
Retrieval of Spatial Join Pattern Instances from Sensor Networks∗

Man Lung Yiu
Department of Computer Science

Aalborg University
DK-9220 Aalborg, Denmark

mly@cs.aau.dk

Nikos Mamoulis
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

nikos@cs.hku.hk

Spiridon Bakiras
Dept. of Mathematics and Comp. Science

John Jay College
City University of New York

sbakiras@jjay.cuny.edu

Abstract

We study the continuous evaluation of spatial join queries
and extensions thereof, defined by interesting combinations
of sensor readings (events) that co-occur in a spatial neigh-
borhood. An example of such a pattern is “a high temper-
ature reading in the vicinity of at least four high-pressure
readings”. We devise acquisitional and distributed pro-
tocols for evaluating this class of queries, aiming at the
minimization of energy consumption. Cases of simple and
complex join queries with single or multi-hop distance con-
straints are considered. Finally, we experimentally compare
the effectiveness of the proposed solutions on an experi-
mental platform that simulates real sensor networks. Our
results show that acquisitional protocols perform best for
multi-hop or high-selectivity queries while distributed tech-
niques should be applied for the remaining cases.

1 Introduction
Advances in computer hardware have brought to avail-

ability small and relatively cheap devices forming a pow-
erful network that interacts and collects information from
the environment, where it is deployed. Sensor networks
have several applications, including environmental moni-
toring [14, 12] and control/maintenance of industrial infras-
tructure [1]. Recently, the problem of evaluating queries
over a sensor network has attracted significant research in-
terest from the database community, leading to the devel-
opment of two research DBMS prototypes [18, 13]. These
systems provide to the user an interface, via which queries
are expressed in a declarative way (e.g., SQL extensions);
the user needs not deal with how queries are evaluated.

The main focus of existing work on sensor networks
has been the minimization of power consumption at sen-
sor nodes, during query evaluation. Sensors are usually
battery-operated and they are often deployed in hostile en-
vironments or rough terrains, where the network runs un-

∗Work supported by grant HKU 7155/06E from Hong Kong RGC.

supervised for long time intervals. Thus, power is of ut-
most importance, since it is directly related to the longevity
of the network. Previously studied topics include the
energy-efficient retrieval of aggregations or data summaries
[12, 5, 3, 7, 6, 16], the derivation and maintenance of data
models that describe the data distribution [8, 4], and the op-
timal in-network placement of operators or filter predicates
on the sensed values [13, 2, 1, 17]. To our knowledge, we
are the first to study in-network evaluation of queries that
spatially correlate measurements from multiple, different
sensors. An example of such a query is “generate a notifi-
cation whenever a sensor with high temperature reading is
10 yards from four sensors with low humidity readings”. A
spatial pattern query retrieves sets of sensors (pairs in this
example), whose readings qualify some selection predicates
(e.g., abnormal temperatures) and their locations qualify
some pairwise distance predicates (e.g., within five yards).
Data analysts may be interested in the on-line identifica-
tion of pattern instances that occur rarely in the environ-
ments where sensors are deployed and may indicate excep-
tional events. For instance, an unusually high temperature
detected in the vicinity of multiple low-humidity readings
may indicate high chance of a fire break in the local area,
where the pattern is detected. Another application of spa-
tial pattern queries is the prediction of weather phenomena
based on spatial combinations of sensor readings.

A straightforward way to evaluate spatial pattern queries
is to program the sensors to transmit their readings together
with their locations to a central basestation (via a routing
tree [9, 13]), where their spatial associations are validated.
However, this approach may waste more energy than nec-
essary, as sensor readings that are not part of query results
may be sent all the way up to the root. Motivated by the lack
of effective evaluation protocols for spatial pattern queries,
in this paper, we study this problem in depth, focusing on (i)
filtering techniques for readings that do not participate in the
result, (ii) in-network computation of query results. We pro-
pose optimized evaluation protocols for binary spatial joins
and more complex query patterns and compare them for dif-
ferent problem parameters. Our solutions are orthogonal

to snapshot-based schemes (e.g., [10]), which apply query
evaluation only to a small (self-maintained) sample of the
network and to techniques that summarize sensor readings
over long time intervals before applying query evaluation
on them (e.g., [6]). The contributions of this paper can be
summarized as follows:

• We identify the interesting class of spatial pattern
queries. We formally define them and express them
using the language extensions of [13].

• We propose energy-efficient protocols for in-network
evaluation of spatial pattern queries, based on both ac-
quisitional and distributed evaluation.

• We experimentally evaluate the efficiency of the pro-
posed techniques with various parameters, e.g., query
selectivity, network size, topology, sampling cost, etc.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 formally defines spa-
tial pattern queries. In Section 4, we describe in detail the
proposed solutions. Section 5 experimentally demonstrates
the efficiency of our techniques. Finally, Section 6 con-
cludes the paper.

2 Background and Related Work
The special characteristics of a sensor network compared

to a generic wireless network are (i) the limited resources
of nodes (energy, communication range, network band-
width and capacity), (ii) unreliable communication with
high packet loss rates and frequent node failures, and (iii)
unsupervised nature with nodes placed at hostile environ-
ments (e.g., remote areas, war fields, etc.). Thus, query
evaluation techniques for sensor networks aim at minimiz-
ing the energy cost, subject to the constraints of the network
(e.g., communication range, maximum data volume that can
be sent by a node at a cycle, etc.). Besides, sensor networks
are inherently redundant (i.e., dense), in order to keep the
network connected after node failures and increase the reli-
ability of sensed information.

Query evaluation in sensor networks is performed in two
steps [9, 18, 13]. Suppose that the query should collect the
readings from all sensors. The query is registered at a bases-
tation, which is connected to a root node r. In the first step,
the query is disseminated to the sensors, and a spanning tree
of the network, rooted at r is dynamically constructed. If a
node receives the query for the first time, it selects one of
the senders as its parent in the tree and broadcasts the query.
Otherwise, the message is ignored. The resulting commu-
nication (or routing) tree is used to acquire sensor readings
related to the query, up to the basestation. Delivery of sen-
sor readings (or query results) to the root is performed in
multiple phases. During a specific phase, a level of the tree
sends and the level above listens and receives information

addressed for it. Finally, the root collects all readings and
sends them to the basestation.

Queries over sensor networks are usually continuous,
i.e., they remain active for a lengthy time interval (e.g.,
minutes, hours). Otherwise, the cost for disseminating the
query may not be compensated. Frequent instantaneous
queries are best processed if the network operates in a push-
based manner; sensors periodically and unconditionally col-
lect measurements and route them to a basestation, where
queries are registered and evaluated as queries over stream-
ing data. In this paper, we study continuous queries, which
can benefit from in-network evaluation. Next, we review
work on (continuous) query evaluation on sensor networks.

2.1 Aggregation and summarization

Madden et al. [12] proposed a simple, but powerful
protocol for computing common aggregate functions (e.g.,
count, sum, max, min). Each sensor combines the infor-
mation received by its children with its own measurement
to derive and send data of constant size, capturing a partial
computation of the aggregate function. In [5], a multi-path
algorithm for computing aggregates is presented to reduce
communication errors as multiple parents may hear and ag-
gregate the information broadcast by a single child. [15]
proposes a hybrid method that combines the tree topology
of [12] with the ring network topology of [5]. Besides, [7]
describes a method for pushing error tolerance in network
nodes, in order to avoid sending information if the aggregate
is within some error bound. The problem of redistributing
the error tolerance among nodes in order to minimize the
overall error at dynamic environments is also studied. A
similar approach was independently proposed in [16]. To
minimize network communication, [6] presents a method-
ology for in-network compression of multiple (time-series)
signals generated by sensors (e.g., one for temperature, one
for humidity, etc.). The rationale is that measurements ob-
served at the same node are likely to follow similar trends.

2.2 Data models, snapshots, and filters

An alternative to continuously collecting and processing
sensor data (which drains the network energy resources), is
to define and maintain simple data models (e.g., mixtures
of Gaussians) for the data distribution [8, 4]. These models,
potentially combined with exact readings, provide query an-
swers with some approximation confidence. Besides, [10]
describes a framework for dynamically selecting and main-
taining representatives in a redundant sensor network. The
set of representatives (snapshot) plays the role of a dynamic
sample that can answer queries cheaply and approximately.

Another class of problems is the distribution of filters or
database operators in the routing tree of a sensor network.
[17] studies the optimal placement of query operators (e.g.,
selection predicates), in order to minimize (i) the commu-
nication cost for information that does not end up in the

query result and (ii) the computational burden at lower tree
levels (assuming that lower-level nodes have reduced com-
putational capabilities). [2] focuses on the assignment of
operators that correlate measurements from two (apriori de-
fined) spatial regions. [20] examines a similar problem and
applies synopses of sensor values to eliminate unqualified
readings that cannot lead to results. On the other hand, our
problem searches for rare spatial associations of (instanta-
neous) events, anywhere in the network map. In another
direction, [1] studies continuous joining a table of predi-
cates (e.g., ‘humidity>50oC’) with the sensed values. If
the table is small enough to be stored at each node, it acts a
filter that prevents non-qualifying readings to be sent to the
basestation. If the table cannot fit in a node’s local mem-
ory, it is placed at neighboring nodes and the predicates are
evaluated in a distributed fashion. However, the queries we
study do not simply consider sensor values; they also have
to satisfy a spatial pattern, which will be defined formally
in the next section.

The closest work to ours is [11], which reports pairs of
sensor events located within a given distance range, and re-
duces communication cost by a distributed routing index.
The sensors record past events in their neighborhood which
help to predict future occurrences of them at other loca-
tions of the map. Messages are then routed based on these
predictions. As the author suggests, the index is appropri-
ate for applications where events correspond to moving ob-
jects with well-estimated future locations. Our focus, on the
other hand is on arbitrary, instantaneous, ad-hoc events. In
addition, the methodology of [11] relies heavily on the reg-
ular grid networks and may not be applicable to arbitrary
network topologies.

3 Problem Formulation
Let SN be a network of N sensors. Each sensor s ∈ SN

is associated with a spatial location1 s.loc, and can pro-
duce a set s.m of measurements (e.g., temperature, humid-
ity, etc.) for the spatial region around it (different sensors
might produce different sets of readings, in general).

We adopt the framework described in Section 2, where
users register continuous queries at a basestation and a rout-
ing tree is created to acquire results (or readings that are
processed at the base). Each registered query is associated
with: (i) a lifetime (e.g., 2 hours), during which it is active
and continuously produces results from the sampled mea-
surements, and (ii) an epoch duration (e.g., 10 seconds),
every which the network samples measurements. In other
words, queries apply to instances of the network at different
timestamps (for every epoch).

A binary spatial pattern query identifies pairs of sen-

1We assume that the locations of sensors are known to them. They
could be constant and apriori defined (for stationary, manually placed sen-
sors), or detected by GPS devices placed on the sensors.

.humidity<40%

v1.temperature>50

v3.humidity<40%v2

v5.humidity<40%v4.humidity<40%

dist(v1.loc,v2.loc<10) dist(v1.loc,v3.loc<10)

dist(v1.loc,v5.loc<10)dist(v1.loc,v4.loc<10)

Figure 1. A spatial pattern query

sors, for which (i) the readings qualify some particu-
lar selection predicates and (ii) the locations are no fur-
ther than a particular distance from each other. An ex-
ample of such a query is “find pairs of sensors 〈s1, s2〉,
such that s1.temperature>50oC, s2.humidity<40%, and
distance(s1, s2)<10m”. A generalized spatial pattern
query (formally defined below) returns sets of sensors,
whose values and locations qualify some selection predi-
cates and binary distance predicates, respectively.
Definition 1 A spatial pattern query Q consists of a set
Q.V of variables, a set Q.P of selection predicates, and
a set Q.B of binary constraints. Each variable vi ∈ V is
associated to a selection predicate Pi. A pair 〈vi, vj〉 of
variables vi, vj ∈ V, i 6= j may be associated with a binary
spatial predicate Bij . A result of Q is set of assignments
{∀vi ∈ V : vi ← si, si ∈ SN}, such that (i) for all vi,
Pi(vi.m) is satisfied and (ii) for all variable pairs (vi, vj)
with a binary predicate, Bij(vi.loc, vj .loc) is satisfied.

Figure 1 shows an example of a spatial pattern query q
modeled by a graph. Each node in the graph corresponds
to a variable, whose values are constrained by a selection
predicate. Edges correspond to binary spatial predicates
(i.e., distance constraints). In natural language, q could be
expressed as “a high-temperature reading (>50oC) in the
vicinity of four low-humidity readings (<40%)”. A local
group of sensors whose readings satisfy this query could
indicate an area that requires special attention (e.g., high
chances of fire, if a forest).

Spatial pattern queries can be easily expressed in the ex-
tended SQL of [13], assuming that the language supports
spatial functions (i.e., distance). The query variables (de-
fined in the FROM clause) are instantiated by tuples of the
Sensors table and the selection while join predicates (i.e.,
distance constraints) are connected by AND in the WHERE
clause. Although Definition 1 is generic enough to define
queries of arbitrary graphs and constraints, we confine our
attention mainly to binary joins and to extended patterns
that form “star” graphs (like the one in Figure 1), where
a centric feature (e.g., high temperature) is correlated to
a number of other features (e.g., low humidity) in its sur-
rounding environment. Such patterns were shown important
in spatial analysis applications and are more intuitive than

queries that combine variables in an arbitrary graph. The
centric feature models a point of interest (e.g., high fire risk
area, expensive equipment) which should trigger an alert
whenever its local measurements and the conditions in the
region around it form an abnormal combination.

4 Proposed Methods
In this section, we explore the applicability of several

methods for computing spatial pattern queries in a sensor
network. We divide the evaluating protocols in two classes.
The class of acquisitional protocols collect sensor measure-
ments via the communication tree and apply query eval-
uation at the basestation. Filters are placed at nodes that
generate or relay data to minimize the transferred volume.
The second class of distributed protocols apply in-network
query evaluation and send the results to the basestation
(again using the tree). We start by discussing the simple
case of a binary spatial join with distance constraint smaller
than the communication range of the nodes. Then, we ex-
tend the suggested protocols for more complex queries and
multi-hop distance constraints.

4.1 Single-hop binary joins

We first focus on binary join patterns that are sensor pairs
〈si, sj〉, such that P1(si.m), P2(sj .m) are satisfied, and
distance(si.loc, sj .loc) ≤ c, where c is smaller than the ra-
dio communication range2 between two nodes. For the ease
of exposition, we denote a binary join query in our context
by the triplet 〈P1, P2, c〉.

4.1.1 Brute-force acquisitional protocol

The straightforward way to evaluate the query is to program
all sensors to sense the measurements relative to selection
predicates P1 and P2, at every epoch, and send this infor-
mation to the basestation, which evaluates the spatial join
locally. A simple optimization that reduces the number
of unnecessary values transmitted to the base is to “push-
down” the selection predicates at the nodes (as suggested
in [13, 1]). In our example, temperature and humidity are
sensed by all sensors but only high temperature and low
humidity values (i.e., those that qualify the selection pred-
icates) are sent to the base. In order to minimize the trans-
ferred data, we only transmit the location of a qualifying
node (or its identifier, if nodes have fixed locations) and two
bits that indicate which predicate(s) the node qualifies (e.g.,
10 implies that P1 is qualified, but P2 is not). Sensors are
synchronized such that only two consecutive levels of the
tree are active at the same phase (while the remaining nodes
are sleeping), as discussed in Section 2. When a lower-level
node senses and transmits data (if not filtered by P1 or P2)

2Without loss of generality, we assume that all sensors have the same
communication range. Our protocols and filtering techniques can be easily
adjusted for the generic case.

Example: aquisitional protocols

1

2
3

4

5

6

7

rootT:55

H:45

T:42

H:47

T:32

H:45
T:42

H:35

T:46

H:38

T:52

H:45

T:40

H:42

s

s

s

s

s

s

s

Figure 2. Join evaluation example

to its parent, its parent listens, reads and combines its read-
ings with those of its children; the combined readings are
then sent to the upper level during the next phase. We de-
note this simple, but generic protocol by AQB (i.e., the first
‘acquisitional’ protocol).

As an example, consider the sensor network depicted in
Figure 2. Nodes within communication range from each
other are connected by edges. Solid edges denote the struc-
ture of the communication tree (rooted at node s3). The
values next to the nodes denote the (current) local temper-
ature (T) and humidity (H) conditions. Let P1=‘T>50’,
P2=‘H<40’, and c equals the sensor communication range
(one hop). Nodes s1 and s2 qualify P1, whereas s6 and s7

qualify P2. The only join result is 〈s2, s6〉. In the first phase
of the cycle, s1, s4, and s7 (level-3 nodes) sense their val-
ues, apply the predicates and s1 sends (s1.loc, 10) (i.e., only
P1 is satisfied) to its parent (i.e., s5). Similarly, (s7.loc, 01)
is sent to s6. In the second phase, (s2.loc, 10), (s1.loc, 10),
and {(s7.loc, 01), (s6.loc, 01)} are sent to the root, by s2,
s5, and s6, respectively. Finally, s3 forwards all these tu-
ples to the base, where the join result is computed.

4.1.2 Pruner-based acquisitional protocol

Protocol AQB may send more information than necessary to
the base, as many tuples (e.g., (s1.loc, 10) in Figure 2) are
likely not to participate in the spatial join. In this section,
we propose AQP, a protocol that improves upon AQB, by
adding more sophisticated filters in the intermediate nodes
of the tree. AQP is based on the observation that a sensed
value (e.g., m) of a node si which satisfies a selection pred-
icate (e.g., P1) can be pruned by an ancestor a(si) of si, if
(i) a(si) collects all information about the spatial neighbor-
hood of si and (ii) no matching tuple (e.g., one that qualifies
P2) for the measurement has been collected by a(si). For
example, (s1.loc, 10) in Figure 2 can be pruned by s5, since
any measurements that qualify P2 within one hop from s1

should have been collected or generated by s5.
Formally, let 〈P1, P2, c〉 be a join query registered over

a sensor network SN . For each sensor s ∈ SN , we de-
fine its neighborhood sensor set L(s) as L(s) = {s′ ∈
SN|dist(s, s′) ≤ c}, and its descendant sensor set B(s)
as the set of sensors in its subtree (of the routing tree). The

pruning technique applied in AQP is based on the Lemma 1
(with trivial proof):

Lemma 1 Let si be a sensor satisfying P1(si.m). Let a(si)
be an ancestor of si, such that L(si) ⊆ B(a(si)). If there
is no sj ∈ B(a(si)) satisfying P2(sj .m), then si.m cannot
participate in an output tuple of 〈P1, P2, c〉. A symmetric
argument holds for the measurements which qualify P2.

For any sensor s, there is at least one ancestor (the root)
for which L(s) ⊆ B(a(s)), thus we can apply this idea to
prune measurements acquired from the network that do not
participate in query results. The goal is to find the closest
ancestor of s to apply the filter, since, in this way, filtering
effectiveness is maximized. For each node s, the pruner
of s (with respect to a query) is the nearest ancestor of s,
whose subtree contains L(s). In Figure 2, s5 is the pruner
of s1 and s4.

We design the following technique for determining
pruners efficiently. It is applied only once while the query
is disseminated and the routing tree is constructed. When
a sensor node s broadcasts the query, at the same time it
collects ids/locations of its neighbors and determines |L(s)|
(the cardinality of L(s)), which is then broadcasted to all
nodes in L(s). Starting from the leaf nodes, each sensor
s sends up the communication tree a table consisting of
〈si, |L(si)|, 1〉 tuples for all si ∈ L(s) plus a 〈s, |L(s)|, 1〉
tuple for itself. Intermediate tree nodes merge the tables
they receive from their children by summing their counters
(the last field of the tuples). The first node which, after
the aggregation, has a 〈s, |L(s)|, |L(s)|〉 tuple becomes the
pruner for s and does not forward the tuple to its parent
node.

After this process, each node s keeps a list of its prunees
(i.e., nodes for which s is the pruner). The difference be-
tween our improved acquisitional protocol AQP and the
baseline AQB is that, in AQP, whenever s retrieves infor-
mation from its subtree regarding the join query, for each
prunee that transmits a tuple τ qualifying P1 (P2), s checks
whether there is a matching tuple for P2 (P1) in its acquired
table, which also qualifies the distance predicate with τ . If
there is no such tuple, then τ is pruned from the data sent
to the parent of s. AQP manages to filter early some node
readings (e.g., (s1.loc, 10)) that do not qualify the join pred-
icate.

4.1.3 Distributed evaluation

The class of distributed protocols aim at computing query
results locally around network nodes and sending them to
the basestation. Such a technique is expected to pay-off for
low-selectivity3 joins, where many measurements that sat-
isfy predicates P1 or P2 do not qualify the join condition.
During the first stage of distributed evaluation, nodes that

3Low-selectivity joins output few results while high-selectivity joins
produce many results.

qualify P1 and P2 communicate and determine the join re-
sults. During the second stage, the routing tree is used to
send the join results to the base.

Initially, all nodes sense the measurements related to P1

and P2. If a node si qualifies P1, it broadcasts its loca-
tion to its neighborhood. If a node sj qualifies P2, it lis-
tens for potential messages from nodes that qualify P1. For
each received message, sj produces a join result. Nodes
that qualify neither P1 nor P2 remain asleep until the first
stage terminates (they may have to wake and forward join
results, during the second stage). Note that the roles of P1

and P2 could be interchanged; we denote by DS1 (DS2) the
distributed protocol, where nodes qualifying P1 (P2) send
messages and those qualifying P2 (P1) receive them and
compute join results. Intuitively, DS1 should be preferred
to DS2 when nodes that qualify P1 are fewer than those
qualifying P2, since transmission is more expensive than
listening and receiving [14].

As an example, consider again the network of Figure 2.
In the first stage of the distributed protocol, measurements
are collected, and (i) nodes s1 and s2 (qualifying P1) broad-
cast their locations, (ii) nodes s6 and s7 (qualifying P2) lis-
ten for potential messages, (iii) nodes s3, s4, and s5 stay
asleep. After node s6 reads the transmission of s2, the join
result 〈s2, s6〉 is formulated. This is the only tuple that will
be forwarded to the root at the second stage (result acquisi-
tion).

So far we have ignored the cost for sensing measure-
ments at nodes, which is usually small compared to com-
munication costs. For some measurements, however, this
cost may be significant [13]. For cases where sensing for
P2 is significantly expensive, it might be beneficial to de-
fer sensing and instruct all nodes to listen for P1 messages.
Only if a listener receives a message from a P1 node, it per-
forms expensive sensing for P2 measurements. We denote
this protocol by DS1′.

4.2 Complex join queries

We now consider more complex pattern queries, as de-
scribed in Section 3. Queries correspond to star graphs,
where the center sensor node should satisfy selection pred-
icate PC and there are k border nodes that should qualify
PB within distance c from the center. A star pattern query
is simply denoted by a quadruple 〈PC , PB , c, k〉. As in Sec-
tion 4.1, we assume that c is at most equal to the radio range
of the sensors.

Acquisitional protocols We can directly apply the brute-
force acquisitional protocol AQB. Sensor readings that
qualify PC or PB are unconditionally sent to the basesta-
tion, where the pattern is evaluated. In addition, we can
adapt protocol AQP as follows. A tuple qualifying PC

which has been generated by a node si is filtered at node
pr(si) (pruner of si) if there are less than k tuples that qual-

ify PB and reach pr(si) (otherwise, we know that there may
be a query result that contains the tuple). A tuple qualify-
ing PB , which has been generated by a node si is filtered at
pr(si) if there is no tuple satisfying PC that reaches pr(si)
(i.e., similar to binary join queries).

Distributed protocols A simple way to extend the dis-
tributed protocols for complex queries is to ask ‘border’
nodes (those qualifying PB) broadcast their locations. At
the same time ‘centric’ nodes (those qualifying PC) listen
for potential messages. If a centric node si, receives at least
k messages, we know that there is a query result centered at
si.4 The query result is sent to the base station through the
routing tree, at the second stage of the protocol. We denote
this protocol by DSB. An alternative protocol aims at mini-
mizing the messages broadcast from border nodes; presum-
ably more sensors qualify PB than PC for the pattern query
to have small selectivity and correspond to an interesting,
exceptional event. Protocol DSC asks nodes that qualify
PC (center nodes) to send a message and nodes that qual-
ify PB (border nodes) to listen. If a border node receives
a message it sends a response with its location to its neigh-
bors. Finally, center nodes listen for messages and those
that hear from at least k nodes send the query result to the
base.

4.3 Multi-hop queries

Distance constraints longer than the radio range h im-
pose difficulties for distributed evaluation protocols. Given
a node s, there is no bound for the number of hops re-
quired to find the nodes within distance c (>h) from s.
Nonetheless, for a relatively dense and uniform network,
we could set an approximate upper bound λ for this number.
Let coverage(c,λ) be the probability that two sensor nodes
within distance c are reachable within λ hops. Figure 3 plots
the coverage as a function of λ on a typical random network
(with the default parameter values discussed in Section 5).
For instance, for the curve of “c = 3h”, c is set to 3 times
of the radio range h. Observe that the coverage increases
rapidly when λ increases. In order to balance the coverage
and energy consumption, we suggest to set λ =

⌈
c
√

2
h

⌉
for

multi-hop communication. We now discuss in more detail
the protocols that can be applied for queries that involve
multi-hop distances.

Acquisitional protocols Since AQB does not apply any
filtering or in-network evaluation, there is no difference than
the method described in Section 4.1 for multi-hop queries.
For AQP, the only difference is in the initialization of the
query, at the stage when pruners are defined. Each node

4In fact, if si receives m > k messages, we have multiple query re-
sults, one for each

(
m
k

)
combination of border nodes. Nonetheless all

these results can be compressed to a single tuple containing si and all
qualifying border nodes.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

A
c
c
u

m
u

la
ti
v
e

 p
e

rc
e

n
ti
le

 (
%

)

Hops

c=2h
c=3h
c=4h

Figure 3. Coverage in multi-hop communica-
tion

needs to determine the number of its λ-hop neighbors be-
fore sending it up the communication tree. This process
requires flooding a large number of messages and it is more
expensive than the simple 1-hop communication. However,
it is performed only once, during the initialization of the
routing tree and it is expected to pay off if the query has
long lifetime.

Distributed protocols The distributed protocols de-
scribed so far can be easily adapted for multi-hop queries, at
the expense of higher communication cost, since the whole
network may need to stay up in order to listen and relay
potential messages, during the first stage (computation of
query results). If λ is large, the cost of flooding may be too
high for distributed evaluation to pay-off. In such cases, the
acquisitional protocols are expected to dominate.

A bi-directional distributed protocol For queries that
are simple binary joins, we can apply a bi-directional dis-
tributed protocol (BD) in order to reduce message flood-
ing during the first (computation) stage. Instead of asking
nodes that qualify P1 to flood their locations up to λ hops
(which are then received by listeners that qualify P2 and
converted to query results), we ask all nodes that qualify
either P1 or P2 to send their locations and a pair of bits in-
dicating the qualified predicates (i.e., the information sent
by nodes to the base according to AQB/AQP). However, the
flooding range is now reduced. Nodes that qualify P1 send
their messages up to x hops (x < λ) and nodes that qual-
ify P2 up to λ − x hops.5 During this process all nodes of
the network are up in order to listen and relay messages.
If a node receives a message from both a P1 node and a
P2 node, it formulates and caches the join result. In the
second stage of the algorithm, nodes send the computed re-
sults up the tree to the basestation. Note that duplicate re-
sults could be computed, since the same pair of messages
may be received by the same node. For instance, consider
a query that seeks for high-temperature/low-humidity read-
ings within λ = 2 hops in the network of Figure 2. When

5A node that qualifies both predicates sends its message up to
max{x, λ − x} hops.

BD is applied, all nodes that sense either high temperature
(>50) or low humidity (<40) transmit their readings up to
1 hop (i.e., x = 1, λ − x = 1). Both s5 and s6 then iden-
tify 〈s2, s7〉) as a result. Duplicate results are eliminated
by merging operations at the second stage of the protocol,
when all results are sent up the communication tree.

An interesting problem is to pick a value of x such that
the communication cost is minimized. In general, x can take
λ + 1 values (the extreme cases x = 0, x = λ correspond
to the uni-directional distributed protocols DS1 and DS2).
Intuitively, x should be chosen to minimize the expected ex-
pansion area π(Sel(P1) · x2 + Sel(P2) · (λ − x)2), where
Sel(Pi) corresponds to the probability that a node qualifies
Pi (for i = {1, 2}). In other words, if P1 has low selectivity
(few nodes qualify it) compared to P2, nodes that qualify it
should transmit far and nodes that qualify P2 should trans-
mit close in order to minimize network traffic.

5 Experimental Evaluation
In this section, we evaluate the efficiency of the pro-

posed protocols on an experimental platform that simulates
real sensor networks. Table 1 shows the components we
consider when measuring query cost (taken from [14]). In
all (but one) experiments, the selection predicates are ap-
plied on the cheapest to sense measurements, thus the sens-
ing cost is negligible compared to communication/listening
costs. We do not count the computational cost, since the
operations involved in our protocols are cheap filters or dis-
tance checks. The packet size (excluding the header) was
set to 30 bytes (typical for MICA motes [12]). Our pro-
tocols pack multiple events/messages in one packet, before
transmitting them. The acquisitional protocols use 18-bit
messages (node-id or coordinates plus 2 bits for indicating
qualified predicates). The distributed protocols use 32-bit
messages for sending pairs of node ids/coordinates to the
root. As in [1], we assume long-running queries and do not
count the one-time cost of initializing the query in the net-
work. In each experiment, we run a protocol for 100 epochs
and record the average cost per epoch.

Operation Cost (nAh)
Transmitting a packet 20
Receiving a packet 8
Idle listening (for 1 ms) 1.25
Thermistor sample 0.35
Barometric pressure sample 1.39
Photoresistor sample 3.43
Infrared sample 9.44
I2CTemperature sample 20.83

Table 1. Costs of MICA operations

We experimented with a random (uniform) network
topology. Experiments with other network topologies can
be found in our technical report [19], which also contains an

analytical study for the performance of the protocols (omit-
ted due to space constraints). The default network size is
N = 1024 nodes. To generate the RANDOM network, we
randomly placed nodes inside a square area of side

√
N and

set the radio range to 1.5. These settings result in a network
that is fully connected and not extremely dense, as shown in
Figure 4. In Figure 4a, nodes within one hop are connected
by line segments. Figure 4b shows the corresponding rout-
ing tree, where the base station is located at the center of the
space. The average degree of a sensor node is 6.8. The root
node of the routing/aggregation tree is chosen as the cen-
ter of the network [12, 5] and the tree height is 24. Unless
otherwise stated, the selectivities of unary predicates (i.e.,
P1, P2) are set to 0.05. For a single-hop binary join, these
settings return 20 join results on average.

(a) network (b) routing tree

Figure 4. RANDOM topology

5.1 Single-hop binary joins

We first study the performance of the proposed protocols
for low-selectivity single-hop binary join queries (with two
selection predicates P1 and P2). Protocols AQB, AQP, and
the distributed protocol (described in Section 4.1) are com-
pared. By default, the selectivities of P1 and P2 are equal,
so DS1 is equivalent to DS2; we simply denote either of
them by DS.

Figures 5 shows the averaged costs (with error bars)
of the three protocols as a function of the join selectiv-
ity. The join output size was controlled by tuning Sel(P1)
(=Sel(P2)). For joins with few results, Protocol DS is more
efficient than AQB and AQP because pruner nodes (in AQP)
are located several levels above their prunees and measure-
ments that qualify the selections participate in very few or
no join results. As the join output size increases, the en-
ergy consumption increases for all protocols, as more tu-
ples are transferred to the base, but the relative performance
of DS compared to AQB/AQP decreases, as the number of
join results compared to the tuples that qualify either P1 or
P2 increases. Eventually, DS becomes worse than the ac-
quisitional protocols, since all readings that qualify the se-
lections participate join result and the join output size well
exceeds number of tuples that qualify either selection.

Figure 6a provides statistics about the effectiveness of

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 10 100 1000

C
o

s
t
(n

A
h

)

Result cardinality

AQB
AQP

DS

Figure 5. Effect of join output size

pruner nodes in AQP. The table distributes the 1024 nodes
of each network into classes based on the percentage of
hops saved if their tuples are pruned by AQP. For instance,
if a node s falls into the 80%−100% class, then the quantity
hops between pr(s) and the base

hops between s and the base (i.e., the path ratio saved

if a tuple from s was pruned by pr(s)) is between 0.8 and 1.
Since most of the pruners have high hops-saving ratio, the
overall pruning effectiveness is quite high.

Next, we verify the assertion that AQP and DS achieve
better cost balancing than AQB among different nodes. Fig-
ure 6b shows the average cost per node as a function of
node’s level in the routing tree. In general, sensor nodes at
higher levels receive and forward more data so they have
larger burden. DS and AQP have better balancing, since
they manage to eliminate tuples that do not participate in
join results early, either by computation of the exact join
results (DS) or by filtering tuples at pruner nodes (AQP).

Ratio(%) Pruners
80-100 414
60-80 250
40-60 165
20-40 105
0-20 90

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

C
o

s
t
p

e
r

n
o

d
e

 (
n

A
h

)

Sensor node level

AQB
AQP

DS

(a) Hops-saving ratio (in AQP) Cost balancing

Figure 6. Hops-saving ratio, cost balancing

In the next set of experiments, we test the performance
of the protocols. Figure 7a shows the cost of the protocols
as a function of number of nodes, while keeping the net-
work density fixed. Note that the cost difference between
the protocols is not greatly affected by the network size. So
far, we have assumed that P1 and P2 have the same selec-
tivity. We now test the effect of unbalanced selectivities at
the selection predicates (Figure 7b). For this experiment,
we kept the product of the two selectivities fixed and var-
ied the ratio r = Sel(P2)/Sel(P1). For various values of r
we plot the energy consumption by the different protocols.
Since Sel(P1) 6= Sel(P2), we split protocol DS to DS1 and

DS2. DS1 is more efficient than DS2 for r > 1 and its cost
decreases with r. As r increases, the number of sensors
that qualify P1 decreases, and so do the transmitted mes-
sages by DS1. Although the number of listeners (i.e., nodes
that qualify P2) increases, the listening (and reading) cost is
significantly lower than the transmission cost (see Table 1),
thus the overall cost of DS1 drops. On the other hand, the
cost of DS2 (slightly) increases with r, due to the increased
number of transmissions. Acquisitional protocols get more
expensive with r, since the sensors that qualify either P1 or
P2 increase.6

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500

C
o

s
t
(n

A
h

)

Number of nodes

AQB
AQP

DS

 0

 5000

 10000

 15000

 20000

 25000

 0 4 8 12 16

C
o

s
t
(n

A
h

)

Ratio of predicate selectivity

AQB
AQP
DS1
DS2

(a) scalability (b) effect of Sel(P2)
Sel(P1)

Figure 7. Network size, predicate skew

A natural question for advanced sensor network pro-
tocols is whether any additional operations performed by
them affect the data loss rate, due to communication er-
rors. We first evaluate the effect the packet loss rate has
on the performance of the algorithms (Figure 8a). As the
plot shows, the relative performance of the methods is not
affected by this factor. Figure 8b shows the join output size
as a function of packet loss rate. Observe that similar num-
ber of results are detected by different protocols. Thus, the
functionality of the protocols does not affect the result loss
rate in lossy networks. On the other hand, even with rel-
atively low packet loss rates (10%) a large percentage of
results is not detected. This is expected, as the probabil-
ity of a join result (or a component tuple in a join result) to
reach the basestation decreases exponentially with the num-
ber of hops the message needs to travel. The reliability of
the network during the acquisition phase can be increased,
by applying multi-path routing techniques paired with du-
plicate elimination mechanisms (e.g., [5, 15]), instead of the
routing tree [13]. Intuitively, protocol DS is more appropri-
ate for multi-path routing than AQP, since (i) the amount of
transferred data is low as only (rare) join results are routed
and (ii) the pruner nodes of AQP will be less effective, since
tuples from prunees may find other paths to the root.

We now examine a case where sampling data is signifi-
cantly expensive. We consider a query, where P1 applies
on barometric pressure, P2 applies on I2C temperatures

6For a fixed product Sel(P2) · Sel(P1), the probability for a sensor
to qualify either P1 or P2 (i.e., 1 − (1 − Sel(P1))(1 − Sel(P2))) is
minimized when Sel(P2) = Sel(P1) and increases with r.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20

C
o

s
t
(n

A
h

)

Packet loss rate (%)

AQB
AQP

DS

 0

 5

 10

 15

 20

 0 5 10 15 20

R
e

s
u

lt
 C

a
rd

in
a

lit
y

Packet loss rate (%)

AQB
AQP

DS

(a) cost (b) result cardinality

Figure 8. Effect of packet loss rate

and the selectivity of each predicate is 0.05. We compare
the original protocol DS, with the variant of it, described in
Section 4.1, which asks all nodes to unconditionally listen
to messages from nodes that qualify P1. Only nodes that re-
ceive messages apply sampling to verify the selection con-
dition of P2. We denote this protocol by DS′. Table 2 dis-
plays the cost-breakdown of the join for DS and DS′. Ob-
serve that protocol DS′ has higher packet receiving cost and
idle listening cost, but it has a much lower cost on sensing
the expensive measurement. In total, protocol DS′ outper-
forms protocol DS. In general, DS′ should be preferred to
DS when (i) sampling for either P1 or P2 is very expensive
and should not be performed unconditionally or (ii) either
Sel(P1) or Sel(P2) is close to 100%; the majority of nodes
qualify the predicate, so sensing should follow listening.

Average nodes / epoch
Operation Protocol DS Protocol DS′

Transmitting a packet 162.8 162.8
Receiving a packet 126.6 461.9

Idle listening 49.9 1024
Sensing barom. pressure 1024 1024

Sensing I2C temp. 1024 16.2
Total cost (nAh) 27084.5 9992.0

Table 2. Cost breakdown for a query with ex-
pensive predicates

5.2 Complex joins

In this section, we evaluate the effectiveness of the proto-
cols described in Section 4.2 for spatial pattern queries with
variables forming a star graph topology.

The next experiment evaluates the protocols by varying
the selectivities of PC and PB . Figure 9a shows the cost of
the protocols as a function of PC’s selectivity, with 3 border
nodes and Sel(PB) = 0.05. DSC has the best performance
at very small values of Sel(PC). DSB starts outperform-
ing the other protocols as Sel(PC) increases. Figure 9b
shows the cost of the protocols as a function of Sel(PB),
for queries with 3 border nodes and Sel(PC) = 0.05. The
situation is reversed in this case. DSB has the best perfor-

mance at low values of Sel(PB), while DSC becomes the
best protocol as the number of border nodes increases. The
reason for the performance degradation of DSB is that the
number of border nodes that broadcast messages is too high
for unconditional transmission to pay off.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
o

s
t
(n

A
h

)

Center predicate selectivity

AQB
AQP
DSB
DSC

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
o

s
t
(n

A
h

)

Border predicate selectivity

AQB
AQP
DSB
DSC

(a) varying Sel(PC) (b) varying Sel(PB)

Figure 9. Effect of selectivity

Figure 10a shows the cost of the protocols as a function
of number of border nodes, after fixing the selectivities of
both predicates PC and PB to 0.1. When the number of bor-
der nodes increases, only DSB and DSC achieve significant
cost reduction. For queries with many border nodes, very
few results are generated and the level-off costs of DSB
and DSC indicate the cost of the distributed phase. DSB
is slightly cheaper than DSC, because DSC requires more
nodes to transmit packets in the distributed phase.

 0

 5000

 10000

 15000

 20000

 2 3 4 5

C
o

s
t
(n

A
h

)

Number of border nodes

AQB
AQP
DSB
DSC

 0

 20000

 40000

 60000

 80000

 100000

 1 2 3 4

C
o

s
t
(n

A
h

)

Join distance (hops)

AQB
AQP

DS
BD

(a) vs number of border nodes (b) vs join distance

Figure 10. Border nodes, join distance

5.3 Multi-hop queries

We now study the performance of the protocols for
multi-hop binary join queries. In protocol BD, x is set to
λ/2. Figure 10b plots the costs as a function of join dis-
tance, on all three network topologies. Acquisitional pro-
tocols outperform distributed protocols for join distances
greater than one hop. The effectiveness of pruners remains
high due to the linearity of the topology. Note that the bidi-
rectional protocol (BD) does not have large performance
difference than the purely distributed protocol. It turns out
that BD has high packet reading cost, since intermediate
nodes collect messages unconditionally. In addition, BD
generates many duplicate join results which increase the
cost of transmitting them to the basestation. In summary,
acquisitional protocols are favorable for multi-hop queries,

due to the extreme cost of flooding the selection results at
long ranges.

Finally, we verify the trade-off of disseminating continu-
ous queries in a sensor network and applying in-network fil-
tering or evaluation, as opposed to continuously and uncon-
ditionally acquiring measurements, and evaluating queries
at the basestation. Table 3 shows the costs of the vari-
ous protocols for disseminating queries, creating the rout-
ing tree, and determining non-trivial filters (i.e., prunee in-
formation by AQP). Observe that the standard dissemina-
tion cost of the protocols (excluding prunee computation by
AQP) is relatively low and can be compensated if the query
runs for a long enough period (e.g, > 10 epochs), espe-
cially when Sel(P1) and Sel(P2) are small. On the other
hand, the cost for computing the pruner/prunee information
by AQP can be very high (especially for multi-hop queries).

Base cost Extra cost by AQP
Hops - 1 2 3 4

Cost (µAh) 76 181 673 1508 2767

Table 3. Cost for query dissemination

6 Conclusions
In this paper, we studied the evaluation of spatial pattern

queries, which output combinations of sensor readings qual-
ifying unary selection predicates and pairwise distance con-
straints. We proposed protocols that can achieve significant
performance savings compared to a simple acquisitional ap-
proach that performs filtering based only on the unary se-
lections. An improved acquisitional protocol places join fil-
ters in the routing tree that eliminate sensor readings that
do not qualify the distance constraints. A distributed proto-
col (with variants for multi-way or multi-hop queries) per-
forms in-network computation of the results, before send-
ing them to the user. Experimental studies suggest that
the distributed techniques perform best for low-selectivity
queries with single-hop distance predicates, whereas acqui-
sitional protocols should be preferred for multi-hop or high-
selectivity queries.

References
[1] D. J. Abadi, S. Madden, and W. Lindner. REED: Robust,

Efficient Filtering and Event Detection in Sensor Networks.
In Proc. of VLDB, 2005.

[2] B. J. Bonfils and P. Bonnet. Adaptive and Decentralized Op-
erator Placement for In-Network Query Processing. In Proc.
of IPSN, 2003.

[3] P. Bonnet, J. Gehrke, and P. Seshadri. Towards Sensor
Database Systems. In Proc. of MDM, 2001.

[4] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Ap-
proximate Data Collection in Sensor Networks using Proba-
bilistic Models. In Proc. of ICDE, 2006.

[5] J. Considine, F. Li, G. Kollios, and J. W. Byers. Approximate
Aggregation Techniques for Sensor Databases. In Proc. of
ICDE, 2004.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Com-
pressing Historical Information in Sensor Networks. In Proc.
of ACM SIGMOD, 2004.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierar-
chical In-Network Data Aggregation with Quality Guaran-
tees. In Proc. of EDBT Conf., 2004.

[8] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-Driven Data Acquisition in Sensor Net-
works. In Proc. of VLDB, 2004.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In Proc. of MOBICOM, 2000.

[10] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor
Networks. In Proc. of ICDE, 2005.

[11] Y. Kotidis. Processing Proximity Queries in Sensor Net-
works. In International Workshop on Data Management for
Sensor Networks, 2006.

[12] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation Service for Ad-Hoc Sensor Net-
works. In Proc. of OSDI, 2002.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TinyDB: An Acquisitional Query Processing System for
Sensor Networks. ACM TODS, 30(1):122–173, 2005.

[14] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless Sensor Networks for Habitat Moni-
toring. In Proc. of WSNA, 2002.

[15] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and
Deltas: Efficient and Robust Aggregation in Sensor Network
Streams. In Proc. of ACM SIGMOD, 2005.

[16] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis.
Balancing Energy Efficiency and Quality of Aggregate Data
in Sensor Networks. VLDB J., 13(4):384–403, 2004.

[17] U. Srivastava, K. Munagala, and J. Widom. Operator Place-
ment for In-Network Stream Query Processing. In Proc. of
ACM PODS, 2005.

[18] Y. Yao and J. Gehrke. The Cougar Approach to In-network
Query Processing in Sensor Networks. SIGMOD Record,
31(3):9–18, 2002.

[19] M. L. Yiu, N. Mamoulis, and S. Bakiras. Evaluation of Spa-
tial Pattern Queries in Sensor Networks. Technical Report
TR-2007-02, Department of Computer Science, University
of Hong Kong, January 2007.

[20] H. Yu, E.-P. Lim, and J. Zhang. On In-network Synopsis Join
Processing for Sensor Networks. In MDM, 2006.

