify this behavior, in Fig. 16a, we show the average
queue size in the peers versus the elapsed time. A larger
queue size indicates that there will be longer delays before a
message can be propagated. Gnutella experiences a much
larger queue size on the average compared to DCMP.
Although the collected data are noisy, the pattern is still
apparent. The instability is mainly caused by the large
number of duplicates flooding the network. As we already
discussed, most duplicates will arrive at the powerful peers,
which will be overloaded. Since the shorter paths are
congested, messages follow longer paths, thus increasing
the average number of hops. In DCMP, on the other hand,
most duplicates are eliminated (especially for high-degree
peers); therefore, queues are smaller, allowing messages to
travel through the shortest path.

For demonstration purposes, we also tested a lightly
loaded environment by changing the mean time between
queries to 200 seconds. In this case, the average hop number
of Gnutella was marginally better than DCMP. Note that
such a low query frequency is unlikely to be observed in
practice. This is because, in an existing P2P system, the
previous discussion would concern the superpeer layer,
where each superpeer handles all the queries of its children.

6.1.3 Overhead Analysis

DCMP introduces overhead in the form of control messages.
There are two main types of such messages: the IC message
and the CM. Also, GatePeers use Backup Messages to
broadcast their backup GatePeers. Additionally, GatePeers
and transitive peers perform message tagging periodically.
Although, in this case, DCMP does not transmit a new
message but only appends a few bytes of information in
existing messages, for simplicity, we consider the entire
tagged message as overhead.

8000

—— Cut Messages
- -~ IC messages
—e— Backup Messages

7000

f Messages,
o o
(=] (=]
e
E o (2]
(=3 o o
(=3 o o
o (=] o

3000

Number of Messat

N
=]
=]
=]

sofdi.

Number of Duplicate Messages

1000!

©
=]

—— DCMP —o— DCMP
— Gnutella 80 — Gnutella
—+ SCE —— RW
% RW 70 —— SCE

a @
o © o

Percentage of Query got QueryHit (%)
o

= N W s
=]

=)

- el)
0000 Time Line (minute)

20 4 6
00 Timg ?_?ne (secgr?z?)

(@)

vvvvvvvvvvvvvvvvvv

o’
L)
[=)
N,
o’
W,
(=)
=3
4

1 10

2 3 4 5 6 7 8
First QueryHit before Time (second)

(b) ()

Fig. 16. Average queue size and overhead analysis. (a) Average message queue size versus elapsed time. (b) Overhead of control messages

(DCMP).

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 375

Using the settings of the previous experiment, we counted
the overhead due to control messages. The results are
presented in Fig. 16b, where the z-axis corresponds to the
elapsed time. Initially, most of the overhead is IC messages.
These are generated when a peer detects a duplicate.
Therefore, numerous IC messages indicate the existence of
many cycles in the network. Observe that there are also many
tagged queries, since GatePeers tag the query messages very
frequently when the cycles are just cut. After a while, when
many cycles have been eliminated, the number of IC and
tagged messages drops significantly. Moreover, the overhead
due to CMs and backup messages is minimal. Initially, the
total overhead is around 20 messages per peer. This number
accounts for 10-20 percent of the total network traffic. This
overhead becomes very insignificant when most of the cycles
are eliminated; in practice, this is achieved after a couple of
minutes. Then, the overhead corresponds to 1-2 percent of the
total traffic. The overhead is acceptable, considering the large
number of duplicates that are avoided.

6.2 Dynamic Peers

For the next set of experiments, we deployed a dynamic
P2P system on PlanetLab. Initially, the seed peers join the
network, and the coordinator starts the experiment; then,
other nodes can join or fail/quit. The lifespan of the
nodes follows the exponential distribution with a mean
equal to 90 minutes [24]. First, we consider a lightly
loaded system, where peers initiate queries every 100 to
200 seconds with a uniform distribution; we examine
heavier loads in the next section.

Previous work [17] states that the lifespan of superpeer
architectures follows the Pareto distribution. This implies
that our GatePeers should have a lifespan of several days
[21]. Due to the instability of some PlanetLab nodes,
however, we were not able to sustain the experimental
environment for so long. Therefore, we chose the exponen-
tial distribution, which causes GatePeers to fail faster and
allows us to investigate the behavior of DCMP under
such failures. We stretch that the exponential distribution
represents the worst case for our protocol. In practice, we
expect less GatePeer failures and, hence, better overall
performance.

In Fig. 17a, we present the overhead due to control
messages in the dynamic environment. We do not show the
tagged messages since they follow largely the IC messages.
Compared to the static case (that is, Fig. 16b), more control
messages are required since new cycles are introduced. For
example, except for the initial period, we observe two peaks at
around 2,000 and 6,000 seconds. During these periods, it
happened that some GatePeers and all their backup GatePeers
failed. Therefore, many peers needed to connect to alternative
GatePeers, possibly by rejoining the network. In such a
process, it is possible to introduce new cycles (for example,
large cycles may become shorter and detectable). The total
overhead accounts for 125 messages in these two periods.
Observe that the total overhead of DCMP is 2-3 orders of
magnitude less that the number of duplicates it avoids during
the whole run (see the next experiment); therefore, the overall
traffic reduction is significant.

© —— DCMP
E 700 — Gnutella
<}
< 600
8
o
3 500
Q
= 400
o
2 300
£
2
< 200
o
I
2 100 \
% 200 400 600 800 1000

Time Line (second)

(a)

—e— Cut Message
12 — IC Message

] -4 Backup Message
> —— Tagged Query
210
o
=
5 8
o
o
E 6
F4
o
g 4
o
>
o A

0« TEN N S e

0 100 2| 0. 400 500

200 30(
Time Line (second)
(b)

Fig. 17. Analysis of DCMP control messages, duplicate queries, and
real-time delay for Gnutella, DCMP, SCE, RW. (a) Control messages of
DCMP. (b) Duplicate queries. (c) Delay of the first answer.

6.2.1 Comparison with Other Techniques

We also implemented two more techniques that may
potentially reduce the duplicate messages in Gnutella-like
networks: 1) The SCE technique (similar to Limewire) and
2) RWs, with TT'L = 50. In Fig. 17b, we show that all three
methods (that is, RW, SCE, and DCMP) can reduce the
number of duplicates compared to Gnutella. RW appears to
be the most efficient one, especially at the initial period
where there are a lot of cycles. This is because RW only
forwards the query to one connection at each time, and the
overall messages are reduced, resulting in fewer duplicates.
Observe that DCMP is the second best.

Note that the lower number of duplicates is only an
indication that the load of the network is reduced and
should not affect the user’s experience. To evaluate this, we
measure the delay from the moment a peer initiates a query
until it receives the first query hit (that is, answer to the
query). The results are shown in Fig. 17c. The z-axis
corresponds to the delay since the initiation of the query.
The y-axis represents the cumulative percentage of queries
that received hits. For example, in DCMP, z =1 corre-
sponds to y = 51 percent, meaning that 51 percent of the
queries received at least one answer within 1 second.
Queries expire after 5 minutes; any results arriving after the
time-out period are discarded. Gnutella performs best
among the four methods, whereas DCMP follows closely.
The reason for the slightly larger delay is twofold: First, the
initial overhead of the cycle elimination messages affects
DCMP, and second, as DCMP disables some connections,
the number of answer messages routed through high-
degree peers increases, resulting in longer delays. For the
SCE technique, note that only 30 percent of the queries
received at least one hit before expiring. This is because

376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 3, MARCH 2008

TABLE 3
Average Number of Query Hits in Dynamic Networks

| Average Number of Query Hits

DCMP 7.7
Gnutella 6.9
RW 1.2
SCE 6.1

peers disable connections based only on local information;
thus, the network may break into fragments. Also, note that
RW can greatly reduce the system’s workload by sending
one copy of the query each time, but it explores only a small
part of the network. The low coverage influences the ability
to return answers. In the experiment, only about 7 percent
of the queries receive some answer before the time out.
Increasing the TT'L value can increase the coverage, but the
delay will increase as well. Besides, there will be more
duplicates since RW cannot avoid cycles.

RW and SCE reduce the number of duplicates at the
expense of the response time. To further investigate the
quality of the search operation, we counted the total
number of query hits before the query timed out. Recall
that every query can be satisfied by 5 percent of the peers.
Since peers enter and quit the network continuously, there
are around 320-350 of them online concurrently at any given
time. Therefore, in the best case, each query should return
around 15 results. Of course, this is impossible in practice
due to small TT'L, nodes failing while processing a query,
delays longer than the time out, etc. Still, a larger number of
hits indicate better quality of service. In Table 3, we show
the average number of hits per query; DCMP provides the
best results.

For the previous experiments, the query frequency
initiation was set to 1 query per 100-200 seconds; this
corresponds to a very lightly loaded network. In our final
experiment, we investigate the effect of increasing the
frequency to 1 query per 50 seconds. Again, we count the
number of duplicates and measure the delay until the first
query hit. The results are presented in Fig. 18. DCMP
generates much fewer duplicates than Gnutella. Moreover,
since the network traffic has increased, the overhead of
duplicates becomes more obvious, and DCMP outperforms
Gnutella in terms of delay.

7 CONCLUSIONS

In this paper, we presented DCMP, a protocol for distributed
cycle minimization in broadcast-based P2P systems. DCMP
preserves the low diameter of Gnutella-like networks while
eliminating most of the duplicate messages. Moreover, the
overhead due to control messages is minimal. This results in
reduced response time, which, in turn, increases the
scalability of the system. Our protocol is suitable for dynamic
networks since it handles peer joins/departures efficiently
and is resilient to failures. DCMP is also designed to be as
simple as possible and is independent of the search
algorithm. Therefore, it can be implemented on top of
popular P2P systems such as Gnutella, Kazaa, or Gia with
minimal effort. We used a simulator and a prototype
implementation on PlanetLab to verify that our techniques
are applicable to realistic environments. The initial results are

| Average Number of Query Hits

DCMP 7.7
Gnutella 6.9
RW 1.2
SCE 6.1

Fig. 18. Duplicate queries and real-time delay for heavily loaded
networks. (a) Duplicates in dynamic heavily loaded networks. (b) Delay
in dynamic heavily loaded networks.

very promising. In the future, we plan to further improve our
protocol by considering other factors such as maintaining the
statistics of peers for a more stable and robust network. We
also plan to investigate the possibility of employing DCMP
outside the P2P area, for instance, in sensor networks.

REFERENCES

[1] S.Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” Proc. ACM SIG-
COMM '01, pp. 161-172, 2001.

[2] I Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-32, 2003.

[3] Gnutella, http://www.gnutella.com/ and http://groups.yahoo.
com/group/the_gdf/, 2007.

[4] Kazaa, http://www .kazaa.com/, 2007.

[5] M. Ripeanu, A. lamnitchi, and I.T. Foster, “Mapping the Gnutella
Network,” IEEE Internet Computing, vol. 6, no. 1, pp. 50-57, 2002.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. ACM
Int’l Conf. Supercomputing (ICS '02), pp. 84-95, 2002.

[7] PlanetLab, http://www.planet-lab.org/, 2007.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella-Like P2P Systems Scalable,” Proc.
ACM SIGCOMM '03, pp. 407-418, 2003.

[9] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Net-
work,” Proc. 19th Int’l Conf. Data Eng. (ICDE "03), pp. 49-60, 2003.

[10] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer
Networks,” Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS '05), pp. 5-14, 2002.

[11] S. Bakiras, P. Kalnis, T. Loukopoulos, and W.S. Ng, “A General
Framework for Searching in Distributed Data Repositories,” Proc.
17th Int’l Parallel and Distributed Processing Symp. (IPDPS '03),
pp- 34-41, 2003.

[12] P. Kalnis, W.S. Ng, B.C. Ooi, D. Papadias, and K.-L. Tan, “An
Adaptive P2P Network for Distributed Caching of OLAP Results,”
Proc. ACM SIGMOD '02, pp. 25-36, 2002.

[13] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location Using Interest-Based Locality in P2P Systems,” Proc.
IEEE INFOCOM ’03, pp. 2166-2176, 2003.

[14] Limewire, http://www.limewire.com/, 2007.

[15] Y. Liu, Z. Zhuang, L. Xiao, and L.M. Ni, “A Distributed Approach
to Solving Overlay Mismatching Problem,” Proc. 24th Int’l Conf.
Distributed Computing Systems (ICDCS '04), pp. 132-139, 2004.

[16] X. Liu, Y. Liu, L. Xiao, LM. Ni, and X. Zhang, “Location
Awareness in Unstructured Peer-to-Peer Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, no. 2, pp. 163-174, 2005.

[17] F. Bustamante and Y. Qiao, “Friendships That Last: Peer Lifespan
and Its Role in P2P Protocols,” Proc. Ninth Int’l Workshop Web
Content Caching and Distribution (IWCW '04), pp. 233-246, 2004.

[18] A. Singh, T.-W.]. Ngan, P. Druschel, and D.S. Wallach, “Eclipse
Attacks on Overlay Networks: Threats and Defenses,” Proc. IEEE
INFOCOM 06, pp. 120-130, 2006.

[19] N. Daswani and H. Garcia-Molina, “Query-Flood DoS Attacks in
Gnutella,” Proc. Ninth ACM Conf. Computer and Comm. Security
(CCS '02), pp. 181-192, 2002.

[20] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peer-
to-Peer Networks,” Proc. IEEE INFOCOM ‘04, vol. 1, pp. 120-130,
2004.

[21] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” Proc. Multimedia Computing
and Networking Conf. (MMCN '02), pp. 156-170, 2002.

ZHU ET AL.: DCMP: A DISTRIBUTED CYCLE MINIMIZATION PROTOCOL FOR PEER-TO-PEER NETWORKS 377

(22]

[23]

[24]

C.R. Palmer and J.G. Steffan, “Generating Network Topologies
That Obey Power Laws,” Proc. IEEE Global Telecomm. Conf.
(GLOBECOM ’00), pp. 434-438, 2000.

Statistics, Gnutella-Like Networks, http://www limewire.com/
english/content/uastats.shtml, 2007.

N. Christin, A.S. Weigend, and J. Chuang, “Content Availability,
Pollution and Poisoning in File Sharing P2P Networks,” Proc. Sixth
ACM Conf. Electronic Commerce (EC "05), pp. 68-77, 2005.

Panos Kalnis received the Diploma in computer
engineering from the Computer Engineering and
Informatics Department, University of Patras,
Greece, and the PhD degree from the Computer
Science Department, Hong Kong University of
Science and Technology. In the past, he was
involved in the design and testing of VLSI chips
at the Computer Technology Institute, Greece.

Zhenzhou Zhu received the BS and MS
degrees in computer science from the National
University of Singapore in 2005 and 2007,
respectively. His research interests are in the
areas of peer-to-peer networks, grid computing,
and distributed database systems.

He also worked in several companies on
database design, e-commerce projects, and
Web applications. Currently, he is an assistant professor in the
Computer Science Department, National University of Singapore. His
research interests include peer-to-peer systems, mobile computing,
OLAP, data warehouses, spatial databases, and anonymity.

Spiridon Bakiras received the BS degree in
electrical and computer engineering from the
National Technical University of Athens in 1993,
the MS degree in telematics from the University
of Surrey in 1994, and the PhD degree in
electrical engineering from the University of
Southern California in 2000. Currently, he is an
assistant professor in the Department of Mathe-
matics and Computer Science, John Jay Col-
lege, City University of New York (CUNY).
Before that, he held teaching and research positions at the University
of Hong Kong and the Hong Kong University of Science and
Technology. His research interests include high-speed networks, peer-
to-peer systems, mobile computing, and spatial databases. He is a
member of the ACM and the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

