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pCloud: A Distributed System for Practical PIR
Stavros Papadopoulos, Spiridon Bakiras, and Dimitris Papadias

Abstract—Computational Private Information Retrieval (cPIR) protocols allow a client to retrieve one bit from a database, without the
server inferring any information about the queried bit. These protocols are too costly in practice because they invoke complex arithmetic
operations for every bit of the database. In this paper we present pCloud, a distributed system that constitutes the first attempt towards
practical cPIR. Our approach assumes a disk-based architecture that retrieves one page with a single query. Using a striping technique,
we distribute the database to a number of cooperative peers, and leverage their computational resources to process cPIR queries in
parallel. We implemented pCloud on the PlanetLab network, and experimented extensively with several system parameters. Our results
indicate that pCloud reduces considerably the query response time compared to the traditional client/server model, and has a very low
communication overhead. Additionally, it scales well with an increasing number of peers, achieving a linear speed-up.
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1 INTRODUCTION

Consider an n-bit database DB = {x1, x2, . . . , xn}. A
Private Information Retrieval (PIR) protocol allows a
client to retrieve bit xi, while keeping the value of the
index i secret from the server. PIR can also retrieve
blocks of data (e.g., an `-bit record) by viewing the
database as n/` elements, each with size ` bits. The
ability to hide the information that a user is interested
in (from both the server and other clients) has some
very appealing applications. For instance, an investor
in the stock market may be unwilling to disclose a
trading strategy to other parties. Additionally, browsing
privately through a patent or pharmaceutical database
may conceal critical information about a company’s new
product. In the context of location-based services, PIR
may be utilized to hide the location of a user that is
otherwise revealed through a spatial query [15]. Finally,
PIR has been considered as a building block in the Pyn-
chon Gate [24], a system for receiving pseudonymously
addressed email.

Given the vast number of applications that may benefit
from private queries, PIR has received a lot of atten-
tion in the cryptography community. Single-server PIR
is a family of protocols that assume a non-replicated
database stored at a single site. These protocols, also
known as computational PIR (cPIR), utilize certain cryp-
tographic assumptions to ensure privacy. Figure 1 illus-
trates the operation of a generic cPIR scheme. Initially,
using a randomized query generation algorithm Q(·), the
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client constructs a query Qi that is based on the index of
the bit to be retrieved. Next, the query is transmitted to
the server, which executes a reply generation algorithm
R(·) on DB and returns an answer Ri to the client.
Note that the server cannot infer any information (in
polynomial time) about the index i through Qi. Finally,
using Ri, the client extracts the value of xi through a
re-construction algorithm A(·).

(1)    Q(i) Qi

ServerClient

(2)    R(

= {x1, x2, …, xn}

(3)    A(Ri) xi

DB

DB , Qi) Ri

Fig. 1. cPIR framework

In the database community there has been very little
work on cPIR because of its prohibitive cost for datasets
of practical size. Indeed, the computational complexity
at the server is Ω(n), since the reply generation algorithm
has to process every bit in the database; even if a single
bit is omitted, query privacy is violated because the
server can deduce that the client is not interested in that
information. Furthermore, most schemes require at least
one modular multiplication for each processed bit, which
is a very expensive arithmetic operation. Consequently,
Sion and Carbunar [25] argue that it may actually be
preferable, in terms of query response time, to transmit
the entire database to the client.

However, transmitting the entire database to the client
is not a viable solution, for several reasons. First, this
approach is not scalable for large databases, because the
available bandwidth at the client side is the performance
bottleneck that dictates the query response time. In other
words, it is impossible for the server to improve the
quality-of-service by allocating more resources, such as
additional servers, more bandwidth, etc. Second, band-
width is not always abundant or free, and the cost of
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downloading a database may be prohibitive in certain
cases. For instance, if the client is a wireless device
(e.g., PDA, cell phone), the aforementioned method faces
several challenges: (i) the wireless channel is typically
very slow and error-prone, (ii) the user is charged by
the amount of transferred data and may be unwilling
to download a large database, and (iii) the device may
not have the necessary resources (e.g., memory, battery
power) to complete the download.

Motivated by this observation, we introduce pCloud
(for Private Cloud), a distributed system that leverages
the computational resources inside a peer-to-peer (P2P)
cloud, in order to speed-up the processing of cPIR
queries. PIR offers some unique advantages that are
appealing to a large user population. Consequently, in-
terested parties may agree to contribute their computa-
tional and communication resources and, in exchange,
benefit from a PIR system that answers queries in “real-
time”. A similar example of client cooperation is The
Onion Router (Tor) [11], [5], an overlay (P2P) architecture
that provides client anonymity for Internet applications1.
The Tor project has been very successful and it is widely
used by the military, law enforcement officers, journal-
ists, etc.

We envision our system as the fundamental building
block for implementing private query processing tech-
niques on indexed data. Therefore, pCloud assumes a
disk-based architecture that retrieves one page with a
single query. In particular, we utilize a striping technique
to disseminate the database to a number of coopera-
tive peers, which allows the parallel processing of cPIR
queries. Moreover, since the query result is produced at
numerous, possibly untrustworthy peers, we incorporate
an authentication mechanism that enables the client to
verify that the retrieved page originated at the server.
We implemented pCloud on the PlanetLab network
[3], and experimented extensively with several system
parameters. Our results indicate that pCloud reduces
considerably the query response time compared to the
traditional client/server model, and has a very low com-
munication overhead. Additionally, it scales well with an
increasing number of peers, achieving a linear speed-up.
In summary, our contributions are the following.
• We implement a well known cPIR protocol [14],

evaluate its cost in terms of computational time and
bandwidth consumption, and identify its perfor-
mance challenges when retrieving large data blocks.
Based on our study, we propose a striping tech-
nique, which enables the protocol to retrieve ar-
bitrarily large information without compromising
computational cost at the server.

• We introduce pCloud that adapts the above tech-
nique in a distributed setting. We design an effi-
cient data placement policy, a fast result retrieval
method, and a query authentication mechanism.

1. Note that PIR is orthogonal to anonymity. Anonymity hides the
identity of the client, while PIR hides the content of the query.

Furthermore, we show how pCloud deals with data
updates as well as random node failures.

• We experiment with pCloud on the PlanetLab
network and present detailed results from actual
queries over a real network. We show that, despite
previous concerns, cPIR can be useful in practice.

The remainder of this paper is organized as follows.
Section 2 reviews the related work on private infor-
mation retrieval. Section 3 presents the cPIR protocol
utilized in our system, and optimizes its performance
through an actual implementation. Section 4 describes
in detail the pCloud architecture, and Section 5 presents
the results of our PlanetLab experiments. Finally, Section
6 concludes the paper.

2 RELATED WORK

Section 2.1 surveys the literature on PIR and clarifies our
contribution, while Section 2.2 describes the use of PIR
in database applications.

2.1 PIR protocols
The existing PIR protocols can be categorized into
information-theoretic, computational, and secure hardware.
Note that we do not delve into the cryptographic prim-
itives that form the basis of several protocols presented
here. The interested reader is referred to [12], [22] for
more detailed surveys on PIR.

Information-theoretic PIR. The methods of this cat-
egory ensure that the query discloses no information
about the retrieved bit, even if the server has unbounded
computational power. Chor et al. [9] prove that, for
a single server, all n bits of the database need to be
transmitted to the client. They also show that in order
to achieve information-theoretic PIR with sublinear com-
munication cost, the database must be replicated into
k non-colluding servers, and the client must query in-
dependently each of these servers. Information-theoretic
protocols have been studied extensively in the literature,
resulting in several communication-efficient methods [9],
[6], [7], [29]. However, in all these protocols, if the servers
cooperate with each other, query privacy is violated.

Computational PIR. This class (denoted by cPIR) does
not rely on assumptions about non-colluding servers.
Instead, it is based on a single-server architecture, and
employs well-known cryptographic primitives that guar-
antee query privacy in the presence of a computationally
bounded server. The first cPIR protocol [18] relies on
the quadratic residuosity assumption, which states that
it is computationally hard to distinguish the quadratic
residues in modulo arithmetic of a large (typically 1024-
bit) composite modulus. Based on the above assumption,
one may construct a cPIR protocol with a communication
complexity O(nε), where ε is an arbitrarily small positive
constant. Nevertheless, their basic scheme incurs a very
large communication cost, and requires the transmission
of O(

√
n) 1024-bit integers between the server and the

client.
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Cachin et al. [8] introduce the first single-server pro-
tocol with polylogarithmic communication complexity.
The scheme builds upon the φ-hiding assumption: it
is hard to distinguish which of two primes divides
φ(m) for a hard-to-factor composite modulus m. The
communication complexity of the protocol is O(logam),
where a depends on the desired security (a typical value
is a = 8). The above asymptotic complexity is improved
by Lipmaa [19] who introduces a O(log2 n) protocol that
takes advantage of length-flexible additively homomor-
phic public-key cryptosystems. An additional benefit of
Lipmaa’s work is that it allows the client to retrieve an
`-bit block with a single answer, instead of a single bit
that is common in most cPIR protocols. Another protocol
that retrieves `-bit blocks is by Gentry and Ramzan [14],
which is also based on the φ-hiding assumption. How-
ever, for a particular instantiation, this scheme incurs
only O(`) communication cost, which is independent of
the database size.

The main limitation of the aforementioned cPIR proto-
cols is their high computational cost because they require
(for a single query) Ω(n) modular multiplications over
a large modulus. Consequently, researchers investigated
different cryptographic primitives that utilize cheaper
arithmetic operations. Gasarch and Yerukhimovich [13]
propose two protocols with O(nε) communication com-
plexity, based on the worst-case hardness of certain
lattice problems. The improvement is due to the fact
that they perform modular additions instead of multi-
plications. However, there is a non-zero probability of
error in retrieving the queried bit. Melchor and Gaborit
[20] introduce another lattice-based scheme with O(

√
n)

communication complexity, which improves on the com-
putational cost of [13] by performing additions on much
smaller integers. Nevertheless, its large communication
cost makes it impractical for a distributed setting.

Secure hardware PIR. PIR has also been addressed
from a hardware perspective [16], [27], [28]. In hardware-
based PIR schemes, the server utilizes a secure coprocessor
(SC), which acts as a proxy between the client and the
server. In this environment, PIR queries are processed
as follows: (i) the client sends to the SC an encrypted
version of the index of the desired bit (using public-key
cryptography), (ii) the SC processes the query on the
raw data and extracts the result, without revealing what
is actually being retrieved, and (iii) the SC sends back to
the client an encrypted version of the result, which is un-
readable by the server. These methods have an optimal
communication cost, since the client and the server only
transmit encrypted versions of the query and the result,
respectively. Furthermore, they are typically much faster
than cPIR protocols. Nevertheless, their performance
superiority comes at a certain cost: the requirement for
a trusted third-party (i.e., the manufacturer of the SC).
In other words, the client has to rely on the SC that it
will not leak any sensitive information to the server.

Our contribution. We target at the scalability prob-
lem of cPIR. We specifically focus on cPIR because (i)

information-theoretic protocols impose a stringent con-
straint of non-collusion among the participating servers,
which renders them impractical for real-world applica-
tions, and (ii) in secure hardware PIR the querier must
trust the manufacturer of the SC. On the other hand,
cPIR does not entail the above limitations. Our goal
is not to introduce a new protocol, but rather develop
a distributed implementation of an existing scheme, in
order to reduce the response time of private block re-
trieval in databases of practical sizes. Among the existing
cPIR methods, we use the protocol of [14] (henceforth
referred to as GR-PIR) as the building-block of our
system because it is the most communication efficient
method to date and, thus, an excellent candidate for a
distributed implementation.

2.2 PIR in Databases

In the database literature, there exist two schemes ([15],
[17]) that employ PIR techniques in order to privately
answer spatial database queries, such as nearest neigh-
bor (NN) and range queries. Ghinita et al. [15] apply
the original cPIR scheme of Kushilevitz and Ostrovsky
[18] to support NN queries. They assume a centralized
server, and devise several optimizations (e.g., data com-
pression, multiple CPUs, etc.), in order to reduce the
communication and computational cost of the protocol.
Despite these optimizations, their methods still inherit
the limitations of [18], resulting in high query response
times and excessive bandwidth consumption.

SPIRAL [17] is a hardware-based spatial PIR protocol
that leverages a SC at the server to provide query pri-
vacy. In particular, the SC uses a random permutation to
shuffle the database, and stores an encrypted version of
the permuted database back at the server. Clients resolve
their queries through the SC, which only accesses the
encrypted version of the data. Query privacy is assured
because the server is oblivious to the permutation, and
does not have access to the decryption key. Similar to
all hardware-based schemes, SPIRAL requires a trusted
third-party and is, therefore, orthogonal to our work.

3 GR-PIR FOR LARGE BLOCK RETRIEVAL

In Section 3.1 we describe the GR-PIR protocol [14],
providing the necessary mathematical background and
security considerations. In Section 3.2 we identify a se-
rious implementation challenge, concerning the retrieval
of blocks larger than 32 bytes. To tackle this challenge,
we introduce a striping technique that allows GR-PIR to
efficiently retrieve a database page of arbitrary length,
while maintaining the computational cost at the server
constant. Although general, the resulting solution is
ideal for parallelization and, thus, suitable for pCloud.
Table 1 provides the most important terminology used
throughout the paper.
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TABLE 1
Summary of symbols

Symbol Description
DB Database stored at the server
n Size of DB (bytes)
Bj Block j of DB
` Size of each block (bytes)
t Number of DB blocks

pj (πj = p
cj
j ) The prime (prime power) associated with Bj

m = P1 · P2 A composite modulus of primes P1, P2

〈g〉 Cyclic group generated by g ∈ Z∗m
D Page size (bytes)
k Number of DB partitions
t′ Number of blocks in each DB partition

3.1 Protocol

Henceforth, for ease of presentation, we deviate from
our earlier notation and refer to all units of information
in terms of bytes (instead of bits). Let DB denote the
database stored at the server, and n its size in bytes. GR-
PIR consists of four phases, outlined in Figure 2. During
the first phase (Figure 2, line 1), the server segments DB
into t blocks, each of size ` bytes. Every block Bj (j =
1, . . . , t) is associated with a prime power πj = p

cj
j , where

pj ≤ 28·` is a small prime, and cj = d8 ·`/ log pje. Observe
that πj has at least the same size (`) as Bj . Both pj and πj
constitute public knowledge. The server expresses each
Bj as a number in [0, 28·` − 1], after appending zeros as
needed in Bt. Subsequently, it calculates e as the smallest
positive integer that satisfies e ≡ Bj (mod πj), for all j =
1, . . . , t, using the Chinese Remainder Theorem (CRT).
Note that e is a solution of the CRT modulo

∏t
j=1 πj and,

thus, its size is approximately t · ` = n. The server pre-
computes e prior to receiving any queries for the current
instance of DB (e is query-independent), and stores it
locally.

GR-PIR

Setup (server)
1. e = CRT(DB)

Query Generation (client)
2. (P1, P2) = getPrimes(πi), m = P1 · P2

3. (g, |〈g〉|) = getGenerator(m), store h = g|〈g〉|/πi

4. Send (m, g) to the server

Reply Generation (server)
5. Compute ge = ge and return it to the client

Answer Extraction (client)
6. Bi=Pohlig-Hellman(h, g|〈g〉|/πi

e )

Fig. 2. Outline of GR-PIR

In the second phase of the protocol, the client gen-
erates and transmits its query to the server. Suppose
that the client wishes to privately retrieve data residing
in block Bi. It first computes two equal-length prime
numbers P1 and P2 (line 2), such that P1 = 2q1πi + 1
and P2 = 2q2d+ 1, where q1 and q2 are random primes,

and d is a random number. Subsequently, it computes
m = P1 · P2, and instantiates group Z∗m = {x ∈
Zm|gcd(m,x) = 1}. Next (line 3), it draws a random
element g ∈ Z∗m, such that it generates a cyclic group
〈g〉 with order |〈g〉| = q · πi, where q is an integer (i.e.,
g’s order is divisible by πi). It also keeps q = |〈g〉|/πi
secret, and stores h = gq for future use. Henceforth, it is
implied that all the exponentiations of g are performed
within the group 〈g〉 (i.e., modulo m). The client sends
query Q = (m, g) to the server (line 4), and the query
generation phase concludes.

During the third phase (line 5), the server evaluates
ge = ge, and sends the result back to the client. Accord-
ing to the CRT, e can be written as e = Bi + πi · E, for
some E ∈ Z. Observe that

gqe = ge|〈g〉|/πi = gBi|〈g〉|/πigE|〈g〉| = gBi|〈g〉|/πi = hBi

Therefore, in the last phase of the protocol (line 6),
the client can retrieve Bi by computing logh g

q
e , using

the Pohlig-Hellman algorithm [21]. The latter efficiently
calculates the discrete logarithm within the subgroup
H ⊂ 〈g〉 of order πi = pcii , when pi is small. Figure 3
sums up the interaction between the client and the server
in GR-PIR.

Server ( , )m g

eg
Setup

e

/log ig
h eg π=

1
1 1

cpπ = 2
2 2

cpπ = tc
t tpπ =

, ,g m h

Query 
Generation iπ

Requested block

Result:

Client

ic
i ipπ =

DB

DB

B
i

B1 B2 B
i Bt... ...

Reply 
Generation

,i ipπAnswer 
Extraction

Fig. 3. Client/server interaction

Given 〈g〉, two prime powers π1 and π2, and a promise
that one of π1 or π2, denoted as πb, divides |〈g〉|, deter-
mining πb (and, thus, revealing the client’s query) is as
difficult as factoring m. With the above assumptions, an
adversary can utilize two well-known attacks in order
to factor m: (i) number field sieve [21], which is the
most efficient algorithm for factoring a large integer, and
(ii) Coppersmith’s lattice-based attack [10]. To safeguard
against the first attack, and following the current security
standards, we must set the minimum length of m to 128
bytes. Concerning the second attack, we must adjust the
length of m (i.e., logm) to more than four times the block
size `. Given that both requirements are satisfied, it is
computationally intractable to breach GR-PIR. In addition,
according to [14], the smallest prime p1 should be at least
2t.

Finally, note that if the client substitutes d with a
value πj 6= πi in the computation of P2, i.e., such
that P2 = 2q2πj + 1, then it can easily generate a
group 〈g〉 whose order is divisible by both πi and πj .
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Consequently, according to [14], the client can extract
both blocks Bi and Bj from the single reply ge of the
server, by running the Pohlig-Hellman algorithm twice.
In this way, the protocol can extract two blocks with
a single query, achieving the same communication cost
and computational cost at the server as a single block
retrieval.

3.2 Striping Technique

Our objective is to utilize GR-PIR in order to build a
simple interface for efficiently retrieving pages of arbi-
trary size2. We intend our solution as a black-box for
developing private query processing mechanisms on
indexed data. In particular, we aim at providing a simple
primitive pGet(DB, i) that privately retrieves the i-th
page from a database DB. However, as we show next, the
direct adaptation of GR-PIR to database applications is
computationally prohibitive. The reason is that the block
size ` gravely impacts the performance of the protocol,
even for values as small as 64 bytes. Subsequently, we
propose a solution to this problem.

We developed GR-PIR in C++ using the GMP [4] and
LiDIA [1] libraries, which support efficient number theo-
retic computations on very large integers. We deployed
our code on a machine with Intel Core Duo 2.53GHz
CPU and 4GB of RAM, running Linux Fedora Core
9. We experimented by varying ` between 32 and 128
bytes. Due to Coppersmith’s attack we set logm = 4 · `.
Figure 4 illustrates the effect of ` on the performance
of the scheme, for a DB with size 128KB. We display
the experimental results averaged over 30 runs. Note
that the communication cost between the client and the
server is always 12 · ` because each of the m, g, and ge
(exchanged during the query) has length equal to 4 · `.
Also, due to the number field sieve attack, the length of
the modulus m cannot be smaller than 128 bytes and,
thus, the communication and computational costs are
equivalent for all values ` ≤ 32 (i.e., it is impractical
to set ` < 32).
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Fig. 4. Effect of ` on the performance of GR-PIR

2. Note that the page size is fixed for a particular database.

As ` changes from 32 to 64 bytes, the query generation
cost increases 50 times (300 vs. 6 seconds), whereas the
algorithm does not terminate (within reasonable time)
when ` = 128 bytes. This is due to the expensive compu-
tations of random primes that are required in function
getPrimes (Figure 2, line 2). Specifically, the primes to
be found (P1, P2) are of length logm

2 . Due to the prime
number theorem [21], the probability that a random
number of length logm

2 is prime is approximately

1

ln 2
log m

2

≈
1

log 2
log m

2

=
1

logm
2

=
1

2 · `

In addition, the Miller-Rabin primality test algorithm
[21] (used in our implementation) involves O(`) modular
multiplications. Therefore, the complexity of generating
a prime of length logm

2 is quadratic in `, which justifies
our experimental results.

Another observation in Figure 4 is that the modulus
size has a negative impact on the computational cost of
several number theoretic operations. In particular, our
experiments show that when we double `, the reply
generation time at the server approximately doubles as
well. This indicates that a large modulus imposes a
considerable overhead on the entailed modular exponen-
tiation. The performance degradation is even larger for
the answer extraction algorithm. Specifically, the CPU
time increases almost tenfold when ` changes from 32
to 64 bytes (1.13 vs. 0.15 seconds), and 46 times when `
quadruples (6.82 vs. 0.15 seconds). The only advantage
of having a larger block size is that the database setup
phase is expedited, due to the fact that the CRT algo-
rithm processes fewer blocks. Recall, however, that the
CRT computation is an offline task and does not affect
query processing.

The above remarks suggest that, in order for the client
to retrieve a page of D bytes, it is always more beneficial
to issue D/` independent queries, with ` fixed to 32
bytes (instead of posing a single query with ` = D).
Consequently, in the remainder of this paper we assume
that ` is fixed to 32 bytes. Additionally, as a further opti-
mization, we can avoid the cost of the query generation
phase through query materialization. That is, for each πj
value the client can compute offline a pair (m, g) and
store it locally prior to query processing. The πj ’s are
database-independent, so the same queries may be used
in multiple databases. Nevertheless, to prevent access
pattern attacks, the client should generate a new random
query (offline) whenever it issues a pre-computed one.
Note that, even with the above optimizations, GR-PIR
still results in an excessive computational cost for all
parties involved, when retrieving any practical page size
D. Re-visiting our example, in order to privately retrieve
a 2048-byte page, the client has to issue 64 queries (since
this page consists of 64 32-byte blocks), which translates
to a response time of 1610 seconds.

To tackle this challenge, we apply a striping technique
on the database (similar to RAID disks [23]), illustrated
in Figure 5. Assume that the page size is D. Initially,
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DB is divided into t′ successive stripes, each consisting
of exactly k = D/` blocks of size ` bytes. In this
way, every stripe is exactly the size of one page, and
t′ = t/k. Next, the blocks inside each stripe are assigned
to the k partitions in a round robin manner. Stripe j is
associated with a prime power πj , defined similarly to
Section 3.1. All πj values (as well as their corresponding
base pj primes) constitute public knowledge. Following
the striping process, each partition is considered as a
separate database, consisting of t′ `-byte blocks. The
server computes a value ej for every partition j, using
the CRT, and stores it locally. Note that the same set of
π values are used for all partitions.

1π

Partition 1 Partition 2
'tπ

2π Stripe 2

DB

B1 B2 B3 B4 B5 Bk B +1k 1t−B tB

B1
B +1k

1t k− +B

B2
B +2k

2t k− +B
Partition 3

B3
B +3k

3t k− +B
Partition k

Bk
B2k

tB

Fig. 5. The striping technique

Suppose that the client wishes to retrieve the i-th
page of DB. Initially, it forms a single query based on
πi (as explained in Section 3.1), and transmits it to the
server. The latter processes the query on every partition
j (i.e., the corresponding ej ’s), and returns k replies to
the client. Upon receiving the replies, the client invokes
the Pohlig-Hellman algorithm for each one of them, in
order to re-construct the underlying block. Eventually, it
combines the extracted answers and retrieves the desired
page.

As verified by our experiments, using the striping
technique, the computational cost of retrieving a page
of arbitrary length D is identical to the cost of returning
a 32-byte answer in the original GR-PIR scheme. In
particular, the cost of the modular exponentiation in
the reply generation is linear in the length of the ex-
ponent ej (based on the sliding window exponentiation
algorithm utilized in the GMP library) and independent
of the stripe size (which in this case is equal to D).
Consequently, the query response time in our previous
example plummets from 1610 to 35.6 seconds, when
striping is used. Moreover, the database preparation at
the server (setup) is faster with our approach (16.64 vs.
36 seconds in the original scheme). Finally, the commu-
nication cost between the client and the server is 256
bytes for the query (two 128-byte numbers), plus 4 · D
bytes for the replies (k replies, each consisting of 4 · 32
bytes). Observe that our technique incurs an identical
communication overhead, compared to the case where
D bytes are retrieved from GR-PIR without striping.

Recall that in the end of Section 3.1 we remarked
that GR-PIR can extract two blocks with one query by
making the order of 〈g〉 divisible by two π values. This

modification can also be applied in combination with
our striping technique, in order to allow the retrieval of
two stripes (i.e., database pages) with a single query. In
the sequel, for simplicity, we assume that the client is
interested in a single database page.

4 SYSTEM ARCHITECTURE

In this section we present in detail the pCloud ar-
chitecture. The goal of our system is to leverage the
computational resources of cooperative peers, in order
to expedite the processing of cPIR queries. Towards this
end, pCloud organizes the peers in an overlay network,
partitions the database into disjoint data segments, and
disseminates the individual segments to the peers, in
order to allow efficient query execution in parallel.

Before embarking on the description of our system, we
first explain the threat model. We aim at query privacy,
i.e., we seek to guarantee that no party other than
the querier can infer the requested information. pCloud
is built-upon GR-PIR and, thus, it inherits its threat
model. Specifically, we assume that the adversary is com-
putationally bounded. Moreover, our scheme is secure
against collusion among any number of peers and the
server. Finally, pCloud integrates a simple authentication
mechanism to protect against malicious peers, i.e., the
querier can verify the integrity of the extracted data.

In Section 4.1 we describe the network topology and
data placement policy of pCloud, while in Section 4.2
we illustrate the query processing mechanism. Finally,
Section 4.3 describes the operation of pCloud in dynamic
environments.

4.1 Topology and Database Partitioning
We implement a two-tier architecture that slightly dif-
fers from existing P2P systems. The first tier consists
of the participating peers, which form an unstructured
Gnutella-like network overlay [2], where each node is
connected to a number of random neighbors (typically
5). The motivation behind this choice will become clear
in Section 4.2. The peers hold disjoint partitions of the
database DB and are ready to answer queries upon
request. The second tier is the database server, which
holds the most current view of the entire DB. The
inclusion of the server is necessary in our setting for
the following reasons: (i) the PIR query needs to process
every bit of the database. Suppose that the client does not
receive replies for all the different database partitions.
This suggests that at least one partition has not been
processed, because either it did not exist in the network,
or the node that accommodated it failed. If an adversary
has access to complete ISP logs (i.e., it can monitor all the
packets that are transmitted inside the network), it can
determine the non-processed partitions and, thus, infer
information about the query. (ii) The server is the only
entity that receives the data updates and, therefore, holds
the most up-to-date DB instance at all times. Note that,
although a centralized entity exists, query processing
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inside the P2P network is completely independent (e.g.,
the server does not maintain an index to guide query
propagation).

The actual challenge lies in how to partition and
distribute DB to the peers, so that query processing
experiences a linear performance speed-up with respect
to the number of partitions. Towards this end, pCloud
exploits the features of the striping technique presented
in Section 3.2, namely the ability to privately extract an
arbitrarily large (yet a priori fixed) amount of informa-
tion, while retaining the query processing cost linear to
the partition size. In other words, if we simply subdi-
vide DB into k partitions, as demonstrated in Section
3.2, and disseminate them among the peers, the query
execution cost will be k times lower, compared to the
traditional client/server model. The above statement is
true, provided that every partition is accommodated by
at least one peer, and is processed during the query
execution. The number of partitions k constitutes public
knowledge.

Clearly, the size of the stripe (i.e., k) adjusts a trade-
off between the computational cost at the peers and
the communication cost at the client. On one hand, a
large stripe size implies smaller partitions, i.e., better
computational cost at the peers. On the other hand, if
the stripe is large, the client receives many redundant
results, since it is only interested in a single page within
the stripe. We expect that, in a real system, the size of the
stripe will be determined explicitly by the database size
(assuming there are enough peers to handle the load).
Ideally, we would like to impose a low computational
cost at the individual peers, and at the same time main-
tain a reasonable communication overhead at the client.

To avoid the situation where a page is split between
two consecutive stripes (which would require two ex-
pensive PIR queries for that page), we may adjust the
number of partitions, so that the stripe size is always a
multiple of the page size. In this setting, PIR queries are
constructed as follows: Suppose that a client wants to
retrieve a database page starting at block Bi. The initial
step is for the client to determine the id of the stripe (let
sid) that holds the required page; this is equal to sid =
di/ke. Next, the client constructs a query corresponding
to πsid, according to the methodology described in Sec-
tion 3 (Figure 2). In the following section we discuss in
detail how the query is resolved inside the P2P network.

Observe that the aforementioned partitioning process
resembles the database outsourcing model, where each
peer can be thought of as a (possibly untrustworthy) ser-
vice provider. Consequently, it is essential to incorporate
an authentication mechanism so that the client can verify
the correctness of the result (i.e., that the result originated
at the server and is not falsified). We choose a solution
based on public-key digital signatures, due to its sim-
plicity and good performance. In this setting, the server
obtains a private and a public key through a trusted key
distribution center. The private key is known only to the
server, while the public key is accessible by all the clients.

Using its private key, the server digitally signs the data
by generating one signature (typically 128 bytes) for every
page of the database. Then, the signature corresponding
to a page is appended immediately after the end of that
page in the database (i.e., signatures are interleaved with
pages within a stripe). The authentication mechanism
increases in the total size of partitions. Nevertheless, this
overhead is not significant; for instance, authenticating
2KB pages increases the database size by only 6.25%,
which is amortized over a large number of peers.

Primitive pGet(DB, i) is modified in order to extract the
signature following the requested page in the stripe, i.e.,
if D is the page size, pGet must retrieve (D + 128)/32
blocks from the appropriate stripe. Subsequently, the
client verifies the correctness of the page using the
signature and the public key of the server. Note that
in the presence of updates, it is possible for peers to
collude and present to the client an outdated version
of a page. To safeguard against this situation, each
signature incorporates the timestamp of the last update
occurred in the database. As soon as the client extracts
the signature, it contacts the server and requests the
last update timestamp. Only if it matches the one in
the signature does the client proceed with the answer
extraction.

4.2 Query Processing
Similar to most existing P2P systems, query processing
in pCloud involves two distinct phases: query and result
propagation. Regarding the first phase, our choice is
a flooding protocol, since the client needs to retrieve a
reply for every unique partition that resides inside the
network (to achieve optimal parallelization). The most
efficient topology for query flooding is a tree structure,
but these topologies are very difficult to maintain in a
dynamic environment because they are not resilient to
node3 failures. Additionally, structured topologies, such
as Distributed Hash Tables (e.g., Chord [26]) are also
not applicable in our setting because (i) they mostly
support queries for specific items, and (ii) their perfor-
mance degrades drastically in the presence of frequent
node failures. The above reasons led us to use a simple
Gnutella-like network overlay, as described in the pre-
vious subsection. This topology is easy to maintain and
is robust against random node failures, because it offers
multiple paths between any pair of nodes.

During query propagation, every node forwards the
query to all its neighbors, until the query’s lifetime
expires (Figure 6, step 1). Specifically, every query has
a Time-to-Live (TTL) parameter, which indicates the
maximum number of hops that it is allowed to travel.
In our case, the TTL value should be large enough
so that the query reaches a number of nodes that is
larger than the number of partitions k. The query Q
is a tuple 〈Q.id,Q.TTL,Q.IP,Q.DB, Q.m,Q.g〉, where
Q.id is a randomly generated id, Q.TTL is the TTL

3. We use the terms node and peer interchangeably.
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value, Q.IP is the IP address of the client, Q.DB is a
description of the queried database, and Q.m and Q.g
are the modulus and group generator, respectively, that
are constructed based on the index of the required page.

Q Q
(1) Query flooding

(2) UDP responses

Missing partitions

(3) Server query

pCloud

Server

Fig. 6. Query processing

Whenever a peer receives a query message, it runs the
reply generation algorithm of GR-PIR (Figure 2, line 5)
on its own partition. Once the result is computed, the
peer transmits it back to the client along with the id
of the partition. In the original Gnutella protocol, query
hits are transmitted on the reverse of the path that is
created during the flooding process. However, this is not
a practical approach in our setting because (i) a single
node failure may potentially cause multiple result losses,
and (ii) it increases considerably the communication
cost. Consequently, we follow the mechanism of the
new Gnutella specification, which states that query hits
are transmitted directly from the peer to the client, via
the UDP protocol. UDP is an unreliable, connectionless
service that is well-suited for transmitting a single packet
between two nodes. Unlike TCP, which requires an
expensive three-way handsake to establish a connection,
UDP involves only the direct transmission of data pack-
ets. Although UDP is not reliable for transferring large
amounts of data (because packet losses are not detected),
in our method a query result is a 128-byte integer that
can fit in a single packet. Therefore, UDP is suitable for
transmitting the results back to the client.

Note that, in some cases (e.g., due to node failures),
the client may not be able to retrieve the results from
all k partitions for the specified Q.TTL. Therefore, after
the client forwards the query to its neighbors, it starts
a timer Tnet that indicates the maximum amount of
time that it is willing to wait, in order to retrieve all
existing results from the network. The value of the timer
should reflect (i) the average CPU time required at each
peer for generating the result (Tcpu), and (ii) the worst-
case round-trip latency inside the network (Tlat). Thus, a
good estimate for the timer would be Tnet = Tcpu +Tlat.

As soon as the client receives a new result from the

network that is part of the queried page, it immediately
extracts the corresponding block, using Pohlig-Hellman
(Figure 2, line 6). If the timer Tnet expires and there
are still some missing results, the client creates a list
with the corresponding ids, and sends a query to the
server in order to retrieve them (Figure 6, step 3). This
is a very expensive procedure because the replies are
generated sequentially at the server. However, if the
missing results do not concern the client (i.e., they are
not part of the queried page), the response time is not
affected. In any case, the client has to query the server for
all missing results, in order to guarantee privacy against
an adversary with traffic monitoring capabilities. Note
that the client/server communication utilizes a reliable
TCP connection.

A last remark concerns the bootstrapping mechanism of
pCloud. When a peer joins the network, it contacts the
database server and receives a list of recently seen IP ad-
dresses. Next, it contacts some of these peers (using the
ping/pong messages of Gnutella), in order to discover
other nodes in the network that can establish a new
TCP connection. Eventually, it joins the overlay topology
and starts participating in query propagation. The server
also transmits to the new peer a database partition and,
after the peer completes the setup (Figure 2, line 1), it
can start evaluating received queries. To improve the
performance, we utilize an informed method for allo-
cating the partitions to the incoming peers. Specifically,
the server maintains a list of the recently requested
partitions, which is a good estimate of the partitions
that are missing inside the network. From that list, it
transmits the most recent partition to the new peer. A
further optimization is to also store the IP addresses
of the nodes that requested these partitions, so that the
new peer may try to connect around their neighborhood.
The intuition is that, even in the case the partition exists
somewhere in the network, it may be far away (in terms
of the TTL value) from those nodes.

4.3 Data Updates and Node Failures

In this section we discuss two scenarios that may poten-
tially affect the query response time in pCloud: data up-
dates and node failures. Regarding data updates, one ob-
servation is that pCloud resembles a cooperative caching
environment, i.e., an overlay network where peers do not
share their own data but rather store information from
other servers. Consequently, we may employ similar
techniques (e.g., cache invalidation protocols) to deal
with stale results. In particular, we assume the following
data update process. When the server receives a number
of updates, it modifies the corresponding pages, and
produces a new set of signatures that incorporate the
current timestamp. Subsequently, it broadcasts (using the
flooding mechanism of query propagation) a list with the
outdated (i.e., affected) partitions to all the peers.

If a peer receiving the server’s message is the owner
of an obsolete partition, it (i) suspends query processing
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(i.e., it does not return any results), and (ii) contacts
the server to receive the updates. Note that, to save
communication resources, the server does not transmit
the entire partition, but only sends the blocks that are
affected by the updates. After the peer receives the
updates, it invokes the setup algorithm that is required
by GR-PIR, and eventually resumes query processing.
On the other hand, if the peer is a client that is currently
involved in query processing, it has to contact the server
in order to retrieve the updated partitions. Note that,
if updates are very frequent the client has to request
many partitions from the server, which greatly increases
the query response time. Therefore, pCloud is not rec-
ommended for applications involving frequent updates
(e.g., data streaming).

The next issue regards random node failures, which
is an inherent characteristic of most P2P networks. In
pCloud, the query and result propagation mechanisms
are very robust against node failures because (i) queries
are flooded inside the network through multiple paths,
and (ii) results are transmitted directly from each peer
to the client without any intermediate hubs. However,
the main limitation of pCloud is that if a node that
holds the only copy of a certain partition fails, it affects
the query response time because the missing partition
has to be processed at the server. In the worst case
that all nodes fail, pCloud reduces to a conventional
client/server architecture.

To minimize the effect of node failures, we slightly
modify pCloud to include data replication. Specifically, if
the expected number of peers in the network is N , the
server adjusts the total number of partitions k, in order
to inject a certain percentage of replication r = (N−k)/k
inside the network (note that N ≥ k). Consequently,
depending on the level of replication, any partition may
be stored at multiple peers. However, every node still
maintains a single partition. Therefore, for a given N ,
increasing replication creates larger partitions, and the
reply generation time at the peers may become consid-
erable. Nevertheless, as we show in our experiments, this
strategy actually pays off in terms of query response
time, even for moderate failure rates. The reason is
that replication increases the chances of finding all the
partitions inside the network, thus avoiding the server
entirely. In addition, although the individual computa-
tional time increases at each peer, query processing is
still performed in parallel, leading to better response
times.

5 EXPERIMENTS
We developed GR-PIR enhanced with our striping tech-
nique in C++, utilizing the GMP [4] and LiDIA [1]
libraries. Furthermore, we implemented the network
components of pCloud in Python, and deployed our
code on PlanetLab [3]. We installed our server program
at an underutilized node with powerful hardware, in
order to simulate the superior computational and band-
width capabilities of the server. We generated a random

connected graph as our network topology, with average
node degree equal to 5. We compared pCloud against
the traditional client/server model, which is hereafter
referred to as CS. For fairness, the server in CS also
employs our striping technique. Recall from Section 3.2
that the partitioning method does not have an impact on
the computational time. Therefore, in CS we decompose
the database so that the stripe size is equal to the page
size; this yields optimal communication cost.

We investigate the following performance metrics: (i)
the query response time at the querier4, i.e., the time that
elapses from the instance the query is posed, until the
actual answer is extracted. From this cost we exclude the
time to generate g and m (Figure 2, lines 2-3) because
we assume that the client materializes all queries offline
(following the strategy explained in Section 3.2). (ii) The
computational time at the server and a participant peer
(other than the querier), which is consumed by the reply
generation algorithm. Note that we do not include the
overhead of the database setup (phase 1 of GR-PIR), as
this task is conducted offline. (iii) The communication cost
at all the above parties, which takes into account both
incoming and outgoing packets.

Table 2 illustrates our system parameters, with their
default values appearing in bold face. In every exper-
iment we test over the values of one parameter, while
fixing the remaining ones to their default values. We
perform 10 queries per experiment, and plot the average
values for each metric. Each query privately retrieves
a random database page. Section 5.1 presents the re-
sults for a static network/database, whereas Section 5.2
demonstrates our findings in a dynamic environment.

TABLE 2
System Parameters

Parameter Range
Static Case

Number of peers (N ) 100, 150, 200, 250, 300
Database size (n) 1, 5, 10, 15, 20 (MB)

Page size (D) 512, 1024 2048, 4096 (bytes)
Dynamic Case

Replication (r) 0, 25, 50, 75, 100 (%)
Node failures (f ) 0, 5, 10, 15, 20 (%)

5.1 Static Case

In the absence of node failures, we assume that the
server segments the database to as many partitions as the
number of peers. We also suppose that each partition is
located at exactly one peer. Finally, we set the TTL to
a large enough value to ensure that the query reaches
the entire network. Note that the above setting achieves
the maximum possible parallelization for the specified
number of peers. This is due to the fact that we did not
experience any UDP packet losses and, thus, the querier
never contacted the server. Therefore, in the remainder of

4. We henceforth use terms querier and client interchangeably.
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this subsection, the computational/communication cost
at the server always refers to the CS approach.

The first set of experiments evaluates the performance
of pCloud against CS, when varying the number of peers
N and assigning the default values to the database size n
and page size D (i.e., 10MB and 2048 bytes, respectively).
Our results are grouped in Figure 7. Observe that the
maximum number of peers is 300, although there are
approximately 1000 peers registered with PlanetLab. The
reason is that PlanetLab is rather unstable, and a large
fraction of peers are either down, or exhibit frequent
problems (such as ssh failures, time drifting, excessive
workload, etc.).

Figure 7(a) depicts the average response time at the
client, whereas Figure 7(b) illustrates the computational
cost at a participant peer and the server. In pCloud
the response time is up to more than two orders of
magnitude smaller than in CS. The reason is that in CS
the server processes all partitions sequentially, leading to
an excessive computational time. On the other hand, in
pCloud the participating peers perform the reply gener-
ation algorithm on a very small portion of the database
in parallel. This significantly reduces the computational
requirements at each peer and, thus, the result collection
at the querier.

Concerning the effect of N , larger N values cause
the response time in pCloud to drop linearly because
each peer performs the PIR query on a smaller partition
(ranging from ∼ 109KB when N = 100, to ∼ 37KB when
N = 300). Observe, however, that the response time does
not decrease as fast as the computational cost at a peer.
Note that the answer extraction algorithm requires 10.2
seconds in both CS and pCloud, as it is independent
of the total number of peers (it is only affected by
the page size). Although in CS this cost is negligible
compared to the CPU time consumed at the server,
in pCloud it emerges as a significant portion of the
response time when the computational effort at a peer
decreases (reaching 72% of the overhead when N = 300).
Therefore, in Figure 7(a), the curve for pCloud would
smoothly continue its decline for N > 300, eventually
converging to 10.2 seconds (an unavoidable cost).

Figure 7(c) draws the average communication cost for
all parties involved. As previously mentioned, in CS the
bandwidth consumption is optimal, which is about four
times the page size. This is because each reply has size
fixed to (approximately) 128 bytes, but conveys only 32
bytes (i.e., one block) of useful information. On the other
hand, in pCloud this cost is determined by the total
number of replies, which increases with the number of
peers. However, observe that even in the worst case the
client receives less than 42KB of data, which constitutes
a negligible fraction of the database (0.4%). The commu-
nication cost per query per peer entails the propagated
queries and the UDP replies sent back to the client. Since
we maintain the average number of neighbors constant
in all our topologies, the bandwidth consumption is
almost independent of N (with small, unobservable in

the figure, fluctuations due to randomness). Moreover,
this cost is only ∼2KB, i.e., 4% of the partition size.

The second set of experiments assesses the effect of
the database size n on the performance of the schemes
(N = 200, D = 2048). Figure 8(a) provides the response
time at the server, and Figure 8(b) illustrates the reply
generation time. pCloud achieves more than two orders
of magnitude improvement in response time compared
to CS (29 vs. 7306 seconds when n = 20MB). As ex-
pected, the overhead increases with the database size
for both pCloud and CS, because more bits need to
be processed. However, the response time in pCloud
(Figure 8(a)) raises more slowly than in CS because a
substantial fraction of the response time is consumed
by the answer reconstruction algorithm. Note that the
response times shown here are not representative of a
real world deployment of our system, since we utilized
a rather limited number of peers. Given that pCloud
scales linearly with the number of peers, we expect the
response time to be very low in typical overlay networks
(containing tens of thousands of nodes), even for very
large databases. Finally, the communication overhead in
both schemes does not depend on the database size and
is, thus, omitted.

We conclude the experimental evaluation of the static
case by studying the behavior of pCloud and CS for
variable page size (N = 200, n = 10MB). Figure 9(a)
draws the response time at the querier, whereas Figure
9(b) shows the computational time at the involved par-
ties. As we raise the page size, the average computa-
tional time at a peer slightly decreases. The reason is
that, when the page size is larger, the authentication
overhead (i.e., signatures) becomes smaller. Therefore,
the database/partition size decreases, which results in
a lower CPU time. In CS, the computational overhead at
the server is constant because, as previously mentioned,
the partitioning method (determined by the page size)
does not influence the CPU consumption at the server.

On the other hand, the query response time increases
with the page size in both CS and pCloud. This is
because a larger page size implies that a larger number
of 32-byte blocks comprise the page. Consequently, the
answer reconstruction algorithm must be executed on
more replies to extract all the page blocks. In pCloud,
this cost phases out the minor computational savings
at the peers and, therefore, the response time curve
gradually raises. The respective overhead in CS increases
very slightly so that it cannot be noticed in the figure.
The reason is that, even in the worst case when D = 4096
bytes, the answer extraction cost accounts for a negligible
fraction of the response time (0.8%), which is mostly
dominated by the query processing at the server.

Finally, Figure 9(c) depicts the bandwidth consump-
tion. The cost at both the querier and a participant peer
in pCloud are independent of the page size. However,
the communication overhead in CS increases quickly for
larger values of D, since the server needs to transmit a
larger page back to the querier.
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Fig. 9. Varying the page size D

To sum up, pCloud benefits from the distributed set-
ting significantly, improving response time by more than
two orders of magnitude compared to the client/server
model. The system scales linearly with the number of
peers and, thus, enables efficient PIR even in the pres-
ence of large databases. This comes at a small communi-
cation overhead that constitutes a negligible percentage
of the database. Additionally, the participating peers
contribute low CPU and bandwidth resources per query,
which strengthens the motivation for joining pCloud.

5.2 Dynamic Case

The dynamic case captures situations where peers in
pCloud fail during query processing, or they store an
obsolete partition instance (due to updates). Therefore,
these peers cannot contribute to query execution. Since
it is very difficult to simulate scenarios that involve
updates, we experimented only with node failures. Note
that this is the worst-case scenario because, contrary
to an outdated peer, a failed node does not propagate
the query. This may prevent other peers from receiving
the query and, thus, take part in query processing. We
performed two sets of experiments, varying two param-
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Fig. 10. Varying the node failure rate f
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Fig. 11. Varying the amount of replication r

eters: (i) the percentage of node failures f , and (ii) the
amount of replication r, measured as the percentage of
the partitions that are duplicated in the network. We also
fixed the rest of the parameters to their default values
(N = 200, n = 10MB, and D = 2048) and investigated
the same metrics as in the static case. Although the
performance of CS is not affected by these parameters,
we include its corresponding costs to facilitate the com-
parison.

In the first set of experiments we vary the node failure
rate f , while setting r to 50% (meaning that half of
the partitions exist in the network twice). Figure 10(a)
depicts the response time, and Figure 10(b) illustrates
the computational cost at the parties involved in query
processing. The computational cost at each peer is not
affected by f because the partition size remains constant.
On the other hand, as f increases, the respective cost at
the server raises as well. This is because the probability
that a partition is not located in the network becomes
larger and, thus, the client must attend to the server
to collect a reply for more partitions. Consequently, the
client experiences a linearly larger response time.

However, observe in Figure 10(a) that the response
time is smaller than the CPU time consumed at the
server. This is due to the fact that not all of the replies
received from the server are useful for the querier to
extract its complete answer. For example, in the worst

case where the failure rate is f = 20% the querier
requests 16 blocks from the server, whereas only 3 are
contained in the desired page. As soon as the client
receives a reply concerning its query it immediately
applies the answer extraction algorithm on it. This leads
to concluding the query processing before retrieving the
last reply from the server. Furthermore, note that for
f ≤ 5% (and with 50% replication) the querier does not
need any of the replies returned by the server in order
to finish its query, since there is at least one peer in
the network possessing a block contained in the queried
page. Therefore, the response time remains constant for
the above values of f . Finally, note that even in the case
the client requires a reply relevant to its query from
the server, it executes the answer extraction algorithm
for the already received replies from the network while
waiting for the server’s answer. This saves a considerable
fraction of the 10.2 seconds consumed in total for all
page blocks by this algorithm, since the largest part of
the query is still answered by the network.

Figure 10(c) demonstrates the communication cost as
a function of f . Since more partitions are likely to be
retrieved from the server, the server bandwidth con-
sumption increases with larger f . On the other hand, the
communication cost at the querier is smaller for a larger
number of node failures, since the probability of receiv-
ing duplicate replies decreases. Finally, the overhead at
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a participant peer also slightly decreases (although this
is not easily discernible in the figure), because it may
propagate the query to fewer neighbors (i.e., if a failed
node was its neighbor).

The second set of experiments in the dynamic case
assesses the effect of replication on the performance of
pCloud, when the node failures are fixed to 10%. Figure
11(a) plots the response time, and Figure 11(b) presents
the CPU time at the entities that process the query.
As expected, both the computational time at the server,
as well as the response time, decrease with a larger
r because the probability a partition is not located in
the network diminishes. Nevertheless, observe that the
curve of the response time in Figure 11(a) has a slightly
smaller slope than that of the CPU time at the server
in Figure 11(b). The reason is that, as we increase r, the
partition size becomes larger. Consequently, the server
and each participant peer must consume more time to
process the query on a partition, a fact that balances
out some of the computational savings at the server.
This also indicates that there is a trade-off between
the aforementioned costs, which should be carefully
adjusted in order to achieve the optimal response time.
Note that when r = 100%, the response time in pCloud
reaches 29.79 seconds, which is 76 times smaller than in
CS. Comparing this value to the respective cost in the
static case (16.73 seconds), we conclude that replication
achieves a relatively similar performance to the static
case.

Finally, Figure 11(c) plots the communication cost
for the above experiment. The overhead at the server
drops gradually for larger values of r, since the client
requests fewer replies. Also, the communication cost at
the querier becomes slightly lower for the same reasons
explained for Figure 10(c). Finally, the bandwidth con-
sumption at a participant peer is unaffected by r because
it only depends on the number of neighbors (which is
fixed, since the topology for a particular N and f is
stable).

To conclude, node failures adversely affect the per-
formance of pCloud. However, replication is a plausible
solution that can tackle this challenge. In particular,
we showed that with 100% replication, we achieve a
response time close to the static case, while maintain-
ing the communication cost almost identical. In other
words, replication can render pCloud very resilient in
the presence of node failures.

6 CONCLUSIONS

Private information retrieval (PIR) is an important field
with several practical applications. However, despite the
extensive cryptography literature, there is very limited
work on databases due to the prohibitive cost of PIR on
datasets with realistic sizes. In order to tackle this cost,
we leverage the computational resources of a peer-to-
peer cloud. Specifically, the proposed pCloud solution
embeds a state-of-the-art PIR protocol in a distributed

environment, by utilizing a novel striping technique.
pCloud can retrieve arbitrarily large blocks of informa-
tion with a single query. We present a comprehensive
solution that includes a data placement policy, result
retrieval and authentication mechanisms. We implement
our system in PlanetLab and perform an extensive set
of experiments, which confirm the effectiveness and
practicality of our scheme. Specifically, compared to
the traditional client/server architecture, pCloud drops
the query response time by orders of magnitude, and
its performance improves linearly with the number of
peers. Finally, it is resilient to node failures and can han-
dle updates. We hope that this work motivates further
research on distributed PIR.
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