
Optimization of Spatial Joins on Mobile Devices

Nikos Mamoulis1, Panos Kalnis2, Spiridon Bakiras3, and Xiaochen Li2

1 Department of Computer Science and Information Systems
University of Hong Kong
Pokfulam Road, Hong Kong

nikos@csis.hku.hk
2 Department of Computer Science
National University of Singapore
{kalnis,g0202290}@nus.edu.sg

3 Department of Electrical and Electronic Engineering
University of Hong Kong
Pokfulam Road, Hong Kong

sbakiras@eee.hku.hk

Abstract. Mobile devices like PDAs are capable of retrieving informa-
tion from various types of services. In many cases, the user requests
cannot directly be processed by the service providers, if their hosts
have limited query capabilities or the query combines data from vari-
ous sources, which do not collaborate with each other. In this paper, we
present a framework for optimizing spatial join queries that belong to
this class. We presume that the connection and queries are ad-hoc, there
is no mediator available and the services are non-collaborative. We also
assume that the services are not willing to share their statistics or indexes
with the client. We retrieve statistics dynamically in order to generate
a low-cost execution plan, while considering the storage and computa-
tional power limitations of the PDA. Since acquiring the statistics causes
overhead, we describe an adaptive algorithm that optimizes the overall
process of statistics retrieval and query execution. We demonstrate the
applicability of our methods with a prototype implementation on a PDA
with wireless network access.

1 Introduction

The rapid development of mobile gadgets with computational, storage, and net-
working capabilities, has made possible for the user to connect to various dis-
tributed services and process information from them in an ad-hoc manner. In the
common distributed data/service model there exist several services and global
information is distributed to them based on theme and/or location. Spatial infor-
mation is not an exception; spatial data are distributed and managed by various
services depending on the location and the service type. For example, there
could be a specialized service for querying census data from Long Beach county
and a separate service for querying tourist data from the same area. This de-
centralized model is cheap, efficient, easily maintainable, and avoids integration
constraints (e.g., legacy constraints).

T. Hadzilacos et al. (Eds.): SSTD 2003, LNCS 2750, pp. 233–251, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

234 Nikos Mamoulis et al.

In many practical cases, complex queries need to combine information from
multiple sources. As an example, consider the spatial join between two datasets
which are hosted on two different servers. Server A hosts a database with in-
formation about hotels and other tourist services. Server B is a GIS server,
providing information about the physical layers in a region (e.g., rivers, urban
areas, forests, etc.). The user is a visitor and a nature lover who wants to find
hotels which are close to forests. The query can be formed as a distance join:
“find all hotels which are at most 2 km from a forest”.

Since information about hotels and forests are provided by different services,
the query cannot be processed by either of them. Typically, queries to multiple,
heterogeneous sources are handled by mediators which communicate with the
sources and integrate information from them via wrappers. Mediators can use
statistics from the sources to optimize the queries. However, there are several
reasons why this architecture may not be appropriate or feasible. First, the ser-
vices may not be collaborative; they may not be willing to share their data with
other services or mediators, allowing only simple users to connect to them. Sec-
ond, the user requests may be ad-hoc and not supported by existing mediators.
Third, the user may not be interested in using the service by the mediator, if
she has to pay for this; retrieving the information directly from the sources may
be less expensive.

Thus, we assume that the query should be evaluated at the client’s side, on
the mobile device. In this communication model, the user is typically charged by
the bulk of transferred data (e.g., transferred bytes/packets), rather than by the
time she stays connected to the service. We are therefore interested in minimizing
the downloaded information from the services, instead of the processing cost at
the servers. Another (realistic) assumption is that the services are not willing to
share their statistics or indexes with the user. Therefore, information can only
be downloaded by means of queries (which are supported by the service), like
window queries, for instance.

In this paper, we describe MobiHook1, a framework for optimizing complex
distributed spatial operations on mobile devices such as wireless PDAs. As a spe-
cial case, we consider the evaluation of spatial joins [3, 7], where the joined infor-
mation is retrieved by two different services. We provide an evaluation algorithm
that aims to minimize the transferred information instead of the processing time
of the queries. Indeed, the user is typically willing to sacrifice a few seconds in
order to minimize the query cost in dollars.

For efficient processing, we propose a query evaluation paradigm, which
adapts to the data characteristics. First, the device downloads some statisti-
cal information, which is dynamically computed at the servers by submitting
aggregate queries to them. With the help of these summaries, the mobile client
is then able to minimize the data that have to be downloaded in order to process
the query. For the distance join example we first retrieve some statistics which
describe the distribution of data in each dataset. Based on these, we can avoid
downloading information which cannot possibly participate in the result. For
1 MobiHook is an acronym for MOBIle, ad-HOc hoOKing on distributed services.

Optimization of Spatial Joins on Mobile Devices 235

instance, by applying a cheap (in terms of transferred data) query to the forests
server, we can conclude that in some (e.g., urban or desert) areas there are no
forests. This information will later help us avoid downloading any hotels in these
areas.

Every partition of the data space is examined independently and the query
optimizer decides the physical operator that will be applied. Therefore, depend-
ing on the retrieved statistics, different fragments can be processed by different
physical operators (adaptivity). The optimizer may also choose to recursively
obtain more statistics for some partitions, if the overhead is justified, based on
a detailed cost model. Retrieving and processing summaries prior to actual data
has the additional advantage of facilitating interactive query processing. By pro-
cessing summary information we are able to provide estimates about the query
result and the cost of transferring the actual data in order to process it. The
user may then choose to restrict the query to specific regions, or tighten the
constraints in order to retrieve more useful results.

The rest of the paper is organized as follows. Section 2 defines the problem
formally, describes types of spatial queries that fit in the framework, and dis-
cusses related work. Section 3 presents the spatial join algorithm and the cost
model which is used by the query optimizer. The proposed techniques are ex-
perimentally evaluated in Section 4. Finally, Section 5 concludes the paper with
a discussion about future work.

2 Problem Definition

Let q be a spatial query issued at a mobile device (e.g., PDA), which combines
information from two spatial relations R and S, located at different servers.
Let bR and bS be the cost per transferred unit (e.g., byte, packet) from the
server of R and S, respectively. We want to minimize the cost of the query with
respect to bR and bS . Here, we will focus on queries which involve two spatial
datasets, although in a more general version the number of relations could be
larger.

The most general query type that conforms to these specifications is the
spatial join, which combines information from two datasets according to a spatial
predicate. Formally, given two spatial datasets R and S and a spatial predicate θ,
the spatial join R ✶θ S retrieves the pairs of objects 〈oR, oS〉, oR ∈ R, and oS ∈
S, such that oR θ oS . The most common join predicate for objects with spatial
extent is intersects [3].

Another popular spatial join operator is the distance join [9, 7, 16]. In this
case the object pairs 〈oR, oS〉 that qualify the query should be within distance ε.
The Euclidean distance is typically used as a metric. Variations of this query are
the closest pairs query [4], which retrieves the k object pairs with the minimum
distance, and the all nearest neighbor query [19], which retrieves for each object
in R its nearest neighbor in S.

In this paper we deal with the efficient processing of intersection and distance
joins under the transfer cost model described above. Previous work (e.g., [3, 7])

236 Nikos Mamoulis et al.

has mainly focused on processing the join using hierarchical indexes (e.g., R–
trees [6]). Since access methods cannot be used to accelerate processing in our
setting, we consider hash-based techniques [14].

Although the distance join is intuitively a useful operator for a mobile user,
its result could potentially be too large. Large results are usually less inter-
pretable/useful to the user and they are potentially more expensive to derive.
She might therefore be interested in processing queries of high selectivity with
potentially more useful results. A spatial join query of this type is the iceberg
distance semi-join operator. This query differs from the distance join in that it
asks only for objects from R (i.e., semi-join), with an additional constraint: the
qualifying objects should ‘join’ with at least m objects from S. As a representa-
tive example, consider the query “find the hotels which are close to at least 10
restaurants”. In pseudo-SQL the query could be expressed as follows:

SELECT H.id
FROM Hotels H, Restaurants R
WHERE dist(H.location,R.location)≤ ε
GROUP BY H.id
HAVING COUNT(*)≥ m ;

2.1 Related Work

There are several spatial join algorithms that apply to centralized spatial
databases. Most of them focus on the filter step of the spatial intersection join.
Their aim is to find all pairs of object MBRs (i.e., minimum bounding rectan-
gles) that intersect. The qualifying candidate object pairs are then tested on
their exact geometry at the final refinement step. Although these methods were
originally proposed for intersection joins, they can be easily adapted to pro-
cess distance joins, by extending the objects from both relations by ε/2 on each
axis [9, 12].

The most influential spatial join algorithm [3] presumes that the datasets are
indexed by hierarchical access methods (i.e., R–trees). Starting from the roots,
the trees are synchronously traversed, following entry pairs that intersect. When
the leaves are reached, intersecting object MBRs are output. This algorithm is
not directly related to our problem, since server indexes cannot be utilized, or
built on the remote client. Another class of spatial join algorithms applies on
cases where only one dataset is indexed [13]. The existing index is used to guide
hashing of the non-indexed dataset. Again, such methods cannot be used for our
settings.

On the other hand, spatial join algorithms that apply on non-indexed data
could be utilized by the mobile client to join information from the servers.
The Partition Based Spatial Merge (PBSM) join [14] uses a regular grid to
hash both datasets R and S into a number of P partitions R1, R2, . . . , RP

and S1, S2, . . . , SP , respectively. Objects that fall into more than one cells are
replicated to multiple buckets. The second phase of the algorithm loads pairs

Optimization of Spatial Joins on Mobile Devices 237

A B C D

1

2

3

4

(a) dataset R

A B C D

1

2

3

4

(b) dataset S

Fig. 1. Two datasets to be joined

of buckets Rx with Sx that correspond to the same cell(s) and joins them in
memory. To avoid ending up with partitions with significant differences in size,
in case the datasets are skewed, a tiling scheme paired with a hash function is
used to assign multiple cells to the same hash bucket.

Figure 1 illustrates an example of two hashed datasets. Notice that MBRs
that span grid lines are hashed to multiple cells (i.e., the cells that they intersect).
The side-effect is that the size of hashed information is larger than the original
datasets. Moreover, a duplicate removal technique is required in order to avoid
reporting the same pair of objects twice, if they happen to be hashed to more
than one common buckets. For instance, the objects than span the border of
cells B2 and B3 could be reported twice, if no duplicate removal is applied.
Techniques that avoid redundancy in spatial joins are discussed in [5, 12]. Finally,
PBSM is easily parallelizable; a non-blocking, parallel version of this algorithm
is presented in [12]. The data declustering nature of PBSM makes it attractive
for use for the problem studied in this paper. Details are discussed in Section 3.
Alternative methods for joining non-indexed datasets were proposed in [11, 2].

The problem of evaluating nearest neighbor queries on remote spatial
databases is studied in [10]. The server is assumed to evaluate only window
queries, thus the client has to estimate the minimum window that contains the
query result. The authors propose a methodology that estimates this window
progressively or approximates it using statistics from the data. However, they
assume that the statistics are available at the client’s side. In our work, we deal
with the more complex problem of spatial joins from different sources, and we do
not presume any statistical information at the mobile client. Instead, we generate
statistics by sending aggregate queries, as explained in Section 3.

Distributed processing of spatial joins has been studied in [17]. Datasets are
indexed by R–trees, and the intermediate levels of the indices are transferred
from the one site to the other, prior to transferring the actual data. Thus, the
join is processed by applying semi-join operations on the intermediate tree level
MBRs in order to prune objects, minimizing the total cost. Our work is different,
since we assume that the sites do not collaborate with each other, and they do
not publish their index structures.

238 Nikos Mamoulis et al.

Many of the issues we are dealing here also exist in distributed data man-
agement with mediators. Mediators provide an integrated schema for multiple
heterogeneous data sources. Queries are posed to the mediator, which constructs
the execution plan and communicates with the sources via custom-made wrap-
pers. The HERMES [1] system tracks statistics from previous calls to the sources
and uses them to optimize the execution of a new query. This method is not ap-
plicable in our case, since we assume that the connections are ad-hoc and the
queries are unlikely to share modules with previous retrievals from the services.
DISCO [18], on the other hand, retrieves cost information from wrappers during
the initialization process. This information is in the form of logical rules which
encode classical cost model equations. Garlic [15] also obtains cost information
from the wrappers during the registration phase. In contrast to DISCO, Garlic
poses simple aggregate queries to the sources in order to retrieve the statistics.
Our statistics retrieval method is closer to Garlic. Nevertheless, both DISCO
and Garlic acquire cost information during initialization and use it to optimize
all subsequent queries, while we optimize the entire process of statistics retrieval
and query execution for a single query. The Tuckila [8] system also combines
optimization with query execution. It first creates a temporary execution plan
and executes only parts of it. Then, it uses the statistics of the intermediate
results to compute better cost estimations, and refines the rest of the plan. Our
approach is different, since we optimize the execution of the current (and only)
operator, while Tuckila uses statistics from the current results to optimize the
subsequent operators.

3 Spatial Joins on a Mobile Device

As discussed already, we cannot use potential indexes on the servers to evaluate
spatial join queries. On the other hand, it is a realistic assumption that the hosts
can evaluate simple queries, like spatial selections. In addition, we assume that
they can provide results to simple aggregate queries, like for example “find the
number of hotels that are included in a spatial window”. Notice that this is not
a strong assumption, since the results of a window query may be too many to
be accommodated in the limited resources of the PDA. Therefore, it is typical
for the mobile client to first wait for an acknowledgment about the size of the
query result, before retrieving it.

Since the price to pay here is the communication cost, it is crucial to minimize
the information transferred between the PDA and the servers during the join; the
time length of connections between the PDA and the servers is free in typical
services (e.g., mobile phones), which charge users based on the traffic. There
are two types of information interchanged between the client and the server
application: (i) the queries sent to the server and (ii) the results sent back by
the server. The main issue is to minimize this information for a given problem.

The simplest way to perform the spatial join is to download both datasets to
the client and perform the join there. We consider this as an infeasible solution
in general, since mobile devices are usually lightweight, with limited memory

Optimization of Spatial Joins on Mobile Devices 239

and processing capabilities. First, the relations may not fit in the device which
makes join processing infeasible. Second, the processing cost and the energy con-
sumption on the device could be high. Therefore we have to consider alternative
techniques.

3.1 A Divisive Approach

A divide-and-conquer solution is to perform the join in one spatial region at
a time. Thus, the dataspace is divided into rectangular areas (using, e.g. a regular
grid), a window query is sent for each cell to both sites, and the results are joined
on the device using a main memory join algorithm (e.g., plane sweep [2]). Like
PBSM [14], a hash-function can be used to bring multiple tiles at a time and
break the result size more evenly. However, this would require multiple queries
to the servers for each partition. The duplicate avoidance techniques of [5, 12]
can also be employed here to avoid reporting a pair more than once.

As an example of an intersection join, consider the datasets R and S of
Figure 1 and the imaginary grid superimposed over them. The join algorithm
applies a window query for each cell to the two servers and joins the results.
For example, the hotels that intersect A1 are downloaded from R, the forests
that intersect A1 are downloaded from S, and these two window query results
are joined on the PDA. In the case of a distance join, the cells are extended
by ε/2 at each side before they are sent as window queries. A problem with
this method is that the retrieved data from each window query may not fit in
memory. In order to tackle this, we can send a memory limit constraint to the
server together with the window query and receive either the data, or a message
alarming the potential memory overflow. In the second case, the cell can be
recursively partitioned to a set of smaller window queries, similar to the recursion
performed by PBSM [14].

3.2 Using Summaries to Reduce the Transfer Cost

The partition-based technique is sufficiently good for joins in centralized sys-
tems, however, it requires that all data from both relations are read. When the
distributions in the joined datasets vary significantly, there may be large empty
regions in one which are densely populated in the other. In such cases, the simple
partitioning technique potentially downloads data that do not participate in the
join result. We would like to achieve a sublinear transfer cost for our method, by
avoiding downloading such information. For example, if some hotels are located
in urban or coastal regions, we may avoid downloading them from the server,
if we know that there are no forests close to this region with which the hotels
could join. Thus, it would be wise to retrieve a distribution of the objects in both
relations before we perform the join. In the example of Figure 1, if we know that
cells C1 and D1 are empty in R, we can avoid downloading their contents from S.

The intuition behind our join algorithm is to apply some cheap queries first,
which will provide information about the distribution of objects in both datasets.
For this, we pose aggregate queries on the regions before retrieving the results

240 Nikos Mamoulis et al.

from them. Since the cost on the server side is not a concern2, we first apply
a COUNT query for the current cell on each server, before we download the
information from it. The code in pseudo-SQL for a specific window w (e.g.,
a cell) is as follows (assuming an intersection join):

Send to server H:
SELECT COUNT(*) as c1
FROM Hotels H
WHERE H.area INTERSECTS w
If (c1>0) then
Send to server F:
SELECT COUNT(*) as c2
FROM Forests F
WHERE F.area INTERSECTS w
If (c2>0) then
SELECT * FROM
(SELECT * FROM Hotels H AS HW WHERE H.area INTERSECTS w),
(SELECT * FROM Forests F AS FW WHERE F.area INTERSECTS w)
WHERE HW.area INTERSECTS FW.area

Naturally, this implementation avoids loading data in areas where some of
the relations are empty. For example, if there is a window w where the number
of forests is 0, we need not download hotels that fall inside this window. The
problem that remains now is to set the grid granularity so that (i) the downloaded
data from both relations fit into the PDA, so that the join can be processed
efficiently, (ii) the empty area detected is maximized, (iii) the number of queries
(messages) sent to the servers is small, and (iv) data replication is avoided as
much as possible.

Task (i) is hard, if we have no idea about the distribution of the data. Luckily,
the first (aggregate) queries can help us refine the grid. For instance, if the sites
report that the number of hotels and forests in a cell are so many that they will
not fit in memory when downloaded, the cell is recursively partitioned. Task (ii)
is in conflict with (iii) and (iv). The more the grid is refined, the more dead space
is detected. On the other hand, if the grid becomes too fine, many queries will
have to be transmitted (one for each cell) and the number of replicated objects
will be large. Therefore, tuning the grid without apriori knowledge about the
data distribution is a hard problem.

To avoid this problem, we refine the grid recursively, as follows. The gran-
ularity of the first grid is set to 2 × 2. If a quadrant is very sparse, we may
choose not to refine it, but download the data from both servers and join them
on the PDA. If it is dense, we choose to refine it because (a) the data there may
not fit in our memory, and (b) even when they fit, the join would be expensive.
In the example of Figure 1, we may choose to refine quadrant AB12, since the
2 In fact, this query may not be expensive, if the server maintains precomputed ag-
gregates or employs aggregate spatial indexes.

Optimization of Spatial Joins on Mobile Devices 241

aggregate query indicates that this region is dense (for both R and S in this
case), and avoid refining quadrant AB34, since this is sparse in both relations.

3.3 Handling Bucket Skew

In some cells, the density of the two datasets may be very different. In this
case, there is a high chance of finding dead space in one of the quadrants in the
sparse relation, where the other relation is dense. Thus, if we recursively divide
the space there, we may avoid loading unnecessary information from the dense
dataset. In the example of Figure 1, quadrant CD12 is sparse for R and dense
for S; if we refined it, we would be able to prune cells C1 and D1.

On the other hand, observe that refining such partitions may have a counter-
effect in the overall cost. By applying additional queries to very sparse regions we
increase the traffic cost by sending extra window queries with only a few results.
For example, if we find some cells where there is a large number of hotels but
only a few forests, it might be expensive to draw further statistics from the hotels
database, and at the same time we might not want to download all hotels. For
this case, it might be more beneficial to stop drawing statistics for this area and
perform the join as a series of selection queries, one for each forest. Recall that
a potential (nested-loops) technique for R ✶ S is to apply a selection to S for
each r ∈ R. This method can be fast if |R| << |S|. Thus, the join processing for
quadrant CD12 proceeds as follows (a) download all forests intersecting CD12,
(b) for each forest apply a window query on the hotels. This method will yield
a lot of savings if the hotels from that cell that participate in the join are only
a few.

The point to switch from summary retrieval to window queries depends on
the cost parameters and the size of the smallest partition (e.g., forests). In the
next section, we provide a methodology that recursively partitions the dataspace
using statistical information terminating at regions where it is more beneficial to
download the data from both sites and perform the join on the PDA or download
the objects from one server only and process the join by sending them as queries
to the other.

3.4 A Recursive, Adaptive Spatial Join Algorithm

By putting everything together, we can now define the proposed algorithm for
spatial joins on a mobile device. We assume that the servers support the following
queries:

– WINDOW query: return all the objects intersecting a window w.
– COUNT query: return the number of objects intersecting a window w.
– ε-RANGE query: return all objects within distance ε from a point p.

The MobiJoin algorithm is based on the divisive approach and it is recursive;
given a rectangular area w of the data space (which is initially the MBR of the
joined datasets) and the cardinalities of R and S in this area, it may choose

242 Nikos Mamoulis et al.

to perform the join for this area, or recursively partition the data space to
smaller windows, collect finer statistics for them, and postpone join processing.
Therefore, the algorithm is adaptive to data skew, since it may follow a different
policy depending on the density of the data in the area which is currently joined.

Initially, the algorithm is called for datasets R and S, considering as w the
intersection of their MBRs. For this, we have to apply two queries to each server.
The first is an aggregate query (easily expressed in SQL) asking for the maximum
and minimum coordinates of the objects, which define the MBR of the dataset.
The intersection w of the MBRs of R and S defines the space the joined results
should intersect. If the distribution of the datasets is very different, w can be
smaller than the map window that encloses them and many objects can be
immediately pruned. The second query retrieves the number of objects from
each dataset intersecting w (i.e., a COUNT query).

Let Rw.count and Sw.count be the number of objects from R and S, respec-
tively, intersected by w. The recursive MobiJoin algorithm is shown in Figure 2.
If one of the Rw.count and Sw.count is 0, the algorithm returns without elabo-
rating further on the data. Else, the algorithm employs a cost model to estimate
the cost for each of the potential actions in the current region w: (1) download
the objects that intersect w from both datasets and perform the join on the
PDA, (2) download the objects from R that intersect w and send them as se-
lection queries to S, (3) download the objects from S that intersect w and send
them as selection queries to R, and (4) divide w into smaller regions w′ ∈ w,
retrieve refined statistics for them, and apply the algorithm recursively there.

Action (1) may be constrained by the resource constraints on the PDA.
Actions (2) and (3) may have different costs depending on which of the Rw.count
and Sw.count is the smallest and the communication costs with each of the
sites. Finally, the cost of action (4) is the hardest to estimate; for this we use
probabilistic assumptions for the data distribution in the refined partitions, as
explained in the next section.

3.5 The Cost Model

In this section, we describe a cost model that can be used in combination with
MobiJoin to facilitate the adaptivity of the algorithm. We provide formulae,
which estimate the cost of each of the four potential actions that the algorithm
may choose. Our formulae are parametric to the characteristics of the network
connection to the mobile client. For simplicity, we consider distance joins between
point sets instead of intersection joins. However, the formulae can be easily
adapted for intersection joins.

The largest amount of data that can be transferred in one physical frame
on the network is referred to as MTU (Maximum Transmission Unit). The
size of the MTU depends on the specific protocol; Ethernet, for instance, has
MTU = 1500 bytes, while dial-up connections usually support MTU = 576
bytes. Each transmission unit consists of a header and the actual data. The
largest segment of TCP data that can be transmitted is called MSS (Maximum

Optimization of Spatial Joins on Mobile Devices 243

// R and S are spatial relations located at different servers
// w is a window region
// Rw.count (resp. Sw.count) is the number
// of objects from R (resp. S), which intersect w
MobiJoin(R,S,w,Rw.count,Sw.count)
1. if Rw.count = 0 or Sw.count = 0 then terminate;
2. c1(w) = cost of downloading Rw.count objects from R

and Sw.count objects from S and joining them on the PDA;
3. c2(w) = cost of downloading Rw.count objects from R, send them

as window queries to server that hosts S and receive the results;
4. c3(w) = cost of downloading Sw.count objects from S, send them

as window queries to server that hosts R and receive the results;
5. c4(w) = cost of applying recursive counting in Rw.count and Sw.count,

retrieve more detailed statistics, and apply MobiJoin recursively;
6. cmin = min{c1(w), c2(w), c3(w), c4(w)};
7. if cmin = c4 then
8. impose a regular grid over w;
9. for each cell w′ ∈ w
10. retrieve Rw′ .count and Sw′ .count;
11. MobiJoin(R,S,w′,Rw′ .count,Sw′.count);
12. else follow action specified by cmin;

Fig. 2. The recursive MobiJoin algorithm

Segment Size). Essentially, MTU = MSS + BH , where BH is the size of the
TCP/IP headers (typically, BH = 40 bytes).

Let D be a dataset. The size of D in bytes is BD = |D| ·Bobj , where Bobj is
the size of each object in bytes. For point objects Bobj = 4+2 ·4 = 12 bytes (i.e.,
point ID plus its coordinates). Thus, when the whole D is transmitted through
the network, the number of transferred bytes is:

TB(BD) = BD + BH ·
⌈

BD

MSS

⌉
, (1)

where the second component of the equation is the overhead of the TCP/IP
headers.

The cost of sending a window query qw to a server is BH + Bqtype + Bw,
i.e., transferring the query type Bqtype and the coordinates of the window Bw.
Let Rw.count and Sw.count be the number of objects intersecting window w at
site R and S respectively. Let bR and bS be the per-byte transfer cost (e.g., in
dollars) for sites R and S respectively. The total cost of downloading the objects
from R and S and joining them on the PDA is:

c1(w) = (bR + bS)(BH + Bqtype + Bw)
+bRTB(Rw.count · Bobj) + bSTB(Sw.count · Bobj) (2)

244 Nikos Mamoulis et al.

Now let us consider the cost c2 of downloading all Rw.count objects from R
and sending them as distance selection queries to S. Each of the Rw.count objects
is transformed to a selection region and sent to S. For each query point p,
the expected number of point from S in w within distance ε from p is π·ε2

wx·wy
·

Sw.count, assuming uniform distribution in w, where wx and wy are the lengths
of the window’s sides.3 In other words, the selectivity of a selection query q
over a region w with uniformly distributed points is probabilistically defined by
area(q)/area(w). The query message consists of the query type, p and ε (i.e.,
Sq = Sqtype + Sp + Sε).Therefore, the cost of sending the query is BH + Sq.
The total number of transferred bytes for transmitting the distance query and
receiving the results is:

TB(w, ε) = (BH + Sq) + TB

(
π · ε2

wx · wy
· Sw.count · Bobj

)
(3)

Therefore the total cost of downloading the objects from R intersecting w
and sending them one by one as distance queries to S is:

c2(w) = bR(BH +Bqtype+Bw) + bRTB(Rw.count ·Bobj) + bSRw.count · TB(w, ε) (4)

The cost c3 of downloading the objects from S and sending them as queries
to R is also given by Equation 4 by exchanging the roles of R and S. Finally,
in case of an intersection join, we can use the same derivation, but we need
to know statistics about the average area of the object MBRs intersecting w
for R and S. These can be obtained from the server when we retrieve Rw.count
and Sw.count (i.e., we can post an additional aggregate query together with the
COUNT query).

The final step is to estimate the cost c4 of repartitioning w and applying
MobiJoin recursively for each new partition w′. In order to retrieve the statistics
for a new partition w′, we have to send an aggregate COUNT query to each site
(BH + Bqtype + Bw bytes) and retrieve (BH + 4 bytes) from there. Thus, the
total cost of repartitioning and retrieving the refined counters is:

cCQ(w) = Np(bR + bS)(BH + Bqtype + Bw + BH + 4), (5)

where Np is the number of new partitions over w. Now we can define:

c4(w) = cCQ(w) +
∑
∀w′

min{c1(w′), c2(w′), c3(w′), c4(w′)} (6)

Without prior knowledge about how the objects are distributed in the new
partitions, it is impossible to predict the actions of the algorithm when run at
the next level for each w′. The minimum value for c4(w) is just cCQ(w), i.e., the
cost of refining the statistics, assuming that the condition of line 1 in Figure 2
will hold (i.e., one of the Rw′ .count, Sw′ .count will be 0 for all w′). This will
happen if the data distribution in the two datasets is very different. On the other
3 For the sake of readability, we ignore boundary effects here.

Optimization of Spatial Joins on Mobile Devices 245

hand, c4(w) is maximized if the distribution is uniform in w for both R and S.
In this case, c4(w) = cCQ(w) +

∑
∀w′ min{c1(w′), c4(w′)}, i.e., case 1 will apply

for all w′, unless the data for each w′ does not fit in the PDA, thus the algorithm
will have to be recursively employed.

In practice, we expect some skew in the data, thus some partitions will be
pruned or converted to one of the cases 2 and 3. For the application of our
model, we consider c4(w) = cCQ(w), i.e., an optimistic approach that postpones
join processing, as long as refining the statistics is cheaper. While this estimation
was effective for most of the tested cases, we are currently working on a more
accurate model.

3.6 Iceberg Spatial Distance Semi-joins

Our framework is especially useful for iceberg join queries. As an example, con-
sider the query “find all hotels which are close to at least 20 restaurants”, where
closeness is defined by a distance threshold ε. Such queries usually have few
results, however, when processed in a straightforward way they could be as ex-
pensive as a simple spatial join. The grid refinement method can be directly used
to prune areas where the restaurant relation is sparse. In this case, the condi-
tion Rw.count = 0 in line 1 of Figure 2 will become Rw.count < kmin, where kmin

is the minimum number of objects from R that must join with an object in S.
Therefore, large parts of the search space could potentially be pruned by the
cardinality constraint early. In the next section, we show that this method can
boost performance by more than one order of magnitude, for moderate values
of kmin.

4 Experimental Evaluation

In this section, we study the performance of the MobiJoin algorithm described
in Figure 2 and compare it against two simpler techniques. The fist one, called
Nested Loop Spatial Join (NLSJ), is a näıve algorithm which resembles cases 2
and 3 of MobiJoin. The PDA receives in a stream all the objects from server R
and sends them one by one as distance queries to server S, which returns the
results. For fairness, we first check the number of objects in each server, and
set R to be the one with the smallest dataset. The second algorithm is Hash
Based Spatial Join (HBSJ), and consists of cases 1 and 4 of MobiJoin. The
PDA retrieves statistics from the servers and recursively decomposes the data
space, until the partitions of the two datasets fit in memory. The corresponding
fragments are downloaded and the join is performed in the PDA.

We implemented our algorithms in Visual C++ for Windows Pocket PC. Our
prototype run on an HP-IPAQ PDA with a 400MHz RISC processor and 64MB
RAM. The PDA was connected to the network through a wireless interface. The
servers for the spatial datasets resided on a 2-CPU Ultra-SPARC III machine
with 4GB RAM. In all experiments, we set bR = bS , i.e., the transfer cost is the
same for both servers. We used synthetic datasets consisting of 1000 to 10000

246 Nikos Mamoulis et al.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 20 40

Epsilon

T
o

ta
lB

yt
es

MobiJ
NLSJ

(a) MobiJoin versus NLSJ

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 20 40

Epsilon

T
o

ta
lB

yt
es

MobiJ
HBSJ

(b) MobiJoin versus HBSJ

Fig. 3. Transferred bytes as a function of the distance threshold ε

points, in order to simulate typical windows of users’ requests. The points were
clustered around n randomly selected centers, and each cluster was following
a Gaussian distribution. To achieve different levels of skew, we varied n from 1
to 128. We also employed two real-life datasets, namely the road and railway
segments of Germany. Each of these sets had around 35K points.

In the first set of experiments, we compare the three algorithms in terms of
the total number of bytes sent and received, including the overhead due to the
TCP/IP headers, as a function of the joining distance ε. We used two datasets if
1000 points and set the PDA’s memory size to 100 points. In Figure 3 we present
the average values of the results over 10 runs with different datasets. Figure 3a
compares MobiJoin with NLSJ. It is obvious that MobiJoin easily outperforms
the näıve NLSJ by almost an order of magnitude. This is due to two reasons.
First, NLSJ transmits a huge number of queries to the largest dataset, which
have a high cost (including the cost of the packet headers for each query). Second,
MobiJoin avoids downloading any data from regions where at least one dataset is
empty. Clearly, performing the join on the mobile device comes with significant
cost savings. The results also demonstrate that the overhead of identifying such
regions (i.e., the additional aggregate queries) is justified.

Figure 3b compares MobiJoin with HBSJ. MobiJoin is better than HBSJ,
but the difference is small (i.e., 22% in the best case). The performance gain is
due to cases 2 and 3 of the algorithm, which apply Nested Loop Join for some
partitions. If a space partition w contains many points in (say) S but only a few
points in R, MobiJoin executes Nested Loop Join in w, which is cheaper than
hashing (i.e., downloading both fragments). Note that as ε increases, the cost of
each algorithm increases, but for different reasons. In the case of NLSJ it is due
to the larger number of solutions that must be transferred. For HBSJ, on the
other hand, it is due to the enlargement of the query window by 2 · ε at each
side, while for MobiJoin it is a combination of the two reasons.

The distribution of the data is crucial for the performance of our algorithms.
Intuitively, MobiJoin performs very well on skewed data. If, for example, all data

Optimization of Spatial Joins on Mobile Devices 247

0

20000

40000

60000

80000

100000

120000

1 2 4 8 16 128

Clusters

T
o

ta
lB

yt
es

MobiJ
NLSJ

(a) MobiJoin against NLSJ

95%

100%

105%

110%

115%

120%

125%

130%

135%

1 2 4 8 16 128

Clusters

H
B

S
J

/M
o

b
iJ

HBSJ/MobiJ

(b) MobiJoin against HBSJ

Fig. 4. Total number of bytes transferred vs. the number of clusters in the
dataset

of R are near the lower left corner and all data of S are near the upper right
corner, then the algorithm will terminate after one step, since no combination of
quadrants produces any result. On the other hand, if the datasets are uniform
there is a lower probability of successful pruning; therefore MobiJoin reduces to
HBSJ. In the following experiment, we test the algorithm under varying data
skew. We employ a 1000 points dataset and vary the number of clusters from 1 to
128. Fewer clusters result in more skewed data and vice-versa. The comparison
between our algorithm and NLSJ is shown in Figure 4a.

For very skewed data, MobiJoin can be as much as two orders of magnitude
better than NLSJ. When the data are more uniform, however, the performance
of MobiJoin drops, while NLSJ is stable.4 Still, MobiJoin is two times better
in the worst case. This is due to the fact that MobiJoin behaves like hash join
when data are uniformly distributed. In such case, it only has to transfer |R|+|S|
objects in bulk to the PDA, while NLSJ transfers |R| objects in bulk, then sends
|R| objects one by one to server S, and finally receives the results.

The fact that MobiJoin reduces to hash join is further investigated in Fig-
ure 4b. There, we present the total number of bytes transferred by HBSJ over
the bytes transferred by MobiJoin. When data is skewed, HBSJ is 32% worse,
since MobiJoin joins some of the fragments using the nested loops approach. For
uniform data, however, the two algorithms are identical.

We also investigated the effect of varying the buffer size which is available in
the PDA and present the results in Figure 5. The size of the buffer is presented
as a percentage of the total size of the two datasets and varies from 0.3% to
4%. Each dataset contains 1000 points in 4 clusters. In Figure 5a we compare
MobiJoin with HBSJ in terms of the total packets transferred. As expected,
if more memory is available in the PDA, less packets are transferred. This is
especially true for HBSJ; since larger windows can be joined in the PDA, more
data are transferred in bulk. MobiJoin, on the other hand, is not affected much,
4 The small fluctuation of NLSJ is due to the different number of solutions

248 Nikos Mamoulis et al.

0

500

1000

1500

2000

2500

0.3% 0.5% 1.0% 2.0% 4.0%

PDA Buffer

T
o

ta
lP

ac
ke

ts

MobiJ
HBSJ

(a) Total transferred packets

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0.3% 0.5% 1.0% 2.0% 4.0%

PDA Buffer

T
o

ta
lB

yt
es

MobiJ
HBSJ

(b) Total transferred bytes

Fig. 5. Transferred data vs. the PDA’s memory size (% of the total size of the
datasets)

since some fragments are joined by the nested loop approach which transfers
many small packets. In Figure 5b, we present the total number of transferred data
for the same settings. Observe that MobiJoin transfers less data in total. Since
most services charge the user by the amount of transferred data, the behavior
of MobiJoin is preferable.

Notice also the strange trend of the cost in terms of bytes for HBSJ. When the
size of the buffer grows from 0.3% until 2%, the cost drops, as expected. However,
for larger buffer sizes the cost increases again. This can explained by the stopping
condition of the recursive algorithm; data are partitioned recursively until the
partitions fit in memory. If the buffer is small, many queries are transmitted and
the cost is high. If the buffer is large, on the other hand, the recursion stops early
and HBSJ fails to prune sub-partitions that are empty in either of the datasets.
There is a range of memory sizes, where a good trade-off between these two cases
is achieved.

In the final set of experiments, we tested our algorithms for the case of
iceberg queries. We employed the Germany Roads and Railways datasets, and
we joined them with synthetic datasets of 1000 points, which represent locations
of interest (e.g., hotels). We varied the minimum support threshold kmin from 2
to 32. Since we wanted to test the efficiency of pruning due to space partitioning,
we compared the HBSJ algorithm against NLSJ. Notice that the settings of the
experiment are favorable for nested loop join, since we join a small dataset
with a large one. The results are presented in Figures 6a and 6b. In the first
figure, the hotels dataset is uniform. This is the worst case for our algorithm,
which is 3 times worse than NLSJ, for small values of kmin. However, when kmin

increases, more partitions are pruned, and HBSJ can be as much as one order
of magnitude better than NLSJ. Observe that the cost of NLSJ is stable, since
it must always transfer the data from the smaller set, regardless of the value of
the support threshold kmin. Figure 6b presents the results in the case where the
hotels dataset is skewed. NLSJ does not change, since its performance depends

Optimization of Spatial Joins on Mobile Devices 249

0

50000

100000

150000

200000

250000

300000

350000

2 4 8 16 32

k_min

T
o

ta
lB

yt
es

NLSJ
HBSJ

(a) Uniform data

0

20000

40000

60000

80000

100000

120000

2 4 8 16 32

k_min

T
o

ta
lB

yt
es

NLSJ
HBSJ

(b) Skewed data

Fig. 6. Iceberg queries for real datasets. Transferred data vs. the threshold kmin

mostly on the size of the hotels dataset, and not on the distribution. HBSJ,
on the other hand, takes advantage of the skewed distribution and performs
better that NLSJ in all cases. In summary, our technique of obtaining statistics
information, decreases considerably the cost when kmin is sufficiently large and
is especially suitable for skewed data.

5 Conclusions

In this paper, we dealt with the problem of evaluating spatial joins on a mobile
device, when the datasets reside on separate remote servers. We assume that
the servers support three simple query types: (i) window queries, (ii) aggregate
queries, and (iii) distance-range queries. We also assume that the servers are non-
collaborative, they do not wish to share their internal indices, and no mediator
can perform the join of these two sites. These assumptions are valid for many
practical situations, where users apply ad-hoc joins. For instance, consider two
services which provide maps and hotel locations, and a user who requests an
unusual combination like “Find all hotels which are at most 200km away from
a rain forest”. Executing this query on a mobile device must address two issues:
(i) the limited resources of the device and (ii) the fact that the user is charged
by the amount of transferred information, instead of the processing cost on the
servers.

We developed MobiJoin, an algorithm that partitions recursively the data
space and retrieves statistics in the form of simple aggregate queries. Based on
the statistics and a detailed cost model, MobiJoin can either (i) prune a par-
tition, (ii) join its contents in hash join or nested loop fashion, or (iii) request
further statistics. In contrast to the previous work on mediators, our algorithm
dynamically optimizes the entire process of retrieving statistics and executing
the join, for a single ad-hoc query.

We developed a prototype on a wireless PDA and tested our method for
a variety of synthetic and real datasets. Our experiments reveal that MobiJoin

250 Nikos Mamoulis et al.

outperforms the näıve approach by an order of magnitude. Our partitioning
method is also suitable for iceberg queries, especially for skewed data.

In the future, we plan to support complex spatial queries, which involve more
than two datasets. We are also working on refining our cost model, since accurate
estimations are crucial for selecting the most beneficial execution plan.

References

[1] Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou, and V. S. Subrahma-
nian. Query caching and optimization in distributed mediator systems. In Proc.
of ACM SIGMOD Int’l Conference, 1996. 238

[2] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jef-
frey Scott Vitter. Scalable sweeping-based spatial join. In Proc. of VLDB Con-
ference, 1998. 237, 239

[3] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing
of spatial joins using r-trees. In Proc. of ACM SIGMOD Int’l Conference, 1993.
234, 235, 236

[4] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassi-
lakopoulos. Closest pair queries in spatial databases. In Proc. of ACM SIGMOD
Int’l Conference, 2000. 235

[5] Jens-Peter Dittrich and Bernhard Seeger. Data redundancy and duplicate de-
tection in spatial join processing. In Proc. of Int’l Conf. on Data Engineering
(ICDE), 2000. 237, 239

[6] A. Guttman. R-trees: a dynamical index structure for spatial searching. In Proc.
of ACM SIGMOD Int’l Conference, 1984. 236

[7] Gisli R. Hjaltason and Hanan Samet. Incremental distance join algorithms for
spatial databases. In Proc. of ACM SIGMOD Int’l Conference, 1998. 234, 235

[8] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, and Daniel S.
Weld. An adaptive query execution system for data integration. In Proc. of ACM
SIGMOD Int’l Conference, 1999. 238

[9] Nick Koudas and Kenneth C. Sevcik. High dimensional similarity joins: Algo-
rithms and performance evaluation. In Proc. of Int’l Conf. on Data Engineering
(ICDE), 1998. 235, 236

[10] Danzhou Liu, Ee-Peng Lim, and Wee Keong Ng. Efficient k nearest neighbor
queries on remote spatial databases using range estimation. In Proc of Int’l Con-
ference on Scientific and Statistical Database Management (SSDBM), 2002. 237

[11] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In Proc. of ACM
SIGMOD Int’l Conference, 1996. 237

[12] Gang Luo, Jeffrey F. Naughton, and Curt Ellmann. A non-blocking parallel spatial
join algorithm. In Proc. of Int’l Conf. on Data Engineering (ICDE), 2002. 236,
237, 239

[13] Nikos Mamoulis and Dimitris Papadias. Integration of spatial join algorithms for
processing multiple inputs. In Proc. of ACM SIGMOD Int’l Conference, 1999.
236

[14] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In
Proc. of ACM SIGMOD Int’l Conference, 1996. 236, 239

[15] Mary Tork Roth, Fatma Ozcan, and Laura M. Haas. Cost models do matter:
Providing cost information for diverse data sources in a federated system. In
Proc. of VLDB Conference, 1999. 238

Optimization of Spatial Joins on Mobile Devices 251

[16] Hyoseop Shin, Bongki Moon, and Sukho Lee. Adaptive multi-stage distance join
processing. In Proc. of ACM SIGMOD Int’l Conference, 2000. 235

[17] Kian-Lee Tan, Beng-Chin Ooi, and David J. Abel. Exploiting spatial indexes for
semijoin-based join processing in distributed spatial databases. IEEE Trans. on
Data and Knowledge Engineering, 12(2):920–937, 2000. 237

[18] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling access to het-
erogeneous data sources with disco. IEEE Trans. on Data and Knowledge Engi-
neering, 10(5):808–823, 1998. 238

[19] Jun Zhang, Nikos Mamoulis, Dimitris Papadias, and Yufei Tao. All-nearest-
neighbors queries in spatial databases. Technical Report CS07-02, HKUST, Hong
Kong, 2002. 235

	Optimization of Spatial Joins on Mobile Devices
	Introduction
	Problem Definition
	Related Work

	Spatial Joins on a Mobile Device
	A Divisive Approach
	Using Summaries to Reduce the Transfer Cost
	Handling Bucket Skew
	A Recursive, Adaptive Spatial Join Algorithm
	The Cost Model
	Iceberg Spatial Distance Semi-joins

	Experimental Evaluation
	Conclusions

