
1

Spatial Query Integrity with Voronoi Neighbors
Ling Hu, Student Member, IEEE, Wei-Shinn Ku, Member, IEEE, Spiridon Bakiras, and Cyrus

Shahabi, Senior Member, IEEE

Abstract—With the popularity of location-based services and the abundant usage of smart phones and GPS-enabled devices,
the necessity of outsourcing spatial data has grown rapidly over the past few years. Meanwhile, the fast arising trend of Cloud
storage and Cloud computing services has provided a flexible and cost-effective platform for hosting data from businesses
and individuals, further enabling many location-based applications. Nevertheless, in this database outsourcing paradigm, the
authentication of the query results at the client remains a challenging problem. In this paper, we focus on the Outsourced Spatial
Database (OSDB) model and propose an efficient scheme, called VN-Auth, which allows a client to verify the correctness and
completeness of the result set. Our approach is based on neighborhood information derived from the Voronoi diagram of the
underlying spatial dataset and can handle fundamental spatial query types, such as k nearest neighbor and range queries,
as well as more advanced query types like reverse k nearest neighbor, aggregate nearest neighbor, and spatial skyline. We
evaluated VN-Auth based on real-world datasets using mobile devices (Google Droid smart phones with Android OS) as query
clients. Compared to the current state-of-the-art approaches (i.e., methods based on Merkle hash trees), our experiments show
that VN-Auth produces significantly smaller verification objects and is more computationally efficient, especially for queries with
low selectivity.

Index Terms—Spatial database outsourcing, location-based services, query authentication, spatial queries.

F

1 INTRODUCTION

The amount of digital spatial information available for
day-to-day use has grown at an exceptional pace over
the past decade. This large amount of information,
as well as the complexity of the data, demand so-
phisticated data management systems that are beyond
the capabilities of many small businesses or individ-
uals. Additionally, the cost of running a state-of-the-
art database management system may be significant,
far exceeding the initial data acquisition cost. On
the other hand, cloud computing provides flexible
resources that can easily scale up or down (based
on user demand), effectively reducing the operational
and maintenance expenses for data owners (DOs).
Consequently, the database outsourcing paradigm is
becoming increasingly popular and has received a
lot of attention in the research community. In this
paradigm, the data owner delegates the management
and maintenance of its database to a third-party cloud
storage service provider (SP), and the SP is responsi-
ble for indexing the data and answering client queries.

In this work, we focus on the Outsourced Spatial
Database (OSDB) model, as shown in Fig. 1. We
assume that the clients are mobile users who issue
location-based queries (e.g., k nearest neighbor (kNN)

Ling Hu and Cyrus Shahabi are both with the Computer Science Depart-
ment, University of Southern California, Los Angeles, California, USA
90089. E-mail: {lingh, shahabi}@usc.edu
Wei-Shinn Ku is with the Department of Computer Science and Software
Engineering, Auburn University, Auburn, Alabama, USA 36849. E-mail:
weishinn@auburn.edu
Spiridon Bakiras is with the Department of Mathematics and Computer
Science, John Jay College, CUNY, New York, NY, USA 10019. E-mail:
sbakiras@jjay.cuny.edu

Signed Data

Updates

Query

Result

Mobile Clients Data Owners (DO)Cloud Service Provider (SP)

p

Mobile Clients Data Owners (DO)Cloud Service Provider (SP)

Fig. 1. System architecture.

or range queries), in order to discover points of in-
terest (POIs) in their neighborhood. However, there
exist two major concerns with this model. First, as
the SP is not the real owner of the data, it might
return dishonest results out of its own interests. Sec-
ond, query results might be tampered with by ma-
licious attackers who could substitute one or more
records with fake ones. Consequently, query integrity
assurance is an important (and challenging) problem
that has to be carefully addressed. To differentiate
from traditional queries, we term spatial queries with
integrity assurance as verifiable queries. In particular,
for a verifiable query, the client must be able to prove
that 1) all data returned from the SP originated at the
DO and 2) the result set is correct and complete.

The general framework commonly used in the liter-
ature for query integrity assurance is based on digital
signatures and utilizes a public-key cryptosystem,
such as RSA [6]. Initially, the DO obtains a private and
a public key through a trusted key distribution center.
The private key is kept secret at the DO, whereas the
public key is accessible by all clients. Using its private
key, the DO digitally signs the data by generating a
number of signatures. Then, it sends the signatures

2

and the data to the SP which constructs the necessary
data structures for efficient query processing. When
the SP receives a query from a client, it generates a
verification object (VO) that contains the result set along
with the corresponding authentication information.
Finally, the SP sends the VO to the client which can
verify the results using the public key of the DO.

The current state-of-the-art solution for authenticat-
ing spatial queries is the Merkle R-tree (MR-tree) [34].
The MR-tree is essentially an R-tree that is augmented
with authentication information, i.e., hash digests. In
particular, every leaf node of the tree stores a digest
that is computed on the concatenation of the binary
representation of all objects in the node. Internal
nodes are assigned a digest that summarizes the child
nodes’ MBRs (minimum bounding rectangles) and
digests. Digests are computed in a bottom-up fashion,
and the single digest at the root is signed by the DO.
Range queries on the MR-tree are handled by a depth-
first traversal of the tree. The resulting VO contains
1) all the objects in every leaf node visited and 2) the
MBRs and digests of all the pruned nodes. Having this
information, the client can reconstruct the root digest
and compare it against the one that was signed by the
owner. In addition, the client also examines the spatial
relations between the query and each object/MBR
included in the VO, in order to verify the correctness
of the result.

We argue that the structure of the MR-tree, as
well as the verification process, suffer from several
drawbacks. First, the authentication information (hash
digests) embedded in the MR-tree reduces the node
fanout, leading to more I/O accesses during query
processing. Second, in the presence of updates from
the DO, all digests on the path from an affected leaf
node to the root have to be recomputed. Conse-
quently, when updates are frequent, query perfor-
mance is degraded, as discussed in [23]. Finally, the
overhead of the VO can be significant, especially for
queries that return only a few objects. This is due
to the fact that the SP has to return all objects lying
inside the leaf nodes that are visited during query
processing. As an example, consider the range query
q in Fig. 2. Even though the result set includes only
two objects (p2, p4), the corresponding VO has to
return all 12 objects in the database. An extension of
the MR-tree, called MR*-tree [35], mitigates this last
drawback by ordering the entries of each node and
constructing hierarchical relationships of the digests
therein. Nevertheless, it does not eliminate the VO
overhead entirely, and it increases the verification cost
at the client.

Motivated by the above observations, we propose
VN-Auth, a novel approach that authenticates arbi-
trary spatial queries based on neighborhood informa-
tion derived from the Voronoi diagram of the under-
lying spatial dataset. In particular, before delegating
its database to the SP, the owner transforms each

N N
5

N
1

N
2

N
6

N
4

N
1

(a) Points and MBRs

N
1

N
3

N
4 N

5
N

6

N
2

b) MR Tree.

(b) MR-tree

Fig. 2. Range query on the MR-tree.
data object by creating a signature of the object itself
along with information about its Voronoi neighbors.
A key aspect of our method is that it separates the
authentication information from the spatial index. As
a result, the efficiency of the spatial index is not com-
promised, and updates affect only the neighborhoods
of the updated objects. Furthermore, for kNN and
range queries the VO is extremely compact, since it
only includes the transformed objects that belong to
the result set. We implemented our verification algo-
rithms on Android mobile devices and run experi-
ments using real-world datasets. Our experiments and
results show that, compared to the MR-tree variants,
VN-Auth produces significantly smaller verification
objects and is more computationally efficient, espe-
cially for queries with low selectivity.

This paper subsumes our earlier work in [10] by
extending the VN-Auth approach to handle more
advanced spatial queries, such as reverse kNNs, k
aggregate NNs and spatial skylines because these
spatial query types are expected to be employed in
advanced location-based services in the future [15,
28]. Specifically, we propose the corresponding query
verification algorithms and investigate their perfor-
mance through extensive experimentation with real-
world datasets. To the best of our knowledge, this
is the first paper that tackles the query verification
problem for these types of queries.

The remainder of the paper is organized as follows.
Section 2 reviews related work, while Section 3 dis-
cusses Voronoi diagrams and signature aggregation
techniques. Section 4 describes the data transforma-
tion process, and Section 5 introduces the verification
algorithms for different spatial query types. Exper-
imental results are reported in Section 6. Section 7
introduces some additional features of VN-Auth and,
finally, Section 8 concludes the paper.

2 RELATED WORK

The idea of outsourcing databases to a third-party
service provider was first introduced by Hacigümüs
et al. [9]. Since then, numerous query authentication

3

solutions have been proposed for auditing query re-
sults in outsourced relational databases [8, 14, 17, 21,
22, 29, 32, 33]. The first mechanism for verifying query
results in multi-dimensional databases was proposed
in [3]. The idea is to add authentication information
into a spatial data structure by constructing certified
chains [21] on the data points within each partition
as well as on all the partitions in the data space.
For a given range query, this approach generates a
proof that every data point (within the intervals of
the certified chains that overlap the query window)
is either returned as a result or falls outside the
query range. Based on [3], Cheng and Tan designed a
mechanism for authenticating kNN queries on multi-
dimensional databases, ensuring that the result set is
complete, authentic, and minimal [4, 5]. Neverthe-
less, both solutions incur significant authentication
overhead, and the required verification information
consumes considerable client-server communication
bandwidth.

Yang et al. [34, 35] introduced the MR- and MR*-
trees, which are space-efficient authenticated data
structures supporting fast query processing and verifi-
cation. The MR-tree augments the standard R-tree [7],
by computing hash digests on the concatenation of the
binary representation of all the entries in a tree node.
To verify the correctness and completeness of range
query results, the generated VO includes 1) all visited
objects and 2) MBRs and digests of all the pruned
nodes. In addition to static queries, in [36] the MR-tree
is utilized for authenticating moving kNN queries.
The MR*-tree improves the MR-tree by ordering the
entries of each node and constructing hierarchical
relationships of the digests therein. Entries are sorted
according to an in-order traversal of a KD-tree. As a
result, when a query intersects an MBR, not all entries
are required for query verification, and some of them
can be pruned. The idea is similar to building a small
Merkle tree on each node of the MR-tree. The MR*-
tree significantly reduces the VO size but incurs some
CPU overhead due to the embedded information.
Nevertheless, neither the MR-tree nor the MR*-tree
are able to handle data updates efficiently.

Efficient verification in the presence of frequent
updates has been studied in the context of relational
data. The Partially Materialized Digest scheme (PMD)
[16] verifies one-dimensional queries and applies to
both static and dynamic databases. Similar to our pro-
posed approach, PMD employs separate indexes for
the data and their associated verification information
in order to avoid unnecessary costs when processing
queries that do not request verification. Moreover, the
authors designed two verification methods for spatial
queries namely the Merkle R-tree (MR-tree) and the
Partially Materialized KD-tree (PMKD). The first is
an extension of the MB-tree method [14] to R-tree
indexes, and the second an adaptation of the PMD
methodology for spatial data. Furthermore, Pang et

al. [23] introduced a protocol, based on signature
aggregation, that verifies the authenticity, complete-
ness and freshness of the query result. An impor-
tant property of the protocol is that it allows new
data to be disseminated immediately, while ensuring
that outdated values (beyond a pre-set age) can be
detected. In addition, the authors also implemented
an efficient verification technique for ad-hoc equi-
joins. Papadopoulos et al. [26] designed a solution
for the authentication of continuous spatial queries,
i.e., queries that are constantly evaluated on a highly
dynamic database (consisting of moving objects). The
proposed mechanism achieves both correctness and
temporal completeness and aims at reducing the trans-
mission overhead between the service provider and
the clients.

All the aforementioned solutions require changes
to the DBMS software (modifying the spatial indices
or query algorithms) in order to support the em-
bedded authentication information. This may not be
realistic in many applications. On the other hand,
Ku et al. [13] proposed a query integrity assurance
technique that does not require any modifications
in the DBMS software. The solution first employs
a spatial transformation method that encrypts the
spatial data before outsourcing it to the SP. Then, by
probabilistically replicating a portion of the data and
encrypting it with a different encryption key, clients
are able to audit the trustworthiness of the query
results. However, since [13] is not a deterministic
solution, attacks may escape the auditing process. The
VN-Auth method introduced in this paper is both
efficient and deterministic, and does not require any
modifications in the DBMS software.

3 PRELIMINARIES
3.1 Voronoi Diagrams
Given a set of distinct objects P = {p1, p2, . . . , pn} in
Rm, the Voronoi diagram of P , denoted as VD(P), parti-
tions the space of Rm into n disjoint regions, such that
each object pi in P belongs to only one region and ev-
ery point in that region is closer to pi than to any other
object of P in the Euclidean space. The region around
pi is called the Voronoi cell of pi, denoted as V C(pi),
and pi is the generator of the Voronoi cell. Therefore,
the Voronoi diagram of P is the union of all Voronoi
cells VD(P) = {V C(p1), V C(p2), . . . , V C(pn)}. If two
generators share a common edge, they are Voronoi
neighbors. If we connect all the Voronoi neighbors,
we get the Delaunay triangulation DG(P), which is the
dual graph of VD(P). Note that, in this paper, we
utilize Euclidean distance functions in R2.

Property 1: Given a set of distinct points P =
{p1, p2, . . . , pn} ⊂ R2, the Voronoi diagram VD(P) and
the corresponding Delaunay triangulation DG(P) of
P are unique.

Property 2: The average number of Voronoi edges
per Voronoi polygon does not exceed six. That is, the

4

average number of Voronoi neighbors per generator
does not exceed six.

Property 3: Given the Voronoi diagram of P , the
nearest neighbor of a query point q is p, if and only
if q ∈ V C(p).

Property 4: Let p1, . . . , pk be the k (k > 1) near-
est neighbors in P to a query point q. Then, pk
is a Voronoi neighbor of at least one point pi ∈
{p1, . . . , pk−1}.

Please refer to [20] (Properties 1-3) and [12] (Prop-
erty 4) for proofs of the above properties.

3.2 Signature Aggregation

In our approach, the DO generates one signature for
every object in the database, which is computed on
the hash digest of the concatenation of the binary
representation of the object and its Voronoi neighbors.
In this way, the client can verify the authenticity of
each individual object and its neighborhood. Note
that, in this work, we utilize RSA signatures [6] that
are typically 128 bytes in size. Alternatively, signa-
tures based on Elliptic Curve Cryptography (ECC) [2]
can be significantly shorter, thus reducing the over-
all communication and storage cost. However, ECC
algorithms are computationally intensive and would
perform poorly on mobile devices with limited com-
putational capabilities.

The drawback of having one signature per database
object is that it may increase considerably the commu-
nication cost between the SP and the client. Specifi-
cally, the SP has to transmit one 128-byte signature
for every object in the result set, so the overhead
can be significant for queries with high selectivity
(especially for mobile clients). To avoid this cost, we
employ a technique called signature aggregation. In
particular, given k digests and their corresponding
signatures (generated by the same signer), the SP can
replace them with a single Condensed-RSA signature.
Condensed-RSA has the same size as the original
signatures (128 bytes), and it is computed as the
modular multiplication of the k signatures. Aggregate
signatures are provably secure [1, 18, 19] and can be
computed by any party that possesses the individual
signatures.

4 DATA TRANSFORMATION

Consider a DO that has compiled a large collection of
n POIs (e.g., restaurants) within a geographic region.
Each POI i is represented as a unique object pi in the
database, which has the form ⟨pi.location, pi.tail⟩. The
location attribute stores the spatial coordinates of the
object, while the tail attribute stores some additional
information about the object, such as name, address,
phone number, web site, etc. Before transmitting the
database to the SP, the DO transforms each object by
attaching neighborhood and authentication informa-
tion.

In particular, the DO initially computes the Voronoi
diagram of the spatial dataset (as shown in Fig. 3) and
retrieves the Voronoi neighbors of each POI. Then, it
appends a neighbors attribute to every object in the
database that stores the locations of all its Voronoi
neighbors. For example, the neighbors attribute of p5
from Fig. 3 is equal to:

p5.neighbors = {3, p1.location, p4.location, p8.location}

Note that, as the number of Voronoi neighbors for a
POI is not fixed, the first value of the attribute speci-
fies the exact number of neighbors. Furthermore, we
assume that the DO stores the Voronoi neighbors in a
clockwise or counter-clockwise order to facilitate the
on-the-fly reconstruction of Voronoi cells at the client
(as explained in Section 5.3.1). The final step is for the
DO to sign each individual object, so that the client
can verify the authenticity of the information stored
therein. Specifically, for an object pi, its signature S is
computed as

S = sign(h(pi.location|pi.tail|pi.neighbors))

where h is a one-way, collision-resistant hash
function and ‘|’ denotes the concatenation of
two binary strings. To summarize, each trans-
formed object pi at the DO’s site has the form
⟨pi.location, pi.tail, pi.neigbors, pi.S⟩.

(a) Delaunay triangulation (b) Voronoi diagram

Fig. 3. Spatial dataset example.
After the database transformation process com-

pletes, the DO transfers all objects to the SP. Upon
receiving the database objects, the SP builds an ap-
propriate spatial index and is then ready for query
processing. Note that the leaf level of the index only
stores pointers to the locations of the transformed
objects on the disk. There are several advantages in
our approach compared to the MR-tree variants. First,
the DO is oblivious to the query processing mech-
anisms at the SP. Consequently, the SP may utilize
any spatial index (and query processing algorithm)
without informing the DO. Second, the spatial index
does not store any authentication information, and
thus remains compact and efficient. Third, database
updates affect only their local regions, and they do
not need to propagate to the root of the index. The
only drawback of VN-Auth is the storage overhead of

5

the transformed objects. However, according to Prop-
erty 2 (Section 3.1), the number of neighbors for each
generator in the Voronoi diagram does not exceed
six, on average. Therefore, the expected overhead per
object is 2 + 6 × 16 + 128 = 226 bytes (one 2-byte
short integer, 16 bytes/point object, and one 128-byte
signature), which is typically less than the size of the
original object.

As mentioned earlier, one of the drawbacks of
the MR-tree based verification techniques is that all
updates propagate hash digest re-computations from
the leaf nodes to the root. Consequently, frequent
updates degrade the performance of the R-tree index
and create a performance bottleneck at the root node.
Our approach overcomes this problem by separating
the authentication information from the spatial in-
dexes. Verification information is attached only to the
data objects, and updates affect only a specific neigh-
borhood in the dataset. In addition, as neighboring
objects are close to each other, they are often stored
on the same or nearby pages on the disk. Therefore,
updates in the VN-Auth framework are expected to
be more efficient than MR-tree updates.

5 AUTHENTICATING SPATIAL QUERIES

In this section, we introduce the verification algo-
rithms for typical location-based queries. Section 5.1
describes the query processing mechanism at the
SP. Section 5.2 introduces the signature verification
algorithm, which is common for all spatial queries,
followed by the geometric verification algorithms for
different types of spatial queries in Section 5.3.

5.1 Query Processing at the SP
Service providers process queries on the outsourced
database (the database stored in the cloud) on behalf
of the data owner. For verifiable queries, returning
the query result to the clients is no longer sufficient.
Instead, the SP is required to return a verification
object (VO) that contains 1) a condensed signature
AS that verifies the authenticity of all objects in the
VO and 2) the result set of the query with some
additional objects that are necessary for the geometric
verification process.

Depending on the spatial query type, the SP em-
ploys different query processing algorithms to retrieve
the result. For kNN queries and queries that can
be converted into kNN queries (e.g., range queries),
query processing can follow any state-of-the-art al-
gorithm that exists in the literature. The resulting
VO contains the objects in the result set and their
Voronoi neighbor information, which are sufficient for
the verification process. For more sophisticated spa-
tial queries, existing query processing algorithms still
apply. However, the server needs to return some ad-
ditional objects so that the client can perform the geo-
metric verification. For example, in a reverse k nearest
neighbor query, a few candidate objects (which might

not be reverse kNNs of the query point) are returned
in the VO to prove there are no objects missing from
the result set (see details in Section 5.3.2).

5.2 Signature Verification
Two sequential steps are generally taken in a spatial
query verification process. First, the aggregate signa-
ture of the VO is examined by the client to ensure
that all returned objects originated at the DO. Next, all
objects in the result set are evaluated to ensure that the
geometric properties are satisfied and no legitimate
objects are eliminated. Since signature verification is
common in all query types, it is briefly discussed here
and is omitted from the geometric verification process
(Section 5.3).

When a client receives the VO from the SP, it
verifies the aggregate signature using the public key
of the DO. Specifically, the client simply performs
a modular multiplication of the hash digests of all
objects included in the VO, and verifies that the result
matches the plaintext that is derived by decrypting the
aggregate signature with the DO’s public key (see de-
tails in [19]). Note that, forging or altering a signature
is computationally intractable for a polynomial-time
adversary. If the VO fails the signature verification
process, the client considers the result as corrupted
and the verification process terminates. Otherwise, it
continues with the geometric verification.

5.3 Geometric Verification
Geometric verification algorithms are specific to the
geometric properties of the spatial query. Since dif-
ferent spatial queries exhibit different geometric char-
acteristics, we discuss next how to proceed with the
verification process for each individual query type.
5.3.1 kNN and Range Query Verification
Nearest neighbor (NN) queries are the fundamental
building blocks in location-based services. In par-
ticular, kNN queries allow mobile users to retrieve
the k closest POIs from the database, i.e., they may
issue queries such as “find the 10 nearest restaurants
to my location”. For the geometric verification, VN-
Auth employs an incremental verification process that
is based on Properties 3 and 4. Specifically, according
to Property 3, pi is the 1st NN of the query point q, if
and only if q lies inside the Voronoi cell of pi. Once this
geometric test is verified, Property 4 states that the 2nd

NN of q must be one of the Voronoi neighbors of the
1st NN (pi). In the general case, the kth NN of a query
point q exists in the union of the Voronoi neighbors
of the first (k − 1) NNs of q.

The kNN query verification process is shown in Al-
gorithm 1. The inputs to the algorithm are the query
point q, the verification object VO, and the parameter
k. The kNN result returned by the server is retrieved
by calling VO.result() on line 2. H is a min-heap which
sorts points according to their distances to query
q, and Visited is a set that retains already accessed

6

objects. First (lines 3–8), the algorithm constructs the
Voronoi cell of the first object p1 and checks whether
q falls inside V C(p1). If not, p1 is not the 1st NN
and the verification process fails. Otherwise, p1 is
verified as the 1st NN, and is added to the Visited set.
Recall that each object is augmented with its Voronoi
neighbors in a clockwise (or counter-clockwise) order.
Therefore, the Voronoi cell can be computed on-the-
fly by finding the circumcenters of the surrounding
Delaunay triangles of p1. This is not an expensive
computation and can be performed efficiently on a
mobile device.
Algorithm 1 VerifykNN(q,VO,k)
1. H ← ∅; Visited ← ∅;
2. L ← VO.result(); p1 = L[1];
3. VCP ← computeVC(p1);
4. if (q /∈ VCP) then
5. return false;{the 1st NN fails}
6. else
7. Visited.add(p1);
8. end if
9. for i = 1 to k − 1 do

10. for all (n ∈ L[i].neighbors) do
11. if (n /∈ Visited) then
12. Visited.add(n);
13. H ← n;
14. end if
15. end for
16. if (L[i+ 1].location ̸= H.pop()) then
17. return false; {the (i+ 1)th NN fails}
18. end if
19. end for
20. return true;

The subsequent for loop (lines 9–19) iterates through
all objects in L (kNNs from the VO) and performs the
following operations: 1) if the Voronoi neighbor of the
last verified object (L[i]) has not been visited yet, it
is inserted into the min-heap H and the Visited set
(lines 10–15), and 2) it compares the next object in the
result set (L[i+ 1]) with the top of H (lines 16–18). If
they are identical, L[i+ 1] is verified as the next NN.
Otherwise, verification fails and the program returns
false. Note that the capacity of the min-heap is initially
set to (k − 1), i.e., it will only hold the first (k − 1)
objects that are closest to q (we are not interested in
objects further away). Furthermore, the capacity can
be decreased by one after each iteration in order to
minimize the computational and storage cost of the
client.

To illustrate the kNN verification algorithm, con-
sider the 3NN query q in Fig. 4(a). First, suppose that
the SP returns the correct result {p1, p4, p2}. Once the
aggregate signature is verified, the client computes the
Voronoi cell of p1 and checks whether q lies inside
V C(p1). Since this is true, p1 is proven to be the 1st

NN of q. Consequently, the algorithm goes through
the Voronoi neighbors of p1 (p2, p3, p4, p5, p8) and in-
serts the two closest objects to q into the min-heap.
Therefore, the min-heap is now equal to {p4, p2}. Next,
the second object in the result set (p4) is compared

with the top of the heap and, as they are identical, p4 is
verified as the 2nd NN of q. In the next iteration, every
neighbor of p4 is examined, but nothing is inserted
into the heap, because p2 is still the closest point to q
(note that the min-heap only contains p2 now). Finally,
p2 is compared against the 3rd NN reported in VO,
and the 3NNs are verified successfully at the client.
Suppose now that the SP returns the incorrect result
{p1, p4, p3} to the client. The aggregate signature is still
valid, but the client will discover the error on line 18,
as the 3rd NN derived from the first two neighbors
should be p2 rather than p3.

(a) kNN (b) Range

Fig. 4. Query verification examples.

Lemma 1: Algorithm VerifykNN can verify that the
kNN result set returned to the client is correct and
complete.

Proof: The proof follows directly from Properties 3
and 4 of the Voronoi diagrams (Section 3.1).

VN-Auth also handles range query verification
without difficulty. Specifically, any arbitrary range
query can be transformed into one or more kNN
queries, and the kNN query verification technique
discussed above can be applied directly. Fig. 4(b)
shows an example of a range query verification. The
discussion on verifying arbitrary range queries is
omitted here due to space limitations and interested
readers can refer to [10] for more details.
5.3.2 RkNN Query Verification
Given a query point q and a set of objects P , the
reverse kNN (RkNN) query of q is to find all objects in
P such that q is one of the k nearest neighbors of p (p ∈
P) [30]. Let RkNN(q) be the result set of q. A verifiable
reverse kNN query requests a verification object (VO)
that contains not only RkNN(q), but also the proof that
the RkNN(q) set is correct and complete. Reverse kNN
query verification is a challenging problem, especially
for verifying that there are no false negatives. This is
due to the fact that the cardinality of the result set for
a RkNN query is not predetermined by the query.

Fig. 5 shows an example of a reverse k nearest
neighbor query where q is the query point and k is 2.
The objects are numbered in ascending order of their
distance to the query point. The reverse two nearest
neighbors of q are p1, p2, p3, and p4 (shown as black
dots), i.e., R2NN(q)= {p1, p2, p3, p4}. RkNN(q) is called
a correct and complete result if and only if it satisfies

7

the following two conditions: 1) q is one of the k
nearest neighbors of every object p in RkNN(q) (no
false positives) and 2) all qualified reverse k nearest
neighbors from P are in RkNN(q). In other words, no
legitimate result object is eliminated by the server or
a malicious attacker (no false negatives).

No false positives: To prove that object p ∈
RkNN(q) is one of the reverse k nearest neighbors,
the server needs to return up to k nearest neighbors
of p. For example, in Fig. 5, p4 is the R2NN of query
q. Therefore, the server must return the 2NNs of p4
(2NN(p4)={p6, p7}) for a client to verify the 2NNs and
prove that q is closer to p4 than p7 is to p4. If the server
had returned p12 in RkNN(q), it should also have
returned its first and second nearest neighbors p13
and p15 (2NN(p12)={p13, p15}). Incorrect or incomplete
2NNs of p12 will fail the kNN verification algorithm
and therefore be rejected by the client. Next, the client
can prove p12 wrong by comparing the distance from
p12 to q with the distance from p12 to p15. kNN
query verification is discussed in Section 5.3.1; we
can use the VerifykNN algorithm (Algorithm 1) as a
component for the RkNN verification. Note that the
server does not always need to return k objects for
each object in RkNN(q). In general, i additional objects
are returned for the ith reverse nearest neighbor of q.
As shown in Fig. 5, there is a large overlap between
the kNN sets of neighboring objects, and only one
copy of each object is returned.

Lemma 2: If every object p in the RkNN result set
satisfies D(p, q) ≤ D(p, pk) and pk is the verified kth

nearest neighbor of p, then there are no false positives
in RkNN(q).

Proof: The proof of the lemma is straightforward.
By definition, if p is a reverse kNN of q, p is closer
to q than to its kth nearest neighbor pk in P . The
kth nearest neighbor pk ∈ P of p is provable using
Lemma 1. Therefore, comparing the distances D(p, q)
and D(p, pk) proves whether p is a true reverse k
nearest neighbor of q.

No false negatives: To prove that there are no false
negatives or false misses, the server should return a
verifiable superset of the result which guarantees that
there are no more objects in RkNN(q) that are not re-
turned by the server. There are two tasks to solve here.

Fig. 5. Reverse kNN query verification.

First, we should find the proper superset of RkNN(q)
and, second, the superset should be verifiable in the
VO.

To identify the superset of RkNN(q), we adopt the
filtering technique of [27, 30]. In particular, if p is
one of the reverse k nearest neighbors of query q, p
satisfies the following two conditions: 1) the Delaunay
distance between p and q in DG(P ∪ {q}) is no more
than k and 2) p is one of the k nearest neighbors of
q in a partition Si (1 ≤ i ≤ 6), where Si is one of the
six equal sectors partitioned by three lines that meet
at the query point q, as shown in Fig. 5. Every object
in P that qualifies for both conditions is a candidate
and should be returned to ensure that there are no
false negatives in RkNN(q). The filtering step prunes
the number of candidates down to no more than 6k
objects, which reside in the Voronoi cells local to q.
For example, in Fig. 5, all objects in the grey area are
candidates of R2NN(q). p16 is not a candidate because
the Delaunay distance DL(q, p16) is 3, and p10 is not
a candidate because it is the 3rd nearest neighbor of
q in partition S5.

Lemma 3: If all candidates that satisfy the two
aforementioned conditions are returned, then there
are no false negatives in RkNN(q).

Proof: The proof can be found in [27, 30].
Although the partitioning method does not change

the RkNN result, it does affect the candidate set. A
client should use the same partitions as the server
in order to verify the candidates. Note that the six
partitions cover the sectors around the query point
q. If the angle α of one of the three lines is fixed,
the partitions are also fixed because the other two
lines pass through the same point q and form 60◦ and
120◦ angles with the first line, respectively. Therefore,
we can either set α to 0 (a horizontal line parallel to
the x-axis), or let α be one of the query parameters
submitted along with the RkNN query.

The verification algorithm first checks whether all
candidates in P for the RkNN query are returned in
the VO. Candidate objects are verified in ascending
order of their distance to q. Recall that each object
is augmented with its Voronoi neighbors in a clock-
wise (or counter-clockwise) order. To compute the
Delaunay distance from q to each p ∈ P , we need
to verify the first NN p1 of q by checking whether
q ∈ V C(p1) (Property 3). Next, the neighbors of q
in DG(P ∪ {q}) are computed based on p1 and its
neighbors, and the result contains all objects with
DL(q, p) = 1 in DG(P ∪{q}). In the example of Fig. 5,
p1–p4 are identified as the Voronoi neighbors of q and
are pushed into a min-heap H where points are sorted
according to their distance to q. Meanwhile, a list is
used to keep track of the verified candidate objects in
each partition. Let Li be the candidate list for partition
Si. Li contains no more than k objects which are also
sorted by their distance to q. Next, we iterate over
the top entry p of H (lines 11–30). If partition Si

8

to which p belongs already contains k objects, p is
dropped. Otherwise, p is one of the kNNs in partition
Si, and we will check whether p is returned in the
VO. If p ∈ VO, it is inserted into Li (p ∈ Si) and all
the “not visited” neighbors of p are pushed into H
if DL(p, q) < k (lines 21–29). This ensures that every
object in H has a DL distance of no more than k. The
loop stops when H is empty. If all objects inserted
into Li are included in the VO, all candidates for the
RkNN query are verified. Finally, for each object p in
the candidate set, the VerifykNN algorithm is called
to check whether p is a reverse k nearest neighbor of
q (lines 31–37).

Algorithm 2 VerifyRkNN(q,VO,k)
1. H ← ∅;Visited ← ∅; R ← VO.result();
2. if (!Verify1NN(p1, q)) then
3. return false;
4. end if
5. VNQ ← computeVN(q, p1, p1.neighbors);
6. for all (p ∈ VNQ) do
7. p.dl = 1;
8. Visited.add(p);
9. H ← p;

10. end for
11. while (!H.isEmpty()) do
12. p ← H .pop();
13. i ← getPartition(p);
14. if (L[i].size() == k) then
15. continue;
16. end if
17. if (p /∈ VO) then
18. return false;
19. end if
20. L[i].add(p);
21. if (p.dl < k) then
22. for all (n ∈ p.neighbors) do
23. if (n /∈ Visited) then
24. n.dl = p.dl + 1;
25. H ← n;
26. Visited.add(n);
27. end if
28. end for
29. end if
30. end while
31. for all (p ∈ L) do
32. if (VerifykNN(p, q, VO)) then
33. if (p /∈ R) then
34. return false;
35. end if
36. end if
37. end for

The number of candidates returned for a RkNN
query is no more than 6k (6 partitions with at most
k objects in each partition). For each candidate p, up
to k objects are returned to prove whether p is one of
the RkNNs of q (i objects returned for the ith RNN of
q). Therefore, the size of the VO is O

(
6k2

)
. However,

observe that the neighbors overlap heavily around q,
and only one copy of each object is returned. There-
fore, the actual size of the VO is in general smaller
than 6k2. The VO size is experimentally studied in
Section 6.3.

5.3.3 kANN Query Verification

Given a set of query points Q = {q1, q2, . . . , qm}, a
k aggregate nearest neighbor (kANN) query finds k
objects in P which have a smaller aggregate distance
to all points in Q than any other object in P [25].
The aggregate distance is defined by a monotonically
increasing function f . An example of the kANN query
is to find a meeting point p for a group of people (Q)
with the smallest overall travel distance (f = sum).
The first ANN p in P has the minimum sum distance
to Q. Let kANN(Q) be the result set of the kANN
query. A verifiable kANN query requires a verification
object (VO) which can prove that kANN(Q) is correct
and complete.

Suppose we have a kANN query Q with the aggre-
gate function f = sum, where the server returns p as
the 1ANN of Q. To verify whether p is the 1ANN of
Q, it is sufficient to show that there are no objects
in P that have a smaller sum distance to Q than
p. To this end, one can construct an area satisfying
the equation fsum(o,Q) ≤ fsum(p,Q). This equation
defines a safe region (SR) such that the distance from
every point inside (or on the boundary of) SR to Q is
smaller than (or equal to) fsum(p,Q). In other words,
if there exists an object o in P with a smaller sum
distance to Q, o must lie in SR. Therefore, a kANN
verification algorithm can prove p to be the 1ANN by
showing that p is the only object in SR. The SR of the
1ANN of query Q = {q1, q2, q3} in Fig. 6 is shown
as the light grey region. In general, the kANN query
verification algorithm can prove kANN(Q) correct
and complete by showing that the SR corresponding
to the kth ANN (pk) in kANN(Q) contains only the
objects in kANN(Q). An example of a 3ANN query
is shown in Fig. 6 as the grey area inside the contour
passing through p3. To prove that there are no false
negatives, the server returns all objects whose Voronoi
cells intersect with SR. The same safe region holds for
weighted sum aggregate functions as well.

Fig. 6. Safe Regions of 1ANN and 3ANN queries (f =
sum).

The verification algorithm first constructs the safe
region SR from the kANN result and verifies that all
result objects lie inside SR. A heap H is maintained
and the first ANN object p1 is pushed into H . Next,
the algorithm iterates through the first entry of H to
visit all objects whose Voronoi cells intersect with SR.

9

The top entry p1 is removed from H and the neigh-
bors pi of p1 are pushed into H if and only if the
corresponding Voronoi edge intersects SR and pi has
not been visited so far. The algorithm stops when H
is empty. The kANN verification algorithm is shown
in Algorithm 3.

Algorithm 3 VerifykANN(Q, VO, k)
1. H ← ∅;Visited ← ∅; R ← VO.result();
2. sortByAggregateDistance(R, Q);
3. SR ← safeRegion(R[k], Q);
4. for (i from 1 to k) do
5. p = R[i];
6. if (p /∈ SR) then
7. return false;
8. end if
9. end for

10. p1 = R[1];
11. H ← p1; Visited.add(p1);
12. while (!H .isEmpty()) do
13. p ← H .pop();
14. if ((p ∈ SR) && (p /∈ R)) then
15. return false;
16. end if
17. VCP ← computeVC(p);
18. for all (n in p.neighbors) do
19. if ((n /∈ Visited) && VE(p, n).intersects(SR)) then
20. H ← n;
21. Visited.add(n);
22. end if
23. end for
24. end while

For the aggregate functions f = max and f = min,
we can construct appropriate safe regions as well.
Specifically, the safe region for f = max is the intersec-
tion of the circular areas centered at each query point
qi with radius D(qi, pk), where pk is the kth object in
the kANN result. Similarly, in the case of f = min, the
safe region is the union of all circular areas centered
at qi with radius D(qi, pk), where pk is the kth object
returned by the server.

5.3.4 Spatial Skyline Query Verification
Given a set of data objects P = {p1, . . . , pn} and a set
of query points Q = {q1, . . . , qm}, a Spatial Skyline
Query (SSQ) retrieves those objects in P that are not
spatially dominated by any other object in P [28]. A
point px spatially dominates another point py , with
respect to Q, if and only if D(px, qi) ≤ D(py, qi) for all
qi ∈ Q and D(px, qj) < D(py, qj) for at least one object
qj ∈ Q. Let SSQ(Q) be the result of the SSQ query. A
verifiable spatial skyline query requests a verification
object (VO) which can certify that the SSQ(Q) of a
given set of query points Q is correct and complete.

When a client receives the VO from the SP, it
uses the neighborhood information and the geometric
properties of Spatial Skylines to verify the results. In
particular, it first generates the Voronoi cells of all ob-
jects in R = SSQ(Q) and combines these Voronoi cells
into a polygon Vp. According to Theorems 4.2 and
4.4 in [28], the convex hull of query Q (CH(Q)) must
be covered by Vp. Otherwise, there must be at least

one missing result object in R. If Vp contains CH(Q),
the client subsequently computes the dominance region
(the intersection of the areas that lie outside of all
circles C(qi, p), ∀qi ∈ Q) of each point p in R (see
Figure 7). Furthermore, for each Voronoi neighbor p′

of p, if p′ is not a spatial skyline point (i.e., p′ /∈ R),
p′ is inserted into a set N . Then, the client conducts
a dominance check to test whether every point in N
is in the dominance region of a spatial skyline point
reported in R. Meanwhile, the client also checks to
verify that every point in R is not dominated by any
other point in R.

Fig. 7. The dominance region of p1 (shaded area
outside the union of three circles).

Algorithm 4 VerifySSQ(Q, VO)
1. N ← ∅; R← VO.result();
2. for (i from 1 to |R|) do
3. pi = R[i];
4. Vp ∪ computeVC(pi);
5. end for
6. compute the convex hull CH(Q);
7. if CH(Q) ̸⊂ Vp then
8. return false;
9. end if

10. for (i from 1 to |R|) do
11. pi = R[i];
12. compute the dominance region DR of pi;
13. for all (p′ in pi.neighbors) do
14. if p′ ̸∈ R then
15. N ← p′;
16. end if
17. end for
18. end for
19. for (i from 1 to |N |) do
20. if N [i] ̸⊂ DR of any points in R then
21. return false;
22. end if
23. end for
24. for (i from 1 to |R|) do
25. if R[i] ⊂ DR of any points in R then
26. return false;
27. end if
28. end for

If a spatial skyline object s is missing from R (false
negative), it can be detected by the geometric coverage
check (lines 7–9), because if s lies inside CH(Q)
or V C(s) intersects with CH(Q), Vp cannot cover
CH(Q). The dominance check (lines 10–18) is capable
of detecting any false positives, if they exist, since s
is not dominated by any other point in R. Similarly,

10

any fake results (false positives) can be discovered
by the dominance check as well. The SSQ verification
algorithm is summarized in Algorithm 4.

6 EXPERIMENTS

6.1 Experimental Settings

In this section, we evaluate the performance of VN-
Auth experimentally and compare it against the MR-
tree variants. Our implementation is in Java, with the
client-side application running on a Google Android
mobile device, and the server-side (SP) service hosted
on a Windows Server PC with an Intel Core2 Duo
3GHz CPU and 4GB memory. The DO also runs on
a PC with the same configuration. To implement the
cryptographic operations, we used the Java cryptog-
raphy extension packages [11]. Our experiments were
performed on two real-world datasets obtained from
the U.S. Census Bureau [31]: 1) CA which contains 62k
data points from California, and 2) NA which consists
of 556k POIs taken from North America. The RSA
and SHA algorithms used in our experiments are both
adopted from [11]. Signature generation/aggregation
is performed on a PC, and the verification is done on
an Android phone.

The VN-Auth framework consists of an offline
database transformation part and an online query
evaluation part. In the offline phase, we executed a
Delaunay triangulation algorithm provided by Matlab
to compute the Voronoi neighbors, and then incorpo-
rated the verification information into each object and
generate a signature for each object. Compared with
MR- and MR*-trees, VN-Auth incurs more storage
overhead and more initialization cost. Specifically,
VN-Auth data structure consumes about 3.5 to 4 times
more space than a MR- or MR*-tree. And for initial-
ization cost, it takes about 63 (70) seconds to build a
MR-tree (MR*-tree) while it takes about 50 minutes to
generate all data structures for VN-Auth on the NA
dataset. Therefore, VN-Auth is clearly more expensive
with regard to the offline cost.

The SP provides online query evaluation to clients
after indexing the spatial attributes of the objects with
an R*-tree. We implemented the MR- and MR*-trees,
based on the algorithms described in [35], with the
R*-tree serving as the basis of both index structures.
The page size was set to 4KB for all trees. For both
the MR- and MR*-trees, index nodes and leaf nodes
had a fan-out of 64 and 256, respectively.

6.2 VN-Auth vs. MR- and MR*-trees

We first evaluate the communication cost for all meth-
ods under kNN query processing. In particular, Fig. 8
shows the total size of the VO as a function of
k. We assume that the outsourced spatial database
contains a set of POIs, each with size of 16 bytes
(spatial coordinates). An MBR is represented by two
data points, and thus, consumes 32 bytes. Every

point/MBR in the MR- and MR*-trees contains a 32-
byte digest, which is computed on a leaf-level object
or an MBR. Digests are computed using the SHA-256
algorithm and signatures are generated according to
the RSA-1024 algorithm. Both algorithms are provided
in [11]. In the MR*-tree, all the entries of an internal
or a leaf node form a KD-tree, and the digest of
each entry is computed in a similar fashion. When a
query intersects with a node, the MR-tree returns all
non-overlapping entries in the VO, while the MR*-
tree only returns the entries that are necessary for
constructing the root digest of the KD-tree. Therefore,
the MR*-tree is more communication-efficient than the
MR-tree but at the same time more computationally
expensive during query processing and database up-
dates. Fig. 8 shows that VN-Auth outperforms both
MR-tree variants in terms of communication cost, and
is considerably better for queries with low selectivity
(i.e., for k ≤ 32). As an example, for an 8NN query,
the MR-tree returns a VO of 22KB while the MR*-
tree returns a VO of 14KB. In contrast, VN-Auth only
returns a VO of 1.3KB, including signatures. This is
due to the fact that the SP only returns the database
objects that belong to the result set. In other words, the
size of the VO in this approach is linear to k. Note that
the values of k on the x-axis increase exponentially.

0

5

10

15

20

25

30

2 4 8 16 32 64 128

S
iz
e
o
f
V
O
(K
B
)

K

MR Tree

MR* Tree

VN Auth

(a) CA

10

15

20

25

30

e
o
f
V
O
(K
B
)

MR Tree

MR* Tree

VN Auth

0

5

10

15

2 4 8 16 32 64 128

S
iz
e
o
f
V
O

K

(b) NA

Fig. 8. VO size over k.

2 4 8 16 32 64 128

K

0

10

20

30

2 4 8 16 32 64 128

P
a
g
e
a
c
c
e
ss

K

MR Tree

MR* Tree

VN Auth

K

(a) CA
2 4 8 16 32 64 128

0

10

20

30

2 4 8 16 32 64 128

P
a
g
e
a
c
c
e
ss

K

MR Tree

MR* Tree

VN Auth

(b) NA

Fig. 9. Page accesses.

In our next experiment, we evaluate the query
processing cost at the SP in terms of I/O accesses.
For VN-Auth, we perform a slight optimization on the
R*-tree index, based on the neighborhood information
available at the SP. Specifically, we keep the internal
nodes intact and modify the leaf nodes by storing
pointers to each Voronoi neighbor of an object. The
pointers facilitate easy navigation to the neighboring
objects, and thus, achieve better I/O efficiency than
the standard BFS algorithm. Note that such improve-
ment is only possible for VN-Auth, as this information
is incorporated in all database objects. Fig. 9 depicts
the I/O cost at the SP as a function of k. VN-Auth

11

results in fewer I/O accesses than both MR-tree vari-
ants in all cases. The page access cost is the same for
the MR- and MR*-trees, because the MR*-tree does
not store any additional information in the nodes. The
idea of incorporating Voronoi diagrams into R*-trees
was originally proposed in [27], where each object
stored information about both its Voronoi neighbors
and the corresponding cells. However, in VN-Auth,
we only store Voronoi neighbors, in order to increase
the fan-out of the leaf nodes.

Next, we investigate the feasibility of implementing
complex verification algorithms on mobile devices.
The cost of cryptographic primitives has become less
expensive as computer hardware gets more advanced
and the corresponding algorithms become more effi-
cient. Signing an individual message (on a PC) with
the RSA algorithm costs 4.12ms, while verifying it
takes 0.32ms. On mobile devices, verifying one sig-
nature costs 2.12ms, while verifying a condensed-
RSA signature with 20 individual signatures takes ad-
ditional 0.32ms on modular multiplications. Clearly,
state-of-the-art mobile devices are more than capa-
ble of performing complex cryptographic operations,
thus allowing the implementation of efficient spatial
query verification techniques. Note that compared
with cryptographic operators, the cost of hash op-
erations is much less. With the SHA-256 hashing
algorithm, a PC can process 63MB per second while
a mobile phone can process around 8.72MB per sec-
ond, which is 7-8 times slower than a PC. Although
the hashing operator is very efficient, the actually
verification cost on large messages is not negligible
due to the cost of converting point (MBR) objects to
byte arrays (the input that hash functions take) and
the concatenation of entries (index/leaf nodes) on the
MR- and MR*-trees. Therefore, computing the root
digest may become more expensive than verifying
a 1024-bit condensed-RSA signature on the mobile
device (which takes less than 3ms).

The next set of experiments investigates the query
cost at the mobile clients. In particular, Fig. 10 depicts
the total amount of time required for receiving and
verifying a kNN query result as a function of k.
Our experiments are conducted on Android phones
that are connected to the Internet through their built-
in Wi-Fi. The total query cost in Fig. 10 consists of
two parts: the data transfer cost (the transmission
time of the VO), and the computational cost at the
client, i.e., for result checking, digest computations,
and signature verification. In other words, the query
cost is measured from the moment the mobile client
receives the first byte of the VO from the SP until
the verification process is finalized. Again, VN-Auth
is superior to the MR-tree based methods, and its
verification cost is significantly lower for queries that
return fewer results. Fig. 11 shows the data transfer
cost for the same set of experiments. Comparing it
with Fig. 10, we conclude that the data transfer cost

is a dominant factor in the overall query verification
cost. Consequently, minimizing the VO size is an im-
portant factor in designing efficient query verification
algorithms.

Our next set of experiments studies the cost of
database updates. Fig. 12 shows the response time to
complete a set of updates as a function of the number
of objects being updated. The update cost comprises
of the time for locating the object, and the time for
recomputing digests and signatures as dictated by
the corresponding authentication mechanisms. for the
MR-tree based approaches, a database update affects
all the nodes from the leaf to the root, because it
triggers a series of hash digest re-computations in a
bottom-up fashion. In VN-Auth, however, only neigh-
boring objects are modified by the DO during an
update. Consequently, VN-Auth completes the update
process 2 times faster than the MR-tree, and 3 times
faster than the enhanced MR*-tree approach. The time
cost includes both CPU and I/O cost.

400

600

800

1000

1200

1400
To
ta
l
co
st
(m

s)
MR Tree

MR* Tree

VN Auth

0

200

2 4 8 16 32 64 128

T

K

(a) CA

600

800

1000

1200

co
st
(m

s)

MR Tree

MR* Tree

VN Auth

0

200

400

600

2 4 8 16 32 64 128

To
ta
l
co
st
(m

K

(b) NA

Fig. 10. Total query cost over k.

0

100

200

300

400

500

600

700

2 4 8 16 32 64 128

T
ra
n
sm

is
si
o
n
co
st
(m

s)

K

MR Tree

MR* Tree

VN Auth

(a) CA

0

100

200

300

400

500

2 4 8 16 32 64 128

T
ra
n
sm

is
si
o
n
co
st
(m

s)

K

MR Tree

MR* Tree

VN Auth

(b) NA

Fig. 11. Data transfer cost over k.

4

6

8

10

R
e
sp
.
ti
m
e
(s
)

MR Tree

MR* Tree

VN Auth

0

2

4

6

8

10

1k 2k 3k 4k 5k 6k

R
e
sp
.
ti
m
e
(s
)

Number of updates

MR Tree

MR* Tree

VN Auth

(a) CA

40

60

80

100

R
e
sp
.
ti
m
e
(s
)

MR Tree

MR* Tree

VN Auth

0

20

40

60

80

100

10k 20k 30k 40k 50k

R
e
sp
.
ti
m
e
(s
)

Number of updates

MR Tree

MR* Tree

VN Auth

(b) NA

Fig. 12. Response time over database updates.

0

5

10

15

20

25

0.25 0.5 1 2

S
iz
e
o
f
V
O
(K
B
)

Dataset size (million)

MR Tree

MR* Tree

VN Auth

(a) VO size

0

10

20

30

0.25 0.5 1 2

P
a
g
e
a
cc
e
ss

Dataset size (million)

MR Tree

MR* Tree

VN Auth

(b) Page access

Fig. 13. Effects of database sizes.
In the last set of experiments of this section, we in-

vestigate how the dataset size affects the performance

12

of all three approaches. Our NA dataset contains
about half a million data points. We select a subset
of the NA dataset as the quarter million dataset. In
addition, we generated two synthetic datasets with 1
million and 2 million data points. Fig. 13 shows the
VO size (a) and the number of page access (b) over
different datasets for kNN queries where k is set to
64. The experiments shows that, for MR- and MR*-
tree, both the VO size and the number of page access
increase as the size of dataset increases. However, for
VN-Auth, the size of VO and page access depend on
the query size k, therefore they remain about the same
on different datasets.

6.3 Advanced Spatial Queries
Query verification for advanced spatial queries such
as reverse k nearest neighbor (RkNN), k aggregate
nearest neighbor (kANN) and spatial skyline query
(SSQ) is very challenging, due to the algorithms’ com-
plexity. In this section, we investigate the efficiency
of the VN-Auth verification algorithms on mobile
clients for handling these query types. To the best
of our knowledge, there are no existing verification
approaches that can handle such queries, and there-
fore, we cannot compare our results against other
methods. Instead, we report experimental results on
various performance metrics for all our algorithms.
Additionally, we compared the query cost on the
SP based on the VN-Auth approach with the best
algorithms using MR- and MR*-tree for all three query
types. Since the performance trends for each metric
are very similar in both datasets (CA and NA), we
only report the results obtained from the NA dataset.

60

80

100

120

140

160

180

ze
o
f
V
O
(K
B
)

RkNN

kANN

0

20

40

2 4 8 16 32 64 128

S
i

K

(a) RkNN and kANN

10

15

20

25

30

ze
o
f
V
O

(K
B
)

SSQ

0

5

2 4 8 16 32 64 128

S
iz

of skyline points

(b) SSQ

Fig. 14. Size of VO.

100

150

200

S
iz
e
(K
B
)

RkNN/VO

kANN/VO

RkNN/AO

kANN/AO

0

50

2 4 8 16 32 64 128
K

(a) RkNN and kANN

10

15

20

25

30

S
iz
e
(K
B
)

SSQ/VO

SSQ/AO

0

5

2 4 8 16 32 64 128
of skyline points

(b) SSQ

Fig. 15. Size of VO and AO.
In the first set of experiments, we investigate the

size of the VO for RkNN, kANN, and SSQ queries.
Particularly, Fig. 14(a) shows the VO size as a function
of k (for RkNN and kANN queries), while Fig. 14(b)
demonstrates the VO size as a function of the num-
ber of query points (for SSQ queries). For RkNN
queries, the VO size grows more rapidly, compared
to kANN and SSQ queries, as the number of result

objects increases. This is due to two reasons. First, the
cardinality of the result set for an RkNN query is not
determined by the query parameter k, but depends
on the actual data distribution. In general, an RkNN
query returns more than k results and, as k increases,
the number of results grows significantly. Second, to
enable client verification, the VO contains not only
the query results but also the objects necessary for
verifying those results (see Section 5.3.2). For ease of
presentation, we term these objects auxiliary objects
(AO). Consequently, as the value of k increases, the
size of the AO increases as well, resulting in larger
VO sizes. Fig. 15(a) and Fig. 15(b) show the corre-
sponding AO and VO sizes for all three query types.

The second set of experiments evaluates the query
processing cost at the SP in terms of I/O accesses.
As VN-Auth maintains neighborhood information for
each object on the leaf nodes, processing RkNN,
kANN and SSQ queries is more efficient. Specifically,
after the first nearest neighbor of the query point (or
one of the query points) is discovered, the neighbor-
hood pointers embedded on the leaf nodes navigate
the query process within adjacent areas and retrieve
objects that are most relevant to the query. As a
result, the I/O cost for the three query types is lower
than their counterpart algorithms (TPL [30] for RkNN,
MBM [25] for kANN and B2S2 [24] for SSQ) when
implemented on an MR- or MR*-tree. As shown in
Fig. 16 and Fig. 18(a), for all three query types, the
VN-Auth-based approaches achieve much better I/O
efficiency. Note that the I/O cost is identical for the
MR- and MR*-trees, as the MR*-tree does not maintain
additional information in the nodes. Our experimental
results are also consistent with the results reported
in [27].

100

1000

10000

P
a
g
e
a
c
c
e
ss

TPL/MR Tree

TPL/MR* Tree

VN Auth

1

10

2 4 8 16 32 64 128

P

K

(a) RkNN

20

30

40

50

60

P
a
g
e
a
c
c
e
ss

MBM/MR Tree

MBM/MR* Tree

VN Auth

0

10

20

2 4 8 16 32 64 128

P

K

(b) kANN

Fig. 16. Page accesses.

Our final experiment studies the communication
and verification cost on a mobile client for all three
query types. Specifically, Fig. 17(a) and Fig. 17(b)
depict the communication and verification cost (for
RkNN and kANN queries, respectively) as a function
of k, while Fig. 18(b) shows the corresponding cost
(for SSQ queries) as a function of the number of
skyline points. The RkNN query cost is dominated
by the verification process when the value of k grows
larger than 32. Conversely, the cost for kANN and
SSQ queries is dominated by the transmission cost
when k or the number of skyline points. This is due
to the fact that the geometric verification process for
RkNN queries is very expensive. In particular, for

13

each candidate object returned by the server, the mo-
bile client runs a kNN verification algorithm to check
whether the candidate belongs to the RkNN result.
With increasing k, the number of kNN verification
computations grow exponentially, resulting in a large
overhead on the verification cost.

10

15

20

25

im
e
co
st
(s
)

Total

Transmission

Verification

0

5

2 4 8 16 32 64 128

T
i

K

(a) RkNN

1000

1500

2000

2500

3000

im
e
co
st
(m

s)

Total

Transmission

Verification

0

500

2 4 8 16 32 64 128

T
i

K

(b) kANN

Fig. 17. Client query cost.

0

10

20

30

40

50

60

2 4 8 16 32 64 128

P
a
g
e
a
c
c
e
ss

K

B S /MR Tree

B S /MR* Tree

VN Auth

2 2

2 2

(a) Page access

1000

1500

2000

im
e
co
st
(m

s)

Total

Transmission

Verification

0

500

2 4 8 16 32 64 128

T
i

of skyline points

(b) Client query cost

Fig. 18. SSQ queries.

7 DISCUSSION

For wireless applications, due to limitations such as
bandwidth constraints, unstable connections, and re-
stricted power supply, the amount of data commu-
nicated between client and server should be kept as
small as possible. Therefore, the size of the VO plays
an important role in designing efficient query veri-
fication algorithms for mobile access to outsourced
databases. kNN queries from mobile clients usually
have low selectivity (i.e., the user is interested in
very few results) but require fast response time. VN-
Auth is a novel approach that successfully meets these
requirements in the location-based services model.
However, we are aware of the fact that, when the
query selectivity is high, the Merkle Hash Tree (MHT)
based approaches are more efficient. In the extreme
case where the client retrieves the whole database, the
MHT approach would only return the root signature,
while VN-Auth would need to return 6 ·n neighbors,
where n is the database cardinality. Consequently, it
is important to first identify the query types and user
profiles in the system and then choose a solution that
accommodates the most important requirements of
the application. For location-based services on mobile
devices, VN-Auth is clearly a better solution.

Another important issue is providing the user with
the ability to verify the query results in a progressive
fashion. This is very useful in cases where decision
making is based on the first few objects in the result.
To ensure query integrity, the application program
needs to verify the overall result before showing any
part of it to the end user. For MHT based approaches,
result reporting is blocked until the root digest is

computed and the signature is verified. Therefore, it is
not possible to pre-qualify any object in the result set,
due to the hierarchical structure of the authenticated
index. However, progressive result reporting is fea-
sible under the VN-Auth framework. The result can
be returned in batches, each of which can be verified
independently, based on information that arrived be-
fore and not on information that is expected to arrive
later. For example, the SP can divide the result set
of a 20NN query into 4 batches with 5 objects each.
The first 5NNs in the first batch contain the aggregate
signature of the five objects. After the first batch is
verified, the five objects can be reported to the end
user before the verification of the second batch starts.
The batches that arrive later depend on preceding
ones, but not vise versa. Therefore, query verification
can be performed in an incremental fashion, and
results can be shown to the end user progressively.
In addition, the application may allow the user to
examine each batch before receiving the next one. In
this way, if the user is satisfied with the current result
set and does not wish to retrieve more objects, query
processing may be terminated early.

8 CONCLUSIONS

In this paper, we introduced the VN-Auth query
integrity assurance framework for outsourced spatial
databases. Our approach separates the authentication
information from the spatial index, thus allowing
efficient query processing at the service provider. Ad-
ditionally, since the verification information depends
only on the object and its Voronoi neighbors, database
updates can be disseminated quickly to their local re-
gions and be performed independently of all other up-
dates in the database. VN-Auth handles not only kNN
and range queries, but also more advanced query
types, such as reverse kNNs, k aggregate NNs and
spatial skylines. More importantly, VN-Auth produces
compact verification objects, which enables fast query
verification on mobile devices with limited capabili-
ties. Finally, we showed that our approach facilitates
progressive result verification, which allows a user
to retrieve objects in an incremental fashion until the
results are deemed satisfactory. Our experiments with
real-world datasets and on mobile platforms confirm
that, compared to the MR-tree variants, VN-Auth
produces significantly smaller verification objects, and
incurs lower query verification cost, especially for
queries with low selectivity.

9 ACKNOWLEDGEMENTS

This research has been funded in part by NSF grants
CNS-0831505 (CT), CNS-0831502 (CT), IIS-0845262
(CAREER), the NSF Integrated Media Systems Center
(IMSC), and unrestricted cash and equipment gift
from Google and Microsoft.

14

REFERENCES

[1] M. Bellare and A. Palacio. Gq and schnorr identification
schemes: Proofs of security against impersonation under active
and concurrent attacks. In CRYPTO, pages 162–177, 2002.

[2] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from
the Weil Pairing. J. Cryptology, 17(4):297–319, 2004.

[3] W. Cheng, H. Pang, and K.-L. Tan. Authenticating Multi-
dimensional Query Results in Data Publishing. In DBSec,
pages 60–73, 2006.

[4] W. Cheng and K.-L. Tan. Authenticating kNN Query Results
in Data Publishing. In Secure Data Management, pages 47–63,
2007.

[5] W. Cheng and K.-L. Tan. Query assurance verification for
outsourced multi-dimensional databases. Journal of Computer
Security, 17(1):101–126, 2009.

[6] A. Fiat. Batch RSA. J. Cryptology, 10(2):75–88, 1997.
[7] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial

Searching. In SIGMOD Conference, pages 47–57, 1984.
[8] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing

SQL over Encrypted Data in the Database-service-provider
Model. In SIGMOD Conference, pages 216–227, 2002.

[9] H. Hacigümüs, S. Mehrotra, and B. R. Iyer. Providing Database
as a Service. In ICDE, page 29, 2002.

[10] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Verifying spatial
queries using Voronoi neighbors. In GIS, pages 350–359, 2010.

[11] Java SE Security. http://java.sun.com/javase/technologies/
security.

[12] M. R. Kolahdouzan and C. Shahabi. Voronoi-Based K Nearest
Neighbor Search for Spatial Network Databases. In VLDB,
pages 840–851, 2004.

[13] W.-S. Ku, L. Hu, C. Shahabi, and H. Wang. Query integrity
assurance of location-based services accessing outsourced spa-
tial databases. In SSTD, pages 80–97, 2009.

[14] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic
Authenticated Index Structures for Outsourced Databases. In
SIGMOD Conference, pages 121–132, 2006.

[15] X. Lin, J. Xu, and H. Hu. Authentication of location-based
skyline queries. In CIKM, pages 1583–1588, 2011.

[16] K. Mouratidis, D. Sacharidis, and H. Pang. Partially Mate-
rialized Digest Scheme: An Efficient Verification Method for
Outsourced Databases. VLDB J., 18(1):363–381, 2009.

[17] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication
and Integrity in Outsourced Databases. In NDSS, 2004.

[18] E. Mykletun, M. Narasimha, and G. Tsudik. Signature Bou-
quets: Immutability for Aggregated/Condensed Signatures. In
ESORICS, pages 160–176, 2004.

[19] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication
and Integrity in Outsourced Databases. TOS, 2(2):107–138,
2006.

[20] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams. Probability
and Statistics. Wiley, NYC, 2nd edition, 2000.

[21] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
Completeness of Relational Query Results in Data Publishing.
In SIGMOD Conference, pages 407–418, 2005.

[22] H. Pang and K.-L. Tan. Authenticating Query Results in Edge
Computing. In ICDE, pages 560–571, 2004.

[23] H. Pang, J. Zhang, and K. Mouratidis. Scalable Verification for
Outsourced Dynamic Databases. PVLDB, 2(1):802–813, 2009.

[24] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM Trans. Database Syst.,
30(1):41–82, 2005.

[25] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate
nearest neighbor queries in spatial databases. ACM Trans.
Database Syst., 30(2):529–576, 2005.

[26] S. Papadopoulos, Y. Yang, S. Bakiras, and D. Papadias. Con-
tinuous Spatial Authentication. In SSTD, pages 62–79, 2009.

[27] M. Sharifzadeh and C. Shahabi. VoR-Tree: Incorporating
Voronoi Diagrams into R-Trees for I/O-efficient Processing of
Spatial Nearest Neighbor Queries. VLDB J., in press, 2010.

[28] M. Sharifzadeh, C. Shahabi, and L. Kazemi. Processing spatial
skyline queries in both vector spaces and spatial network
databases. ACM Trans. Database Syst., 34(3), 2009.

[29] R. Sion. Query Execution Assurance for Outsourced
Databases. In VLDB, pages 601–612, 2005.

[30] Y. Tao, D. Papadias, and X. Lian. Reverse kNN search in
arbitrary dimensionality. In VLDB, pages 744–755, 2004.

[31] U.S. Census Bureau. http://www.census.gov/geo/www/
tiger/.

[32] H. Wang, J. Yin, C.-S. Perng, and P. S. Yu. Dual Encryption for
Query Integrity Assurance. In CIKM, pages 863–872, 2008.

[33] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity Auditing of
Outsourced Data. In VLDB, pages 782–793, 2007.

[34] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Spatial
Outsourcing for Location-based Services. In ICDE, pages 1082–
1091, 2008.

[35] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Au-
thenticated Indexing for Outsourced Spatial Databases. VLDB
J., 18(3):631–648, 2009.

[36] M. L. Yiu, E. Lo, and D. Yang. Authentication of Moving kNN
Queries. In ICDE, 2011.

Ling Hu is a Ph.D. student in the Computer Science department at
the University of Southern California. Her research interests include
spatial and temporal data management, geographical information
systems, query integrity and query optimization, and data warehous-
ing. She has an M.S. degree in Computer Science from Northeastern
University. She is a student member of the ACM and the IEEE.

Wei-Shinn Ku received his Ph.D. degree in Computer Science
from the University of Southern California (USC) in 2007. He also
obtained both the M.S. degree in Computer Science and the M.S.
degree in Electrical Engineering from USC in 2003 and 2006, re-
spectively. He is an Assistant Professor with the Department of Com-
puter Science and Software Engineering at Auburn University. His
research interests include spatial and temporal data management,
mobile data management, geographic information systems, and se-
curity and privacy. He has published more than 50 research papers
in refereed international journals and conference proceedings. He is
a member of the ACM and the IEEE.

Spiridon Bakiras received the BS degree in Electrical and Com-
puter Engineering from the National Technical University of Athens
in 1993, the MS degree in Telematics from the University of Surrey
in 1994, and the PhD degree in Electrical Engineering from the Uni-
versity of Southern California in 2000. Currently, he is an associate
professor in the Department of Mathematics and Computer Science
at John Jay College, City University of New York. Before that, he held
teaching and research positions at the University of Hong Kong and
the Hong Kong University of Science and Technology. His current
research interests include database security and privacy, mobile
computing, and spatiotemporal databases. He is a member of the
ACM and a recipient of the US National Science Foundation (NSF)
CAREER award.

Cyrus Shahabi is a Professor and the Director of the Information
Laboratory (InfoLAB) at the Computer Science Department and
also the Director of the NSF’s Integrated Media Systems Center
(IMSC) at the University of Southern California. He is also the CTO
and co-founder of a USC spin-off, Geosemble Technologies. He
received his B.S. in Computer Engineering from Sharif University
of Technology in 1989 and then his M.S. and Ph.D. Degrees in
Computer Science from the University of Southern California in May
1993 and August 1996, respectively. He authored two books and
more than hundred-fifty research papers in the areas of databases,
GIS and multimedia. Dr. Shahabi was an Associate Editor of IEEE
Transactions on Parallel and Distributed Systems (TPDS) from 2004
to 2009. He is currently on the editorial board of the VLDB Journal,
IEEE Transactions on Knowledge and Data Engineering (TKDE),
ACM Computers in Entertainment and Journal of Spatial Information
Science. He is the founding chair of IEEE NetDB workshop and
also the general co-chair of ACM GIS 2007, 2008 and 2009. He
chaired the nomination committee of ACM SIGSPATIAL for the
2011-2014 terms. He regularly serves on the program committee of
major conferences such as VLDB, ACM SIGMOD, IEEE ICDE, ACM
SIGKDD, and ACM Multimedia. Dr. Shahabi is a recipient of the ACM
Distinguished Scientist award in 2009, the 2003 U.S. Presidential
Early Career Awards for Scientists and Engineers (PECASE) and
the NSF CAREER award in 2002.

