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Abstract. A top-k OLAP query groups measures with respect to some abstrac-
tion level of interesting dimensions and selects the k groups with the highest
aggregate value. An example of such a query is “find the 10 combinations of
product-type and month with the largest sum of sales”. Such queries may also
be applied in a spatial database context, where objects are augmented with some
measures that must be aggregated according to a spatial division. For instance,
consider a map of objects (e.g., restaurants), where each object carries some non-
spatial measure (e.g., the number of customers served during the last month).
Given a partitioning of the space into regions (e.g., by a regular grid), the goal is
to find the regions with the highest number of served customers. A straightfor-
ward method to evaluate a top-k OLAP query is to compute the aggregate value
for each group and then select the groups with the highest aggregates. In this
paper, we study the integration of the top-k operator with the aggregate query
processing module. For this, we make use of spatial indexes, augmented with
aggregate information, like the aggregate R–tree. We device a branch-and-bound
algorithm that accesses a minimal number of tree nodes in order to compute the
top-k groups. The efficiency of our approach is demonstrated by experimentation.

1 Introduction

Data warehouses integrate and summarize large amounts of historical information, ac-
cumulated from operational databases. On-line Analytical Processing (OLAP) refers to
the set of operations that are applied on a Data Warehouse to assist analysis and decision
support. Data warehouses are usually modeled by the star schema [8], where some mea-
sures (e.g., sales) are analyzed with respect to some interesting dimensions (e.g., prod-
ucts, stores, time, etc.), representing business perspectives. A fact table stores records
corresponding to transactions that have been consolidated in the warehouse. One or
more columns in the fact table capture the measures, while each remaining attribute
stores values for a dimension at the most refined abstraction level. For example, a tuple
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in the fact table stores a transaction for a particular product-id sold at a particular store-
id at some particular time instant. A dimensional table models multi-level hierarchies of
a particular dimension. For example, a tuple in the dimensional table product stores
information about the color, type, manufacturer, etc., for each product-id. Data analysts
are interested in summarizing the fact table information with respect to the interesting
dimensions at some particular level of their hierarchies, e.g., “retrieve the total sales per
month, product color, and store location”.

The star schema was extended in [6] to include spatial abstraction levels and dimen-
sions. The location of stores where products are sold is an example of a spatial attribute,
with respect to which the sales could be analyzed (possibly together with non-spatial
attributes of other dimensions). We can also define hierarchies for spatial attributes. In
general, hierarchies of spatial and non-spatial ordinal attributes can be defined either by
predefined decompositions of the value ranges (e.g., exact location, city, county, state,
country, etc.) or by ad-hoc partitioning techniques (e.g., by a regular spatial grid of
arbitrary granularity).

An ideal method to manage a data warehouse, in order to answer OLAP queries
efficiently, is to materialize all possible groupings of the measures with respect to ev-
ery combination of dimensions and hierarchies thereof. In this way, the result of each
OLAP query could directly be accessed. Unfortunately, this technique is infeasible, be-
cause huge space is required for storing the results for all possible combinations and
long time is required to maintain these combinations after updates in the warehouse. In
view of this, several partial materialization techniques [7,6] select from the complete hi-
erarchy of possible hyper-cubes those that assist the evaluation of most frequent OLAP
queries and at the same time they meet the space and maintenance time constraints.
Nevertheless these techniques still cannot deal with ad-hoc groupings of the dimen-
sional ranges, which may still have to be evaluated directly on base tables of the data
warehouse. This is particularly the case for spatial attributes, for which the grouping
hierarchies are mostly ad-hoc.

Papadias et al. [14] proposed a methodology that remedies the problem of ad-hoc
groupings in spatial data warehouses. Their method is based on the construction of
an aggregate R–tree [10] (simply aR–tree) for the finest granularity of the OLAP di-
mensions (i.e., for the fact table data). The aR–tree has similar structure and construc-
tion/update algorithms as the R*–tree [3]; the difference is that each directory node en-
try e is augmented with aggregate results on all values indexed in the sub-tree pointed
by e. Accordingly, the leaf node entries contain information about measures for some
particular combination of dimensional values (i.e., spatial co-ordinates or ordinal val-
ues of other dimensions at the finest granularity). This index can be used to efficiently
compute the aggregate values of ad-hoc selection ranges on the indexed attributes (e.g.,
“find the total sales for product-ids 100 to 130 between 10 Jan 2005 and 15 Feb 2005”).
In addition, it can be used to answer OLAP group-by queries for ad-hoc groupings of
dimensions by spatially joining the regions defined by the cube cells with the tree.

An interesting OLAP query generalization is the iceberg query [5]; the user is only
interested in cells of the cuboid with aggregate values larger than a threshold t (e.g.,
“find the sum of sales for each combination of product-type and month, only for combi-
nations where the sum of sales is greater than 1000”). In this paper, we study a variant
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of iceberg queries, which, to our knowledge, has not been addressed in the past. A top-
k OLAP query groups measures in a cuboid and returns only the k cells of the cuboid
with the largest aggregate value (e.g., “find the 10 combinations of product-type and
month with the largest sum of sales”). A naive way to process top-k OLAP queries (and
iceberg queries) is to perform the aggregation for each cell and then select the cells with
the highest values. Previous work [5] on iceberg queries for ad-hoc groupings employed
hashing, in order to early eliminate groups having small aggregates and minimize the
number of passes over the base data.

We follow a different approach for top-k OLAP query evaluation, which operates
on an aR-tree that indexes the fact table. We traverse the tree in a branch-and-bound
manner, following entries that have the highest probability to contribute to cells of large
aggregate results. By detecting these dense cells early, we are able to minimize the
number of visited tree nodes until the termination of the algorithm. Our method can
also be applied for iceberg queries, after replacing the floating bound of the k-th cell by
the fixed bound t, expressed in the iceberg query. As we show, our method can evaluate
ad-hoc top-k OLAP queries and iceberg queries by only a part of the base data, only
once. Therefore, it is more efficient than hash-based methods [5] or spatial joins [14],
which require multiple passes over the whole fact table. The efficiency of our approach
is demonstrated by extensive experimentation with real datasets.

The remainder of the paper is organized as follows. Section 2 reviews related work.
Section 3 formally defines top-k OLAP queries. In Section 4, we describe in detail our
proposed solution. Section 5 experimentally demonstrates the efficiency of the proposed
algorithm. Finally, Section 6 concludes the paper.

2 Related Work

To date, there is a huge bibliography on data warehousing and OLAP [13], regarding
view selection and maintenance [7,12], modeling [8,2], evaluation of OLAP queries [1],
indexing [9], etc. In this section, we discuss in more detail past research on indexing
spatial data for evaluating aggregate range queries and OLAP queries in the presence
of spatial dimensions. In addition, we review past work on iceberg queries and top-k
selection queries and discuss their relation to the problem studied in this paper.

2.1 Spatial OLAP

Methods for view selection have been extended for spatial data warehouses [6,15],
where the spatial dimension plays an important role, due to the ad-hoc nature of groups
there. Papadias et al. [14] proposed a methodology, where a spatial hierarchy is defined
by the help of an aggregate R–tree (aR–tree). The aR–tree is structurally similar to the
R*–tree [3], however, it is not used to index object-ids, but measures at particular loca-
tions (which could be mixtures of spatial co-ordinates and ordinal values of non-spatial
dimensions at the finest granularity). The main difference to the R*–tree is that each
directory node entry e is augmented with aggregate results for all measures indexed in
the sub-tree pointed by e. Figure 1 shows an exemplary aR–tree (the ids of entries at
the leaf level and the contents of some nodes are omitted). The value shown under each
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non-leaf entry ei corresponds to an aggregate value (e.g., sum) for all measures in the
subtree pointed by ei.

The tree can be used to efficiently compute aggregate range queries, which summa-
rize the measures contained in a spatial region. These queries are processed similarly
to normal range queries on a R–tree. Tree entries (and their corresponding subtrees)
are pruned if they do not intersect the query region. If the MBR of an entry e partially
overlaps the query, it is followed as usual, however, if e’s MBR is totally covered by
the query range, the augmented aggregate result e.agg on e is counted and the subtree
pointed by e needs not be accessed. For example, consider an aggregate sum query q
indicated by the dashed rectangle of Figure 1. From the three root entries, q overlaps
only e2, so the pointer is followed to load the corresponding node and examine entries
e7, e8, e9. From these, e7 is pruned and e8 partially overlaps q, so it is followed and 10,
5 are added to the partial result. On the other hand, e9 is totally covered by q, so we can
add e9.agg = 20 to the query result, without having to visit the leaf node pointed by e9.
The aR–tree can also be used for approximate query processing, if partially overlapped
entries are not followed, but their aggregate results are scaled based on the overlapped
fraction of e.MBR [10].
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Fig. 1. An aR–tree

[14] showed how the aR–tree can be used to process OLAP group-by queries for
groups defined by ad-hoc spatial regions. In this case, a spatial join is performed be-
tween the tree and the boundaries of the regions for which we want to compute aggre-
gate results. Finally, if there is not enough space to fully materialize the tree, it can be
partially materialized, by selecting levels that correspond to most significant grouped
hierarchies (i.e., the ones that assist most queries).

Another query, related to the top-k OLAP query we study in this paper, is the top-k
spatial join [16]. Given two spatial datasets A and B, the top-k spatial join retrieves
the k objects from A or B that intersect the largest number of objects from the other
dataset. A branch-and-bound algorithm that computes this join is proposed in [16],
assuming that both A and B are indexed by R–trees. Our top-k OLAP queries could
be considered as a variant of this join query, where one of the joined datasets is the
set of regions from which we want to derive the ones with the top-k aggregate result.
However, these regions in our problem are ad-hoc and we do not presume an index on
them. In addition, the top-k join considers the count aggregate function only. Finally,
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the algorithm proposed in [16] is a join method that essentially accesses both datasets
at least once for most typical queries. On the other hand, we do not explicitly access
a dataset corresponding to the interesting regions (we compute their results on-the-fly
instead) and we access only a part of the base data (using an aR–tree index on them).

2.2 Iceberg Queries

The term iceberg query was defined in [5] to characterize a class of OLAP queries
that retrieve aggregate values above some specified threshold t (defined by a HAVING
clause). An example of an iceberg query in SQL is shown below:

SELECT product-type, store-city, sum(quantity)
FROM Sales
GROUP BY product-type, store-city
HAVING sum(quantity) >= 1000 ;

In this example, from all groups of product-types and store locations (cities), the
user wants only those having aggregate result no smaller than t = 1000. The motiva-
tion is that the data analyst is often interested in exceptional aggregate values that may
be helpful for decision support. A typical query optimizer would first perform the ag-
gregation for each 〈product-type,store-city〉 group and then return the ones
whose aggregate value exceeds the threshold. In order to avoid useless aggregations
for the pairs which disqualify the query, [5] present several hash-based methods with
output-sensitive cost. These techniques were later extended for selecting exceptional
groups in a whole hierarchy of data cubes [4]. The iceberg query is similar to the top-k
OLAP query we study in this paper. In our case, we are interested in the k groups with
the largest aggregate values, instead of aggregates above a given threshold. As opposed
to the methods in [5], our top-k OLAP algorithm is not based on hashing, but operates
on an existing aR–tree that indexes the base data. As we show, our method can also be
adapted for iceberg queries.

2.3 Top-k Aggregate Queries

[11] propose methods for processing top-k range queries in OLAP cubes. Given an
arbitrary query range, the problem is to find the top-k measures in this range. This
query is a generalization of max range queries (i.e., k = 1 for max queries). The data
cube is partitioned into sufficiently small cells and the top-k aggregate values in each
partition are pre-computed. These values can then be used to compute the top-k results
in query regions that cover multiple cells. Top-k range queries are essentially different
than top-k OLAP queries, since the latter deal with the retrieval of top-k aggregated
values of groups (as opposed to top-k measures) in the whole space (as opposed to a
particular range). To our knowledge, there is no prior work on the problem we study
in this paper. In the next section, we formally define top-k OLAP queries and motivate
their processing using aR–trees.
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3 Problem Formulation

We assume a data warehouse with a star-schema, where the dimensional values recorded
in the fact table correspond to either spatial locations (for spatial dimensions) or to or-
dinal (i.e., numerical) values at finest granularity. We also assume that the user is in-
terested in computing aggregates based on a partitioning of the dimensional domains
(e.g., “retrieve the total sales per month, product type, and store location (city)”). This
partitioning could be ad-hoc or according to some known hierarchy (e.g., time instants
are grouped to hours, days, weeks, months, etc.). We assume that each partition forms
a contiguous range of values in the domain, and that partitions are disjoint and cover
the complete domain of the dimension. Finally, we consider a single aggregate function
(sum) on a single measure (e.g., sales quantity). We will later discuss how to extend our
methodology for cases where these assumptions do not hold.

Let D be the total number of dimensions. As discussed in [7,14], we typically se-
lect a subset of the 2D dimensional combinations to materialize/index. Consider such a
combination of dimensions. We can build an aR–tree index on top of the correspond-
ing cuboid, where we index the summarized information based on the finest granularity
values recorded in the fact table. This index can be used to answer OLAP queries (both
group-by’s and range selections) related to this set of dimensions (or a subset thereof)
for any combination of hierarchies (i.e., partitionings) in the individual dimensions.
For example, an aR–tree on dimensions 〈time, product, store-location〉
could be used to compute the aggregate value for every combination of date/week/month,
product-id/type, and street/city/county/state location of stores.

Selecting the combinations of dimensions to materialize can be done with exist-
ing techniques (e.g., [7]) and it is out of the scope of this paper. While results for all
or some combinations of predefined dimensional partitionings could be pre-computed
and materialized, we assume that only the finer granularity summaries for the selected
dimensional sets are materialized. The rationale is that (i) it is expensive to store and
maintain pre-computed results for all possible combinations of dimensional partition-
ings, (ii) there could be ad-hoc partitionings, especially in the space dimension (as dis-
cussed in [6,15,14]), and (iii) the aR–tree can handle well arbitrary partitionings of the
multi-dimensional space [14].

Now, we are ready to formally define the top-k OLAP query:

Definition 1. Let D = {d1, . . . , dm} be a set of m interesting dimensions and assume

that the domain of each dimension di ∈ D is partitioned into a set Ri = {r1
i , . . . , r

|Ri|
i }

of |Ri| ad-hoc or predefined ranges based on some hierarchy level. Let k be a positive
integer. An OLAP top-k query on D selects the k groups g1, . . . , gk with the largest
aggregate results, such that gj = {r1, . . . , rm} and ri ∈ Ri∀i ∈ [1, m].

An example top-10 OLAP query could be expressed by the SQL statement that
follows. Here, the partition ranges at each dimension are implicitly defined by levels of
hierarchy (type for products and city for stores).

SELECT product-type, store-city, sum(quantity)
FROM Sales
GROUP BY product-type, store-city
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ORDER BY sum(quantity)
STOP AFTER 10;

A naive method to process a top-k OLAP query is to compute the aggregate result
for each cell (i.e., group of ranges from different dimensions) and while doing so main-
tain a set of the top-k cells. This method has several shortcomings. First, many cells
with small aggregate values will be computed and then filtered out, wasting computa-
tions and I/O accesses. Second, since the definition of the dimensional ranges may be
ad-hoc, measures within a given cell may be physically located far in the disk. As a
result, it may not be possible to compute the aggregates for all cells at a single pass.
In order to alleviate the problem, hashing or chunking techniques can be used. Alter-
natively, a spatial join can be performed if the base data are indexed by an aR–tree, as
discussed. Nevertheless it is still desirable to process the top-k OLAP query without
having to access all data and without having excessive memory requirements.

Assume that we have only two (spatial) dimensions x and y, with integer values
ranging from 0 to 15. In addition, assume that each dimension is partitioned into value
ranges [0, 5), [5, 10), [10, 15]. Figure 2 shows a set of measures indexed by an aR–tree
(the same as in Figure 1) and the 3×3 groups (cells) c1, . . . , c9 defined by the combina-
tions of partition ranges. Based on the information we see in the figure (some contents
are omitted), we know that c1.agg = 120, since e6 with e6.agg = 30 is totally con-
tained in c1. In addition, we know that c4.agg ≥ 90 and c4.agg ≤ 90 + e3.agg = 140.
Similarly, c9.agg ≤ 20+e9.agg = 40. Observe that result of a top-1 OLAP query (i.e.,
the cell with the highest aggregate result, assuming sum is the aggregate function) is c6,
with c6.agg = 150, because there is no other cell that can reach this result in any case.
Thus, by having browsed the tree partially we can derive some upper and lower bounds
for the aggregate results at each cell, which can help determining early the top-k OLAP
query result. This observation is used by our branch-and-bound algorithm described in
the next section.
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Fig. 2. Top-k grouping example

4 Processing Top-k OLAP Queries Using an aR–Tree

Given an aR–tree that indexes a set of dimensions at a finest granularity and a top-k
OLAP query that is based on an ad-hoc partitioning of each dimensional domain, our
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objective is to evaluate the query by visiting the smallest possible number of nodes in
the aR–tree. Assume, for the moment, that we can maintain in memory information
about all cells (i.e., the total number of cells is manageable). While traversing the aR–
tree, we can compute (partial or total) results for various cells. For example, by visiting
the leftmost path of the tree in Figure 2, we know that the result c4.agg for cell c4 is
between 90 (due to the contents of e4) and 140 (due to e3 that overlaps c4). Thus, we can
set lower c4.lb and upper c4.ub bounds for the aggregate result in c4, and accordingly
for all cells in space. In addition, based on the information derived by traversing the
tree, we can maintain a set LB of k cells with the largest lower bounds. The k-th largest
lower bound can be used to prune aR–tree entries (and the corresponding sub-trees) as
follows:

Lemma 1. Let t be the k-th largest lower bound. Let ei be an aR–tree entry. If for all
cells c that intersect ei, c.ub ≤ t, then the subtree pointed by ei cannot contribute to
any top-k result, and thus it can be pruned from search.

The proof of the lemma is straightforward based on the definitions of lower and up-
per bounds. Intuitively, this lemma can be used to terminate the algorithm after we have
computed exactly the contents of some cells and non-visited subtrees overlap only with
cells that cannot end up in the top-k result. Now the question is how we can compute
and update the lower and upper bounds while traversing the tree. Another question is
how should we traverse the tree (i.e., in what order should the nodes be visited) if we
want to maximize the pruning power of Lemma 1. It turns out that both questions are
related; their answers are given by the algorithm described in the next subsection.

4.1 The Basic Algorithm

An entry ei of a subtree (not visited yet) that intersects a number of cells can contribute
at most ei.agg to the aggregate result of the cell. For example, in Figure 2, even though
we do not know the contents of the subtree pointed by e3, we know that c4 can contribute
at most 50 to this cell. In addition, for an entry ei which is totally contained in a cell
c, we know that it contributes exactly ei.agg to c, without having to access the subtree
pointed by ei. For example, visiting the leaf node pointed by e4 is pointless, since the
MBR of the entry is totally contained in c4, thus we know that c4 gets exactly 90 from
this entry. These observations, lead to the design of our top-k OLAP algorithm, which
is described in Figure 3.

During the initialization phase of the algorithm, we visit the root node of the aR–
tree and compute upper and lower bounds for all cells based on their overlap with root
entries (lines 1–9). In our running example, we use e1.agg, e2.agg, e3.agg to compute
c1.ub = 220, c2.ub = 420, c3.ub = 200, etc. In addition, ci.lb = 0 for all cells ci, since
no entry is totally contained in one of them. Assuming that k = 1 (in this example) and
based on the information so far, the algorithm cannot terminate, since the highest lower
bound is smaller than some upper bound.

At this moment, we have to determine which node to visit next. Intuitively, an entry
which intersects the cell with the greatest upper bound should be followed first, in order
to decrease this upper bound and at the same time increase the lower bounds of other
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cells, potentially leading to an early termination of the algorithm. In addition, from
all entries intersecting the cell with the greatest upper bound the one with the largest
e.agg should be visited first, since it is likely to contribute most in the cells it overlaps.
Thus, we prioritize the entries to be visited according to the above criteria, and follow
a best-first search order. In other words, all entries (i.e., subtrees) of the aR-tree that
have not been followed yet are organized in a heap H (i.e., priority queue). The entry
e to be followed next is the one with the greatest e.agg from those intersecting the
cell with the greatest upper bound. In our example, after visiting the root, e1, e2, e3 are
inserted into H and e1 becomes the top element, since it intersects c2 (and c5) having
c2.ub = 420 and e1.agg > e2.agg (e2 also intersects c2 and c5). Lines 10–12 of the
algorithm compute the heap order key for the root entries and insert them to H .

When de-heaping an entry e from H , we visit the corresponding node n at the
aR–tree. Let C be the set of cells intersected by e. The first thing to do is to decrease the
upper bounds of cells in C by e.agg, since these bounds will be refined by the entries
of the new node n. For each entry ei ∈ n again we consider two cases; (i) ei is totally
contained in a cell, or (ii) ei overlaps more than one cells. In the first case, we only
update the lower bound of the covering cell. Otherwise, we add ei.agg to the upper
bounds of all cells that intersect ei. Note that for entries at the leaf level only case (i)
applies. After processing all entries, the upper bounds of all cells in C are updated.
Based on these new bounds, we compute the heap key of the newly processed entries
(only for case (ii) entries) and add them on H . In addition, for entries that are already
in H and intersect any cell in C, we change the positions in H , if necessary, considering
the new upper bounds of these cells.

The algorithm terminates (line 15) if for the entry e that is de-heaped e.ub ≤ t,
where t is the smallest of the top-k results found so far (stored in LB). Indeed if this
condition holds, no cell can potentially have higher aggregate value than the currently
k-th result.

Consider again the example of Figure 2 and assume that we want to find the cell
with the highest aggregate value (i.e., k = 1). We start by examining the three root
entries. We add them on H , after having computed e1.ub = 420, e2.ub = 420, and
e3.ub = 270. e1 becomes the top heap element, since e1.agg > e2.agg.

After de-heaping e1, we load the aR–tree node pointed by it. First, we reduce the
upper bounds of c1, c2, c4, c5 by e1.agg = 220. Entry e4 is totally covered by cell c4,
thus we now have c4.lb = 90. Note that we will never have to visit the node pointed
by e4. c4 now becomes the currently best result and t = 90. Entry e5 overlaps cells
c1 and c2, increasing their upper bounds by e5.agg. Finally, e6 is fully contained in c1

and sets c1.lb = 50. The upper bounds of e2 and e3 are updated to 300 (due to c2) and
140 (due to c4), respectively. In addition, e5 has been added to H with e5.ub = 300
(due to c2). The next entry to be de-heaped is e2. Since e2.ub > t, the algorithm does
not terminate and we load the corresponding node and examine its entries which are all
added on H . The top heap entry is now e7 with e7.ub = 250 (due to c2). Still e7.ub > t
and we pop the pointed node by it, which is a leaf node. The currently best cell now
becomes c6 with c6.lb = 140. In turn, the top heap entry is e8, with e8.ub = 170
(due to c6). After visiting the leaf node pointed by e8, c6.lb becomes 150, which is the
current t. The algorithm now terminates because the next entry popped from H is e3

with e3.ub = 140 < t.
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Algorithm TopkOLAP(aR–tree T , k)
1. LB := ∅; t := 0; c.lb := c.ub := 0, for all cells;
2. n := root(R);
3. for each entry ei ∈ n do
4. if ei.MBR is contained in a cell c then
5. c.lb := c.lb + ei.agg; c.ub := c.ub + ei.agg;
6. add/update c in LB; /*heap of lower bounds*/
7. t := k-th largest value in LB;
8. else /*not contained*/
9. for each cell c intersected by ei set c.ub := c.ub + ei.agg;
10. for each entry ei ∈ n do
11. ei.ub := max{c.ub, ∀ cells c intersected by ei};
12. add ei on a max-heap H ; /*organize H primarily by ei.ub; break ties, using ei.agg*/
13. while notempty(H) do
14. e := H .top;
15. if e.ub ≤ t then break; /*termination condition*/
16. n := load aR–tree node pointed by e;
17. C := all cells c intersected by e;
18. for each cell c ∈ C set c.ub := c.ub − ei.agg;
19. for each entry ei ∈ n do
20. if ei.MBR is contained in a cell c then /* always true if n is a leaf node */
21. c.lb := c.lb + ei.agg; c.ub := c.ub + ei.agg;
22. add/update c in LB;
23. t := k-th largest value in LB;
24. else /*not contained*/
25. for each cell c intersected by ei set c.ub := c.ub + ei.agg;
26. for each entry ei ∈ n not contained in a cell do
27. ei.ub := max{c.ub, ∀ cells c intersected by ei};
28. add ei on H ;
29. for each entry ej ∈ H overlapping some cell in C do
30. ej .ub := max{c.ub, ∀ cells c intersected by ej};
31. update ej’s position in H , if necessary;

Fig. 3. The basic algorithm for top-k OLAP queries

4.2 Minimizing the Memory Requirements

The pseudo-code of Figure 3 shows the basic functionality of our top-k OLAP algo-
rithm. Due to the effective branch-and-bound nature of the algorithm, we can avoid
accessing a large fraction of the aR–tree nodes, resulting in a sub-linear I/O perfor-
mance. However, the basic version of algorithm has large space requirements, since for
each cell we need to maintain and update a lower and upper aggregate bound. If the to-
tal number of cells is larger than the available memory (this can happen when we have
very refined partitions at each dimension), then the algorithm is inapplicable. There-
fore, it is crucial to minimize the number of cells for which we compute and maintain
information. For this purpose, we use the following observations:
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– We need not keep information about cells that are intersected by at most one entry.
At the early phases of the algorithm, the MBRs of the high-level entries we have
seen so far (e.g., the root entries) intersect a large number of cells. However, for a
cell c that is intersected by only one entry ei, we know that c.ub = ei.agg, thus
we do not have to have to explicitly compute and maintain this information. In
addition, for cells intersected by no entry, we need not keep any information at all.
Thus, we maintain information only for cells that are intersected by more than one
entries. This holds only for cells with 0 lower bound; i.e., those for which no partial
aggregate has been computed. On the other hand, we have to maintain any cell c
with a partial aggregate (i.e., with c.lb > 0), if c.ub > t.

– We can keep a single upper bound for all cells intersected by the same set of entries.
Consider two entries that are close in space and jointly affect a contiguous range
of cells. We need not keep an upper bound for each cell, since we can use a single
upper bound for the whole range. Later, if one of the two entries is de-heaped and
the contents of its subtree are loaded, the range of cells is also broken and the
(different) upper bounds for the individual cells are computed.

– We need not keep information about cells that may not end up in the top-k result.
If, for a cell c, we know that c.ub < t, we can prune the cell and never consider it
in computations of lower and upper bounds, for nodes that are visited next.

We implemented an advanced version of the top-k OLAP algorithm, which has
small memory requirements, based on these observations. Initially, we do not keep ex-
plicit upper bounds for the cells, but compute ei.ub for the examined entries, according
to the common cells they intersect. As soon as lower bounds (i.e., partial result) are
computed for cells, we start maintaining cells with c.lb > 0, which may end-up in the
top-k result. In addition, for every entry ei in H , we keep pointers to all candidate cells
(with c.lb > 0) that they overlap, but compute and maintain ei.ub on-the-fly, consider-
ing also cells with c.lb = 0, however, without explicitly maintaining those cells.

For example consider again the top-1 OLAP query on the tree of Figure 2 and as-
sume that we are in the phase of examining the root entries (i.e., lines 3–12 of Figure 3).
Instead of explicitly computing c.ub for each cell overlapped by any entry, and then
computing e1.ub, e2.ub, e3.ub from them, we follow an alternative approach that needs
not materialize c.ub. For each entry (e.g., e1), we compute on-the-fly c.ub for all cells c
it overlaps, by considering the influence of all other entries (e.g., e2, e3) in c. Then we
set as ei.ub the largest c.ub. Later, after e1 is de-heaped and the corresponding node is
loaded, c1.lb and c4.lb are computed and stored explicitly, while these cells can end up
in the top-k result.

4.3 Extensions for Related Problems and Generic Problem Settings

So far, we have described our basic algorithm and optimization techniques for it for the
case of OLAP queries, where we look for the top-k cell in a cuboid with the greatest
sum of a single measure. We now discuss variants of this query and how our algorithm
can be adapted for them.

Iceberg queries. Our top-k OLAP algorithm can also be used to process iceberg queries
(described in Section 2.2). We use exactly the same technique for searching the tree.
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However, the threshold t used for termination is not floating, based on the current top-k
result, but it is a fixed user parameter for the iceberg query. Entries for which ei.ub < t
can be immediately pruned from search. In addition, cells for which the aggregate result
has been computed and it is found no smaller than t, are immediately output. We do not
need priority queues H and LB, but we can apply a simple depth-first traversal of
the tree, to progressively refine the results for cells, until we know that the cell passes
the threshold, or can never pass it, based on the potential aggregate value ranges. This
method is expected to perform much better than the algorithm of [5] (which operates on
raw data) because it utilizes the tree to avoid reading (i.e., prune) cells with aggregate
values lower than t. Note that the algorithm of [5] requires reading all base data at least
once.

Range-restricted top-k OLAP queries. Our algorithm can be straightforwardly adapted
for top-k range OLAP queries, where the top-k cells are not searched in the whole
space, but only in a sub-space defined by a window. For this case, we combine the
window query with the top-k aggregation, by immediately pruning aR–tree entries and
cells that do not intersect the window. Apart from that, the algorithm is exactly the
same.

Arbitrary partitionings. In spatial OLAP, the regions of interest, for which data are ag-
gregated and the top-k of them are selected, may not be orthocanonical (i.e., defined by
some grid), but they could have arbitrary shape (e.g., districts in a city). Our algorithm
can be adapted also for arbitrary regions as follows. When the aR–tree root is loaded,
we spatially join the MBRs of the root entries to the extents of the regions. Thus, we
define a bipartite graph, that connects regions to entries that overlap them. When an en-
try e is de-heaped, the graph is used to immediately find the regions it affects, in order
(i) to compute upper bounds for the regions, based on e’s children and (ii) to extend the
graph by connecting the newly en-heaped entries (i.e., the children of e) that partially
overlap some of these regions.

Query dimensionality. So far, we have assumed that there is an aR–tree for each com-
bination of dimensions that could be in a top-k OLAP query. Nevertheless, as already
discussed, it is usually impractical or infeasible to materialize and index even the most
refined data level (i.e., the fact table) for all combinations of dimensions. Thus, a prac-
ticable approach is to index only certain dimensional combinations. Our algorithm can
also be applied for top-k OLAP queries, where the set of dimensions is a subset of
an indexed dimensional set. In this case, instead of cells, the space is divided into
hyper-stripes defined by the partitionings of only those dimensions of the top-k OLAP
query. For the remaining dimensions, the whole dimensional range is considered for
each partition. For instance, consider an aR–tree on dimensions 〈time, product,
store-location〉 and a top-k OLAP query on dimensions 〈product, store-
location〉. We can use the aR–tree to process the query, however, disregarding the
time dimension in the visited entries (and of course in the partitionings).

Non-contiguous ranges. We have assumed each partition of a particular dimension,
defines a contiguous range on the base data. For example, in an OLAP query about
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product-types, we assume that the product-ids are ordered or clustered based on product-
type. However, this might not be the case, for all hierarchical groupings of the same
dimension. For instance, we cannot expect the domain of product-ids to be ordered or
clustered by both product-type and product-color. In order to solve this problem, we
consider as a different dimension each ordering at the most refined level of an original
dimension (according to the hierarchies of the dimension). In other words, we treat as
different dimensions two orderings of product-ids; one based on product-type and one
based on product-color. Given an arbitrary OLAP query, we use the set of dimensions,
where each dimension is ordered (at the finest granularity level) such that the OLAP
partitionings are contiguous in the domains of the individual dimensions.

Multiple measures and different aggregate functions. So far, we considered a single
measure (e.g., sales quantity) and aggregate function (i.e., sum). As discussed in [10,14],
the aR–tree could be augmented with information about multiple measures and more
than one aggregate functions (i.e., sum, count, min, max). Our method is straightfor-
wardly applied for arbitrary aggregations of the various measures, assuming that the
aR–tree on which it operates supports the measure and aggregate function of the query.

5 Experimental Evaluation

We evaluated the efficiency of the proposed top-k OLAP algorithm, using synthetically
generated and real spatial data. We compared our algorithm to the naive approach of
scanning the data and computing on-the-fly the aggregate results for each cell, while
maintaining at the same time the top-k cells with the largest aggregate results. Un-
less otherwise stated, we assume that we can allocate a counter (i.e., partial measure)
for each cell in memory, a reasonable assumption for most queries. In the case where
memory is not enough for these counters, the naive approach first hashes the data into
disk-based buckets corresponding to groups of cells and then computes the top-k result
at a second pass over these groups. We use I/O cost as a primary comparison factor,
as the computational cost is negligible compared to the cost of accessing the data. The
naive method and our top-k OLAP algorithm were implemented on a 2.4GHz Pentium
4 PC with 512 Mb of memory.

5.1 Description of Data

Our synthetic data are d-dimensional points generated uniformly in a [1 : 10000]d map.
We use the following approach in order to generate the measure of each point. First,
we randomly choose 10 anchor points in the data space. To generate the measure for a
point, we fist find its nearest anchor point and its distance to it. All potential distances of
points to their nearest anchor were discretized using 1000 bins. The measure assigned
to a point follows a Zipfian distribution favoring small distances. The measure value
corresponding to the largest distance is 1. The remaining measures were normalized
based on this value. The generator simulates an OLAP application, where most of the
transactions (i.e., points) have similar and small measures, whereas there are few, large
transactions.
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We also used a non-uniform dataset; a 2D spatial dataset containing 400K road
segments of North America.1 We assigned a measure at the center of each segment,
using the same methodology as for the synthetic data described above. The resulting
dataset models a collection of traffic measurements on various roads of a real map.

5.2 Experimental Results

In the first set of experiments, we compare the efficiency and memory requirements of
our algorithm for top-k OLAP queries, compared to the naive approach on the synthetic
data, for various data generation and query parameters. The default data generation
parameter values are N=200K points (i.e., fact table tuples), d=2 dimensions, and θ=1
for the Zipfian distribution of measures. Unless otherwise stated, we set the page (and
aR–tree node) size to 1Kb. For top-k queries, the default parameter values are k = 16
and c = 10000 total group-by cells (e.g., 100 × 100 cells for a 2D dataset).

The first experiment compares our algorithm to the naive approach for various sizes
of the base data, using the default values for the other parameters. Figure 4 shows the
results. Our top-k OLAP algorithm incurs an order of magnitude fewer I/O accesses
compared to the naive approach, due to its ability to prune early aR–sub-trees that do
not contain query results. The performance gap grows with N , because the aR–tree node
extents become smaller and there are higher chances for node MBRs to be contained in
cells and not accessed.
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Fig. 4. Performance as a function of database size

Next, we evaluate the efficiency of our approach as a function of the skew on the
measures (Figure 5). We used the default data generation parameters and varied the
values of θ to 0, 0.5, 1, 1.5, 2. As expected, the efficiency of our method increases with
θ, because the top-k cells become more distinguishable from the majority of cells with
low aggregate values. On the other hand, for uniform measures (recall that the points
are also uniform), our algorithm becomes worse than the naive approach; it accesses
all aR–tree pages (more than the data blocks due to the lower node utilization). In this
case, the top-k results are indistinguishable from the remaining cells, since all cells have
more or less the same aggregate value.

1 collected and integrated from http://www.maproom.psu.edu/dcw/
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Fig. 5. Performance as a function of skew on the measure values

We also validated efficiency as a function of k; the number of cells with the high-
est values to be retrieved. As Figure 6 shows, the cost of our method increases with
k, although not dramatically. The reason is that for large values of k, the k-th result
becomes less indistinguishable from the average cells (or else, the k-th result becomes
less different than the k+1-th).
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Fig. 6. Performance as a function of k

So far, we have assumed a fixed number of cells (100 × 100). We now evaluate the
performance of our method when this value changes. Figure 7a shows the I/O cost of
our method as a function of the number of partitions at each dimension. The dimen-
sionality is fixed to d = 2, so the total number of cells is the square of the partitions
per dimension. In general, the performance of our algorithm decreases with c, but not
dramatically. For as few as c = 10 × 10 cells, our method accesses many nodes be-
cause k = 16 is relatively high compared to the number of cells and there is no great
difference between the k-th and k+1-th cell.

We also plot the memory requirements of the two algorithms in Figure 7b. The
memory usage is measured in terms of cells for which lower bounds (or partial measures
for the naive approach) are explicitly maintained in memory in the worst case. For



Evaluation of Top-k OLAP Queries Using Aggregate R–Trees 251

the naive algorithm this corresponds to the total number of cells, assuming that the
memory is large enough to accommodate them. For our algorithm (see Section 4.2),
the memory requirements are also dominated by the number of cells, which is expected
to be much larger than the number of entries in the heap. The number of cells for
which we have to keep information in memory is not constant; initially it increases, it
reaches a peak, and then decreases. Here, we plot the peak number of cells. Observe
that for small c our method has similar memory requirements to the naive approach.
However, the memory requirements of our method increase almost linearly with the
number of partitions per dimension, as opposed to the naive approach which requires
O(c) memory (i.e., quadratic to the number of partitions per dimension). This is a very
important advantage of our approach, because memory savings are more important for
large values of c, e.g., where c exceeds the available memory.

 0

 1000

 2000

 3000

 4000

 5000

 50  100  150  200  250  300  350  400  450  500

I/O

partitions per dimension

naive
topkOLAP

 0

 50000

 100000

 150000

 200000

 250000

 300000

 50  100  150  200  250  300  350  400  450  500

m
em

or
y

partitions per dimension

naive
topkOLAP

(a) I/O cost (b) memory requirements

Fig. 7. Performance varying the number of partitions

Figure 8 shows the performance of our algorithm, when varying the problem di-
mensionality d. The total number of cells is fixed to c = 10000, which implies that
the partitions per dimension decrease with d. Note that for few dimensions (2 or 3)
our method performs well, however, for higher dimensional values, it may access sim-
ilar or more pages compared to the naive approach. This behavior can be attributed to
two facts. First, as the dimensionality increases, the performance of multi-dimensional
structures (like the aR–tree) deteriorates. The bounding hyper-rectangles become less
tight with more empty space. In addition, their extents are larger and it becomes unlikely
that they separate well the top-k cells from cells of small aggregate values. Second, as d
increases, the extents of cells at each dimension become larger, thus more aR–tree nodes
overlap the cells in the result, as well as other, irrelevant cells. Thus, our method is es-
pecially useful for low (2 or 3) dimensional data (like spatial OLAP data), or skewed
high-dimensional data.

The next experiment evaluates the efficiency of our approach for top-k spatial OLAP
queries. We used the spatial dataset and generated a measure for each point in it, accord-
ing to their distance to the nearest of 10 random anchor points (θ = 1). Figure 9a shows
that our algorithm is very efficient compared to the naive approach for a wide range of
spatial partitionings. In Figure 9b, we compare the two methods for 100 × 100 cells
and different values of θ, when generating the measures. Our top-k OLAP algorithm is
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Fig. 8. Performance with respect to dimensionality

more efficient than the naive approach, even for uniform measures. Due to the spatial
skew, many cells are empty and there is large difference in the aggregate values of cells,
making our method very effective in pruning the search space. In addition, the data are
very dense, compared to the uniform points in the synthetically generated datasets, and
many nodes of the aR–tree need not be loaded as they are included in cells. Overall,
our method is very efficient when either the data points or the measures are skewed,
a realistic case especially in spatial data warehouses (since most real spatial data are
skewed by nature).
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Fig. 9. Performance for spatial OLAP queries

6 Conclusions

In this paper, we studied a new and important query type for on-line analytical process-
ing; the top-k OLAP query. We proposed a branch-and-bound technique that operates
on an aR–tree and computes the result of the query, by accessing only a part of the tree.
We proposed an effective optimization that greatly reduces the memory requirements
of our method, rendering it applicable even to queries with a huge number of candi-
date results (i.e., cells of the partitioned space). Experiments confirm the efficiency of
our approach, compared to a conventional hash-based approach that does not utilize
existing indexes.



Evaluation of Top-k OLAP Queries Using Aggregate R–Trees 253

References

1. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and
S. Sarawagi. On the computation of multidimensional aggregates. In Proc. of VLDB, pages
506–521, 1996.

2. R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In Proc. of
ICDE, pages 232–243, 1997.

3. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*–tree: An efficient and robust
access method for points and rectangles. In Proc. of ACM SIGMOD, pages 220–231, 1990.

4. K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg CUBEs. In
Proc. of ACM SIGMOD, 1999.

5. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing
iceberg queries efficiently. In Proc. of VLDB, 1998.

6. J. Han, N. Stefanovic, and K. Koperski. Selective materialization: An efficient method for
spatial data cube construction. pages 144–158, 1998.

7. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In
Proc. of ACM SIGMOD, pages 205–216, 1996.

8. R. Kimball. The Data Warehouse Toolkit. John Wiley, 1996.
9. Y. Kotidis and N. Roussopoulos. An alternative storage organization for ROLAP aggregate

views based on cubetrees. In Proc. of ACM SIGMOD, pages 249–258, 1998.
10. I. Lazaridis and S. Mehrotra. Progressive approximate aggregate queries with a multi-

resolution tree structure. In Proc. of ACM SIGMOD, 2001.
11. Z. X. Loh, T. W. Ling, C.-H. Ang, and S. Y. Lee. Analysis of pre-computed partition top

method for range top-k queries in OLAP data cubes. In Proc. of CIKM, pages 60–67, 2002.
12. I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and summary tables

in a warehouse. In Proc. of ACM SIGMOD, pages 100–111, 1997.
13. Ondelette.com. Data Warehousing and OLAP: A research-oriented bibliography. In

http://www.ondelette.com/OLAP/dwbib.html, 2005.
14. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data

warehouses. In Proc. of SSTD, 2001.
15. T. B. Pedersen and N. Tryfona. Pre-aggregation in spatial data warehouses. In Proc. of SSTD,

pages 460–480, 2001.
16. M. Zhu, D. Papadias, J. Zhang, and D. Lee. Top-k spatial joins. IEEE TKDE, 17(4):567–579,

2005.


	Introduction
	Related Work
	Spatial OLAP
	Iceberg Queries
	Top-$k$ Aggregate Queries

	Problem Formulation
	Processing Top-$k$ OLAP Queries Using an aR--Tree
	The Basic Algorithm
	Minimizing the Memory Requirements
	Extensions for Related Problems and Generic Problem Settings

	Experimental Evaluation
	Description of Data
	Experimental Results

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


