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ABSTRACT
Given a dataset P and a preference function f , a top-k query
retrieves the k tuples in P with the highest scores accord-
ing to f . Even though the problem is well-studied in con-
ventional databases, the existing methods are inapplicable
to highly dynamic environments involving numerous long-
running queries. This paper studies continuous monitoring
of top-k queries over a fixed-size window W of the most re-
cent data. The window size can be expressed either in terms
of the number of active tuples or time units. We propose
a general methodology for top-k monitoring that restricts
processing to the sub-domains of the workspace that influ-
ence the result of some query. To cope with high stream
rates and provide fast answers in an on-line fashion, the data
in W reside in main memory. The valid records are indexed
by a grid structure, which also maintains book-keeping in-
formation. We present two processing techniques: the first
one computes the new answer of a query whenever some of
the current top-k points expire; the second one partially pre-
computes the future changes in the result, achieving better
running time at the expense of slightly higher space require-
ments. We analyze the performance of both algorithms and
evaluate their efficiency through extensive experiments. Fi-
nally, we extend the proposed framework to other query
types and a different data stream model.

1. INTRODUCTION
Assume a dataset P , where each record p has d numer-

ical attributes p.x1, . . . , p.xd. A top-k query q specifies a
preference function f that maps each tuple p ∈ P to a real
number score(p) = f(p.x1, . . . , p.xd). The result of q is the
set of the k records with the highest scores. The top-k oper-
ator is important for several on-line applications, including
communication and sensor networks, stock market trading,
profile-based marketing, etc. Consider, for instance, an In-
ternet Service Provider that monitors the traffic at various
points (i.e., routers) inside the network. Monitoring tools,
such as Cisco’s NetFlow, generate and communicate (to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

central server) detailed traffic logs on a per flow granular-
ity (a flow consists of a series of packets having the same
source and destination IP addresses). The resulting data
streams have very high data rate, and usually account for
hundreds of GBytes of data per day. A typical tuple in the
above scenario includes the source and destination IP ad-
dress, the start and finish time, the byte and packet count,
etc. The availability of such records at the central server
enables the continuous evaluation of numerous queries re-
garding traffic estimation, network security or troubleshoot-
ing. For example, one might want to monitor in real-time
the top-100 flows with the largest individual throughput. If
a number of results (i.e., flows) share the same destination
IP address, this could be an indication that the destina-
tion node is the victim of an ongoing Distributed Denial of
Service (DDoS) attack. On the other hand, one might ask
“what are the top-100 flows with the minimum number of
transmitted packets”. Here, if a number of results share the
same source IP address, it could be a sign of an Internet
worm trying to spread itself (i.e., a source that randomly
probes the IP address space – by sending TCP SYN pack-
ets – in order to discover vulnerable hosts). In both cases,
the underlying application (i.e., network security) is time-
critical and, thus, the timely and continuous evaluation of
each query is essential.

As discussed in Section 2, various techniques have been
proposed for snapshot top-k queries in conventional data-
bases and distributed repositories. However, to the best of
our knowledge, there is no algorithm for processing multiple
long-running queries that request continuous evaluation in
an on-line fashion. This paper addresses top-k monitoring
over sliding windows, assuming the append-only data stream
model [1]. In this context, tuples continuously stream in
the system and they are considered valid only while they
belong to a sliding window W . We consider two versions
of windows: a count-based W contains the N most recent
records, whereas a time-based W contains all tuples that
arrived within a fixed time period covering the most recent
timestamps. The task of the query processor is to constantly
report the top-k set of every monitoring query among the
valid data. We propose a general framework that applies to
both count-based and time-based windows, to arbitrary k
and dimensionality, and to any monotone scoring function.

In order to achieve real-time query evaluation, the valid
tuples are stored in main memory and indexed by a reg-
ular grid. When a query q first arrives at the system, its
result is computed by the top-k computation module, which
searches the minimum number of cells that may contain re-



sult records. Top-k maintenance deals only with tuple in-
sertions and deletions that fall within these cells. We distin-
guish two policies and accordingly propose two algorithms:
(i) the Top-k Monitoring Algorithm (TMA) re-computes the
answer of a query q whenever some of the current top-k tu-
ples expire; (ii) the Skyband Monitoring Algorithm (SMA)
partially pre-computes future results, by reducing the prob-
lem to a skyband maintenance over a subset of the valid
records. As we show analytically and verify experimentally,
SMA has lower running time than TMA, at the expense of
slightly higher space consumption.

The rest of the paper is organized as follows. Section 2
reviews previous work on top-k processing, as well as related
query types. Section 3 provides some geometric observations
that motivate our solutions, and describes a benchmark ap-
proach that combines existing work to solve the same prob-
lem. Sections 4 and 5 present the TMA and SMA methods,
respectively. Section 6 analyzes the time and space complex-
ity of the proposed algorithms. Section 7 discusses the appli-
cation of our techniques to other preference-based queries,
and extends our approach to update streams. Section 8 ex-
perimentally evaluates TMA and SMA. Finally, Section 9
concludes the paper with directions for future work.

2. RELATED WORK
Section 2.1 discusses existing top-k processing methods in

various scenarios. Section 2.2 reviews continuous monitoring
methods for related query types.

2.1 Top-k Query Processing
Onion [8] and Prefer [14] are preprocessing-based tech-

niques for top-k queries in conventional databases. Onion is
motivated by the fact that the point with the highest score
(for any linear preference function) can be found within the
convex hull of the dataset. The method computes and stores
convex hulls in layers, with outer layers geometrically en-
closing the inner ones. A linear top-k query is evaluated
by processing the layers inwards, starting from the outmost
hull. Prefer pre-computes a set of sorted lists according
to some arbitrary scoring functions, and materializes them
as views. For any given preference function f , it selects
the materialized view corresponding to the function that
is most similar to f ; the query can then be answered effi-
ciently by examining a subset of the records in this view.
Prefer works for non-linear scoring functions, provided that
a different set of views is maintained for each function type.
Similar to Onion, Prefer is aimed mostly at static data (due
to the high cost of pre-processing). Yi et al. [30] propose
algorithms that reduce the storage and maintenance cost of
materialized top-k views in the presence of deletions and up-
dates. The basic idea of their methods is simple: instead of
a materialized top-k view, a larger view containing k′ > k
tuples is maintained. The value of k′ varies between k and a
system parameter kmax (that depends on the observed work-
load). During the initialization phase, a top-kmax query is
processed and the view is filled with the retrieved entries.
Incoming tuples whose score is larger than the score of the
k′th tuple are inserted into the view. On the other hand,
deleted tuples may reduce the number of entries k′ below
k. In this case, a top-kmax query is issued again on the
database to refill the view with kmax entries.

Bruno et al. [5] utilize multidimensional histograms in
relational databases to map top-k queries into traditional

ranges. Similarly, Chen and Ling [10] use a sampling-based
technique to transform top-k queries into approximate ranges.
In both cases, if the range does not produce k results, the
process is repeated. Another well-studied problem is report-
ing the top-k records among the results of a join operation
over multiple relations. Donjerkovic and Ramakrishnan [11]
apply probabilistic optimization to answer ranked queries
involving selections and joins. Ilyas et al. [15] propose a
pipelined algorithm, suitable for implementation inside a
hierarchy of join operators. The same authors [16] also in-
troduce a pipelined rank-join operator, based on the ripple
join technique. Ilyas et al. [17] further explore the inte-
gration of rank-join operators in conventional database sys-
tems, by estimating their cost as part of a query execution
plan. Finally, Tsaparas et al. [28] build a ranked join index
to efficiently answer top-k join queries for arbitrary scoring
functions.

Several papers focus on computing the top-k results from
multiple (distributed) data repositories. As an example,
consider that a user wants to find the k images that are
most similar to a query image, where similarity is defined
according to d features, e.g., color histogram, object arrange-
ment, texture, shape, etc. The query is submitted to d
retrieval engines and each engine returns a list of objects
sorted in descending order of their partial scores (with re-
spect to the corresponding feature). The problem is to com-
pute the top-k results in terms of their overall similarity by
combining the d sorted lists. The existing algorithms dif-
ferentiate sorted and random accesses. Sorted access only
supports the retrieval of the objects in descending order (of
the partial score), while random access returns the score for
any random element in the list. Fagin et al. [12] introduce
two methods for processing ranked queries. The TA algo-
rithm is optimal for repositories that support random access
(it minimizes the number of random accesses). On the other
hand, the NRA algorithm assumes that only sorted access
is available. Variations of the methods have been proposed
for several applications, including similarity search in mul-
timedia repositories [9], approximate top-k retrieval with
probabilistic guarantees [27], and ranked queries over web-
accessible databases [21]. Finally, Chang and Hwang [7]
introduce MPro, a general algorithm that optimizes the ex-
ecution of expensive predicates for a variety of top-k queries.

The above methods assume that all the relevant data are
available (locally, or in distributed servers) before process-
ing. Further, they report a single result and terminate. On
the other hand, in stream environments the data are not
known in advance, but they keep changing as new tuples
arrive and old ones expire. The objective is to continuously
monitor the top-k tuples of long-running queries according
to the record arrivals and expirations. The only relevant
work in the data stream literature is by Babcock and Olston
[2], who introduce the concept of distributed top-k monitor-
ing. Their goal is to continuously report the k objects with
the largest cumulative score over a set of stream sources.
In order to reduce the communication cost, they maintain
arithmetic constraints at the stream sources to ensure that
the most recently reported answer remains valid. When a
constraint is violated, the corresponding source reports it
to the central server, which updates the top-k set and as-
signs new constraints to the sources. Our target problem is
different from [2] since we deal with multiple ordinary top-k
queries over a single multidimensional stream. Furthermore,



while Babcock and Olston aim at minimizing the network
overhead, we aim at minimizing the CPU cost at the server
side.

2.2 Continuous Monitoring for Related Query
Types

Top-k queries are related to skylines and other similar
problems such as multi-objective optimization and maximal
vectors. A record p1 is said to dominate another p2, if and
only if, p1 is preferable to p2 on every attribute. Informally,
this implies that p1 has a larger score than p2 according to
any preference function, which is monotone on all attributes.
The skyline operator returns all tuples that are not domi-
nated by another record. Skyline computation has received
considerable attention in relational databases [4, 24] and
web information systems [3]. Lin et al. [20] and Tao and
Papadias [26] propose methods for skyline monitoring over
sliding windows. The skyline maintenance is performed by
in-memory algorithms, which discard records that cannot
participate in the skyline until their expiration.

Top-k (and skyline) queries have a multidimensional as-
pect, since each record p can be thought of as a point1

(in the d-dimensional space) defined by the attribute values
p.x1, p.x2, . . . , p.xd. Therefore, top-k monitoring can benefit
from previous work on continuous spatial queries. The first
monitoring method for spatial queries, Q-index [25], consid-
ers static range queries over moving objects. The queries are
indexed by an R-tree and moving objects are probed against
it in order to detect result changes. Kalashnikov et al. [18]
show that a grid implementation of Q-index is more efficient
(than R-trees) for main memory evaluation. Mokbel et al.
[22] propose Sina, a system that centrally monitors mov-
ing range queries. Query evaluation in Sina is implemented
as an incremental spatial join between the objects and the
queries. Mqm [6] and Mobieyes [13] exploit the object com-
putational capabilities in order to reduce the processing load
of the central server. Koudas et al. [19] describe Disc, a
technique for continuous evaluation of e-approximate k-NN
(nearest neighbor) queries over streams of multidimensional
points. Yu et al. [31] propose two grid-based methods for
continuous monitoring of exact k-NN queries over moving
objects. The first one indexes the data objects, and the sec-
ond one indexes the queries. Sea-Cnn [29] and Cpm [23]
maintain the result of continuous NN queries, by consid-
ering only object updates that may influence some query.
Both methods use a grid and book-keeping information to
determine the queries influenced by each cell.

3. PRELIMINARIES
The proposed methods apply to any top-k monitoring

query, provided that its scoring function f is monotone on all
attributes. A function f is increasingly monotone on dimen-
sion xi if for any pair of tuples (points) p1, p2 with p1.xi ≥
p2.xi and p1.xj = p2.xj ∀j �= i, it holds that score(p1) =
f(p1.x1, p1.x2, . . . , p1.xd) ≥ score(p2) = f(p2.x1, p2.x2, . . . ,
p2.xd). Similarly, f is decreasingly monotone on xi if for
any pair of points p1, p2 as above it holds that score(p1) ≤
score(p2). Note that a function may be increasingly monotone
on some dimensions, and decreasingly monotone on the re-

1Henceforth, the terms record, tuple and point are used in-
terchangeably. Similarly, the data attributes are also re-
ferred to as coordinates.

maining ones. Without loss of generality, we focus on 2-
dimensional unit spaces (i.e., records with two attributes
whose values range between 0 and 1) and scoring functions
increasingly monotone on both dimensions. Section 3.1 de-
scribes some properties that permit the efficient compu-
tation and maintenance of the results, while Section 3.2
presents a competitor to our methods that combines pre-
vious work in order to process continuous top-k queries.

3.1 Properties
Consider the example of Figure 1(a), where pk is the ob-

ject with the kth highest score for a query q with function
f(x1, x2) = x1 + 2 · x2. The line defined by score(pk) =
x1 +2 ·x2 divides the data space into two parts. The shaded
area corresponds to the influence region of q; any update
falling in the influence region will change the result of the
query. In particular, an insertion will cause the removal of
pk and, consequently, the shrinking of the influence region,
whereas a deletion (of a result record) will cause its expan-
sion. On the other hand, updates outside the influence re-
gion are irrelevant to q since the corresponding tuples have
a score below score(pk) and do not alter the result.

x2

x1

0 1

1
(1,1)

pk

line defined by

score(pk)=x1+2.

x2

influence region

(a) Influence region

x2

x1

p1

0 1

1

p2

p3

p4

p5

p6

p7

p8

p9

p10

skyline

2-skyband

(b) Skyline and skyband

Figure 1: Geometric observations on the top-k prob-
lem

For any scoring function f (increasingly monotone on x1

and x2), the point with the maximum score is at the cor-
ner (1,1) of the data space. In accordance with the skyline
literature, point (1,1) dominates every other tuple. Simi-
larly, all records falling in a rectangle R are dominated by
its top-right corner. The score of this corner is denoted as
maxscore(R) and is an upper bound for the scores of all
tuples in R.

In general, the skyline of a dataset contains all tuples that
belong to the result of any top-1 query with a monotone
function. For instance, in Figure 1(b), the skyline includes
p1, p2 and p3, meaning that every top-1 query (on p1, . . . , p10)
returns one of these three tuples2. In order to generalize to
arbitrary values of k, we use the concept of k-skyband [24].
Specifically, the k-skyband contains the tuples that are dom-
inated by at most k−1 other points. According to this defin-
ition, the skyline is a special instance of the skyband, where
k = 1. In Figure 1(b), the 2-skyband consists of all points
(p1, . . . , p7) on, or to the right of, the dashed line. Tuples
(p8, . . . , p10) that do not belong to the 2-skyband cannot

2If queries are restricted to linear functions, the top-1 result
belongs to the convex hull, which is a subset of the skyline.
This fact is exploited by Onion, as discussed in Section 2.1.



be in the result of any top-2 query, since they are always
dominated by two or more points.

Now assume that each tuple is associated with an expi-
ration time. Figure 2(a) illustrates an example, where at
time t = 0 there exist 8 valid tuples. The horizontal axis
corresponds to the lifespan of the records and the vertical
one to their score according to a certain preference function.
Assuming that there are no further arrivals, we can predict
all future results. The top-2 set at time 0 is {p1, p2}. When
p1 expires at time 2, it is replaced by p3. At time 4, p3

expires and the result becomes {p2, p5}. Finally, at time
5, p7 replaces p2. The important observation is that the
records that appear in some result are the ones that belong
to the 2-skyband in the score-time space. Such records are
shown solid in Figure 2(b). Consider, for instance, a tuple p
that belongs to some (future) top-2 result. Then, there ex-
ists some time instance when p has a smaller score than (is
dominated by) at most 1 other valid record. Therefore, p is
part of the 2-skyband. Conversely, consider that p belongs
to the 2-skyband in the score-time space. This implies that
there is at most one record with score higher than p that
expires after p. Thus, there exists some time instance when
p is part of the top-2 result.

1 432 5 760

score

expiration time

p7

p3

p4

p5

p6

p8

p2

p1

(a) Record lifespans

p5

p3

p7

p2

1 432 5 760

p1
score

expiration time

p4

p6

p8

(b) 2-skyband

Figure 2: Top-2 query as 2-skyband in score-time
space

The reduction from top-k to k-skyband queries applies to
both kinds of sliding windows (i.e., count-based and time-
based ones) and is independent of the dimensionality d; i.e.,
the skyband is always computed in the 2-dimensional score-
time space even if the records have numerous (> 2) at-
tributes. This reduction is exploited by the SMA algorithm
in Section 5. Next, we discuss an alternative method for
continuous monitoring of top-k queries, which is built upon
existing work. Due to the absence of other competitors, this
method is used as benchmark for the proposed techniques.

3.2 Threshold Sorted List Algorithm
A top-k monitoring technique must integrate two mod-

ules: (i) a method for the initial computation of the top-
k set, and (ii) an efficient maintenance mechanism to up-
date the result in the presence of insertions/deletions. The
Threshold Algorithm (TA) [12] (discussed in Section 2.1) is
a good candidate for the first module, due to its popularity
and good performance. For the second module, we use the
technique of Yi et al. [30], which is applicable to any top-k
computation method. We call this combined approach, the
Threshold Sorted List (TSL) algorithm. Figure 3 shows the
architecture of TSL, assuming a 2-dimensional space. All
the valid tuples are stored in a first-in-first-out list where

each entry p is a tuple <p.id, p.x1, p.x2, p.t> (i.e., a unique
id, the values of the two attributes, and the arrival time).
In addition, TSL maintains 2 (in the general case d) lists of
all points sorted on the two dimensions.

p2 p3 ...p4

List of valid tuples

Tail (recent)Head (old)

Sorted list on x2

Sorted list on x1

TA

Top-k computation

Incoming tuple

Top-k views

p.id p.x2

p.id p.x1

Expired tuple

p1

pn

Query 1

Query 2

Query m

Update views

Update views

Update lists

Update lists

Figure 3: Threshold sorted list mechanism

When a new top-k query q arrives at the system, the TA
module is invoked to compute the initial result, which con-
tains kmax > k entries (recall that [30] maintains more re-
sults than necessary in order to reduce re-computations).
TA accesses the two sorted lists in a round robin fashion.
For every retrieved point p, a random access is performed
on the other attributes of p, and its score is computed. If p’s
score is larger than the current kmaxth best score, p is added
to the top-kmax result. Furthermore, after each round, a
threshold τ is calculated based on the last attribute values
encountered across all the sorted lists (i.e., τ is the max-
imum score that can be achieved by any non yet visited
point). If the kmaxth best score is larger than τ , the algo-
rithm terminates and the view containing the kmax results
is materialized (see Figure 3).

Upon arrival of a new data tuple pn, the maintenance
module of TSL (i) inserts pn.x1 and pn.x2 to the correspond-
ing sorted lists, and (ii) computes its score for each of the
m active queries. If any of the current m views is affected,
its top-k′ set is updated accordingly (k′ is the number of en-
tries in the current view and, at any time, k ≤ k′ ≤ kmax).
Specifically, pn is inserted into the view and, if k′ = kmax,
the previous element at position kmax is removed. On the
other hand, when an existing tuple (e.g., p1) expires, TSL (i)
deletes the corresponding entries from the two sorted lists,
and (ii) removes p1 from any of the m views that include it.
If the number of entries in a certain view drops below k, the
TA algorithm is invoked again to refill the view with kmax

entries.

4. TOP-K MONITORING ALGORITHM
This section focuses on the Top-k Monitoring Algorithm

(TMA). Section 4.1 describes the index and book-keeping
structures, while Sections 4.2 and 4.3 present the top-k com-
putation and maintenance modules of TMA, respectively.

4.1 Index and Book-keeping Structures
Assuming a 2-dimensional space, each record p is repre-

sented as <p.id, p.x1, p.x2, p.t>, where p.id is a unique iden-
tifier, p.x1 and p.x2 are the x1 and x2 attribute values of
p, and p.t is its arrival time. Similar to existing approaches
that handle streams of multidimensional points (e.g., [19,
31, 29, 23]), we use a regular grid to index the valid records,



since a more complicated access method (e.g., a main mem-
ory R-tree) is very expensive to maintain dynamically. The
extent of each cell on every dimension is δ, so that cell ci,j at
column i and row j (starting from the low-left corner of the
workspace) contains all tuples with x1 attribute in the range
[i · δ, (i+1) · δ) and x2 attribute in the range [j · δ, (j +1) · δ).
Conversely, given a record p with attributes (p.x1, p.x2), its
covering cell can be determined (in constant time) as ci,j ,
where i = �p.x1/δ� and j = �p.x2/δ�.

Furthermore, it is important to provide an efficient mech-
anism for evicting expiring records. In both versions of the
sliding window (i.e., count-based and time-based), the tuples
are evicted in a first-in-first-out manner, since W contains
the most recent ones. Therefore, all the valid records are
stored in a single list. The new arrivals are placed at the
end of the list, and the tuples that fall out of the window are
discarded from the head of the list. Each cell contains a list
of pointers to the corresponding (valid) records, as shown in
Figure 4. Since insertions and deletions to a cell also occur
in a fist-in-first-out fashion, each operation on the point list
takes O(1) time.

The running queries q are stored in a query table QT .
QT maintains for each q a unique identifier q.id, its scoring
function q.f , the number of tuples required q.k, and its cur-
rent result q.top list. The score of the kth point in q.top list
(referred to as q.top score) implicitly defines the influence
region of q. To restrict the scope of the top-k maintenance
algorithms, each cell c is associated with an influence list
ILc that contains an entry for each query q whose influ-
ence region intersects c. Since the query influence regions
change dynamically, ILc is organized as a hash-table on the
query ids for supporting fast search, insertion and deletion
operations.

c

Influence list 

of c - ILc

.
.
.

.
.
.

q.id Point list of c

p1 p2 ...p3

List of valid points

Tail (recent)Head (old)

Query Table - QT 

.
.
.

.
.
.

q.id entry of q

q.f

q.k

q.top_list

Figure 4: Index and book-keeping structures

4.2 The Computation Module
A näıve way to obtain the result of a query q is to sort all

cells c according to maxscore(c), and process them in de-
scending maxscore(c) order. For each visited cell, we com-
pute score(p) for every point p inside, and update q.top list
accordingly. The search terminates when the cell c under
consideration has maxscore(c) ≤ q.top score (i.e., the score
of the kth element in q.top list). Figure 5(a) illustrates the
processing of a top-1 query q with f(x1, x2) = x1 + 2 · x2

in a 7 × 7 grid. The algorithm processes the shaded cells,

encounters two points p1, p2, and returns p1 as the result.
It can be easily shown that it is optimal in the sense that
it considers only the cells intersecting the influence region.
As discussed in Section 3.1, these cells must be visited any-
way in order to avoid false misses. Nevertheless, it may be
very expensive in practice because it requires computing the
maxscore for all cells and subsequently sorting them.

p2

p1

x1

x2 c6,6

line defined by

score(p1)=x1+2
.

x2

(a) Processed cells and points

p

p''

p'

c6,6c5,6

c6,5c5,5

c4,6

(b) Cell visiting order

Figure 5: A top-k computation example

Figure 5(b) illustrates how to determine the visiting order
without computing the maxscore of all cells. Since point
(1,1) maximizes any function f (increasingly monotone on
both dimensions), the top-right cell (in this case c6,6) has
the highest maxscore and is processed first. Consider now
points p′ and p′′ (i.e., the top-left and low-right corners of
c6,6, respectively). Point p′ (p′′) has higher score than any
point in the shaded (striped) region. In other words, for
all the unprocessed cells c, maxscore(c) ≤ max(score(p′),
score(p′′)). It follows that the cell to be visited after c6,6

is either c5,6 or c6,5. Assuming that score(p′) ≥ score(p′′),
c5,6 is processed second. Similarly, the cell with the third
highest maxscore is determined among c6,5, c4,6, and c5,5.

The TMA top-k computation module, shown in Figure
6, uses the above method to visit the cells in descending
maxscore order, preserving the property of processing the
minimal set of cells. Initially, it inserts into an empty max-
heap H the cell in the top-right corner of the workspace with
its maxscore as the sorting key. Then, it starts de-heaping
cells iteratively. For each de-heaped cell ci,j , it examines
the points inside and updates q.top list. It also en-heaps
ci−1,j and ci,j−1 along with their maxscore, provided that
they have not been en-heaped before. An entry for q is
inserted in the influence list of processed cells, to be used
for the handling of point arrivals and expirations therein.
The process terminates when the next entry in H has key
lower than or equal to q.top score. Note that the algorithm
may en-heap some cell c even if maxscore(c) ≤ q.top score
(this condition is not tested at lines 9 and 11). Such cells
are not processed (i.e., not de-heaped) and therefore could
be eliminated without being inserted in H. The reason for
their insertion will become apparent in Section 4.3. Contin-
uing the example of Figure 5(a), the algorithm computes the
maxscore and en-heaps the shaded and the striped cells. It
processes (de-heaps) only the shaded ones.

In practice, there are multiple queries in the system, each
with a different preference function and arbitrary value of k.
The algorithm of Figure 6 can answer any query, provided
that its function f is monotone on each axis. Consider the
example of Figure 7(a), where f(x1, x2) = x1 − x2 (i.e., f is



Top-k Computation (q)
//q: top-k query
1. q.top score = −∞; q.top list = NULL;
2. Initialize an empty max-heap H
3. Let c be the cell in the top-right corner of the workspace
4. Insert <c, maxscore(c)> into H
5. While next entry has key > q.top score and H not empty
6. De-heap the next entry <ci,j , maxscore(ci,j)> of H
7. For each point p in ci,j

8. If score(p) > q.top score, update q.top list
9. If ci−1,j has not been en-heaped before
10. En-heap <ci−1,j , maxscore(ci−1,j)>
11. If ci,j−1 has not been en-heaped before
12. En-heap <ci,j−1, maxscore(ci,j−1)>
13. Insert an entry for q into the influence list of ci,j

14. End while

Figure 6: The top-k computation module

increasingly monotone on x1 and decreasingly monotone on
x2). A top-2 search starts with the cell in the bottom-right
corner of the workspace, and it en-heaps cell ci,j+1 (instead
of ci,j−1) in lines 11-12. It returns p3 and p4 as the re-
sult, after processing the cells that intersect or lie below line
score(p4) = x1 − x2. Figure 7(b), on the other hand, shows
a top-1 computation example for the non-linear function
f(x1, x2) = x1 · x2, which is increasingly monotone on both
axes. The top-k retrieval algorithm visits the shaded cells,
encounters points p1 and p3, and returns p1. The influence
region of the query is defined by curve score(p1) = x1 · x2.
Finally, the presented method trivially extends to higher
dimensionality. For instance, in 3D space the only change
is that after processing ci,j,w, cells ci−1,j,w, ci,j−1,w, ci,j,w−1

are inserted into H (if they have not been en-heaped before).

p4

x1

x2

p3

p5

line defined by

score(p4)=x1-x2

c1,6

(a) f(x1, x2) = x1−x2, k = 2

p1

x1

x2

p3curve defined by

score(p1)=x1
.

x2

(b) f(x1, x2) = x1 · x2, k = 1

Figure 7: Top-k computation for alternative func-
tions

4.3 The Maintenance Module
After the computation of the initial result, new records

arrive at the system, while others expire. Let Pins be the
set of incoming tuples and Pdel be the set of evicted ones.
TMA processes Pins first. For each p ∈ Pins, it initially
inserts (a pointer to) p into the point list of the corre-
sponding cell c. Then, it scans the influence list ILc of c
and updates the result of every query q ∈ ILc for which
score(p) ≥ q.top score. Regarding the expiring points, for
each p ∈ Pdel, TMA deletes p from its cell c. The expunged
point p may be part of the result for some of the queries in

ILc. For each query q in ILc, if p ∈ q.top list, q is marked
as affected, implying that its result has to be computed from
scratch when the processing of Pdel is completed.

Returning to the example of Figure 5(a), assume that
tuples p3 and p4 arrive at the system, and at the same
time p1 and p2 expire, as illustrated in Figure 8(a) (invalid
points appear hollow). Pins = {p3, p4} is processed first.
Cell c5,6 of p3 has an entry for q in its influence list, and
therefore score(p3) is compared against q.top score. Since
score(p3) > q.top score, p3 becomes the result of q. Even
though q.top score changes after the insertion of p3, we do
not update the influence lists of the cells that no longer
influence q (i.e., c1,6, c2,6, c3,6, c3,5, c4,5, c5,5, c5,4, c6,4). The
influence lists are updated only after a top-k computation
from scratch, as discussed later. This “lazy” approach does
not affect the correctness of the algorithm because potential
insertions (or deletions) in these cells will simply be ignored
(upon comparison with q.top score).

The insertion of p4 is handled similarly, but it does not
incur any change because score(p4) is lower than the new
q.top score. Next, TMA processes the expiration of p1,
which no longer belongs to the result of q. Hence, it is
simply removed from the point list of its cell. The mainte-
nance algorithm proceeds with p2, deletes it from c1,6, and
terminates. Note that if Pdel were processed before Pins, q
would be marked as affected and its result would have to be
computed from scratch (despite the insertion of p3). This is
the reason for handling Pins before Pdel.
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p1

x1

x2
p3p4

c6,6

c4,5

c6,4

c5,5

c3,6c2,6c1,6

c5,4

c3,5 c6,5

c5,6c4,6

(a) Pins = {p3, p4}, Pdel =
{p1, p2}

x1

x2 p3p4

p5

(b) Pins = {p5}, Pdel = {p3}

Figure 8: Handling of updates

Consider now that in the next timestamp Pins = {p5} and
Pdel = {p3}, as shown in Figure 8(b). Processing begins
with p5, which does not cause any change. On the other
hand, the deletion of p3 invalidates the current result of
q. TMA invokes the top-k computation module (Figure 6)
that returns p4. The new influence region of q contains all
cells that intersect or lie above the line score(p4) = x1 + 2 ·
x2 (dashed in Figure 8(b)). Therefore, q must be removed
from the ILc of all cells (c1,6, c2,6, c3,5, c4,5, c5,4, c6,4) that no
longer influence q (recall from Figure 8(a) that the lists of
these cells were not updated during the insertion of p3). The
updating of the influence lists starts with the cells (striped
in Figure 8(b)) that remain3 in H after the termination of
the top-k computation and continues in a way similar to
Figure 5(b). The difference is that the order of updating the

3As discussed in Figure 6, these are the cells that were en-
heaped, even though their maxscore was below q.top score.



influence lists does not matter. Therefore, instead of a heap,
we use a list which initially contains the cells remaining
in H. For each cell ci,j in list, if q ∈ ILci,j we delete q
from ILci,j and add ci−1,j , ci,j−1 into list, provided that
they have not been inserted before. The process terminates
when list is empty. Figure 9 presents the complete TMA
algorithm.

Algorithm TMA
1. In every processing cycle do
2. Pins=set of arriving points; Pdel=set of expiring points
3. For every point p in Pins

4. Insert p into the point list of the corresponding cell c
5. For each q in ILc

6. If score(p) ≥ q.top score
7. Insert p into q.top list
8. For every point p in Pdel

9. Delete p from the point list of the corresponding cell c
10. For each q in ILc

11. If p ∈ q.top list mark q as affected
12. For each affected query q
13. Invoke Top-k Computation (q)
14. Insert the cells remaining in H into an empty list
15. Repeat
16. Remove next cell ci,j from list
17. If q ∈ ILci,j

18. Delete q from ILci,j

19. If ci−1,j is not in list, append ci−1,j to list
20. If ci,j−1 is not in list, append ci,j−1 to list
21. Until list is empty
22. Report changes to the client

Figure 9: The TMA algorithm

In summary, the only case that involves computation from
scratch for a query occurs when some of the existing top-k
tuples expire and the new arrivals have a lower score than
the expired records (so that the influence region expands).
When a query q is terminated, we delete it from the query
table, and remove q from all the influence lists in the grid.
The latter task is performed by initializing list to contain
the corner cell with the maximum maxscore.

5. SKYBAND MONITORING ALGORITHM
The Skyband Top-k Monitoring Algorithm (SMA) applies

the reduction from top-k to k-skyband queries in order to
avoid computation from scratch when some results expire.
Consider, for instance, Figure 10(a), where tuples are shown
as intervals in the 2-dimensional score-time space. The num-
ber in the parenthesis corresponds to the dominance counter
(DC) of each tuple p, i.e., the number of records with higher
score that arrive after4 p. At time 0, the result of a top-2
query contains p2 and p3, whereas the 2-skyband contains
p2, p3, p5, p7. At time 3, p9 arrives, and expires after all
other records in the system. It follows that (i) p9 is not
dominated by any point (i.e., p9.DC = 0), and (ii) all the
points p with score(p) ≤ score(p9) are dominated by p9.
Therefore, the dominance counters of p5, p3, p7 increase by
one, i.e., p5.DC = 1 and p3.DC = p7.DC = 2. Conse-
quently, p3 and p7 are removed from the 2-skyband at time
3. The updated 2-skyband, shown in Figure 10(b), contains
p2, p9 and p5. The new top-2 set consists of the two ele-
ments in the skyband with the highest scores (i.e., p2 and

4In both count-based and time-based windows the arrival
order is the same as the expiration order.

p9). After the expiration of p2 (at time 5) the top-2 result
will change to {p5, p9}.
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Figure 10: Skyband maintenance

In general, the monitoring of future top-k results reduces
to a k-skyband maintenance task. SMA restricts the sky-
band maintenance for a query q to points falling inside its in-
fluence region. Specifically, the initial top-k results of q (and
their scores) are retrieved by the top-k computation mod-
ule of Figure 6 and are inserted into q.skyband, which con-
tains entries of the form <p.id, p.score, p.DC> in descend-
ing order of p.score. Then, SMA scans q.skyband, and for
each tuple p it computes p.DC. To speed up the dominance
counter computation, the arrival time of every processed el-
ement of q.skyband is stored into a balanced tree BT sorted
in descending order. Thus, p.DC is simply the number of
tuples that precede p in BT (since records are processed in
descending score order, these tuples are preferable over p
in terms of both score and expiration time). An internal
node in BT contains the cardinality of the sub-tree rooted
at that node so that the computation of dominance counters
takes in total O(k · log k) time. After the dominance counter
computation, BT is discarded and the q.skyband contains
exactly k tuples; q.top score is the score of the kth tuple.

The skyband maintenance procedure only handles tuples
p with score(p) ≥ q.top score. When such a tuple arrives
at the system, it is inserted into q.skyband increasing its
cardinality. The first k records of the skyband constitute
the q.top list (in accordance with the TMA terminology),
which is not stored explicitly. The dominance counter of all
records with score lower than score(p) is increased by 1 and
the tuples whose counter reaches k are evicted. Regarding
deletions, the element p of q.skyband with the earliest arrival
time (i.e., the one expiring first) belongs5 to the current
result. Hence, when p expires, it is removed and the first
k elements of q.skyband are reported as the new q.top list.
Note that p does not dominate any point, and therefore the
dominance counters of the remaining elements in q.skyband
are not affected. The SMA algorithm is illustrated in Figure
11.

An important remark concerns the situation where the
skyband contains fewer than k points. This scenario occurs
when some top-k results expire and the recent arrivals were
not inserted in the skyband (because their score was below
q.top score). In such cases, we have to re-apply the algo-

5This can be proven by contradiction. Assume that the
expiring point p is not in the current top-k result. Then, all
the tuples in the result dominate p since they have higher
score and expire later. Thus, p cannot belong to the k-
skyband.



Algorithm SMA
1. In every processing cycle do
2. Pins = set of arriving points
3. Pdel = set of expiring points
4. For every point p in Pins

5. Insert p into the point list of the corresponding cell c
6. For each q in ILc

7. If score(p) ≥ q.top score //score of the kth element
after the last application of top-k computation (q)

8. Insert p into q.skyband and set p.DC = 0
9. For each p′ in q.skyband with score(p′) ≤ score(p)
10. p′.DC = p′.DC + 1
11. If p′.DC = k evict p′ from q.skyband;
12. For every point p in Pdel

13. Delete p from the point list of the corresponding cell c
14. For each q in ILc

15. If p ∈ q.top list
16. Delete p from q.skyband
17. For each query q whose skyband has changed
18. If q.skyband has at least k points
19. q.top list = the first k elements of q.skyband
20. Else //q.skyband has fewer than k points
21. Invoke Top-k Computation (q)
22. Form q.skyband and compute dominance counters
23. Report changes to the client

Figure 11: The SMA algorithm

rithm of Figure 6 and compute the skyband from scratch.
The pseudo-code of Figure 11 handles this case in lines 20-
22. SMA is expected to be faster than TMA, since it involves
less frequent calls to the top-k computation module. For ex-
ample, in Figure 8(b), SMA would have kept point p4 in the
skyband, and report it as the result when p3 expires. On
the other hand, the space requirements of SMA are higher
than TMA, since it maintains the skyband (which is a su-
perset of the current top-k set) of each query. In the next
section we analytically compare the running time and space
requirements of the proposed algorithms.

6. PERFORMANCE ANALYSIS
Similar to previous analytical studies in the literature [18,

23, 29, 31], we assume that (i) the average data cardinal-
ity at each timestamp is N , (ii) the tuples are uniformly
distributed in a unit d-dimensional workspace, and (iii) the
stream rate is, on the average, r tuples per processing cycle.
If δ is the cell extent per axis, the total number of cells is
(1/δ)d and each cell contains on the average N · δd points.
First, we analyze the running time of the top-k computation
module (involved in both TMA and SMA). Recall that the
algorithm visits only the cells intersecting the influence re-
gion of a query. The influence region contains k (out of the
N) records and, according to the uniformity assumption,
has volume k/N . Thus, the number of processed cells is
C = O(	k/(N ·δd)
). Each cell is inserted into (deleted from)
a heap with logarithmic cost, resulting in O(C · log C) cost
for heap operations. The number of points in the processed
cells is |C| = O(C ·N ·δd). Each of these points is considered
for insertion into the q.top list (or q.skyband). With a red-
black tree implementation, an update of the q.top list costs
O(log k) time (i.e., a deletion of its kth element, followed by
an insertion of a new one). Thus, the running time of the
top-k search is Tcomp = O(C · log C + |C| · log k).

Concerning the maintenance cost of TMA, in every process-
ing cycle, r new tuples arrive at the system, while r old

ones expire. Hence, the grid update time is O(r). Each
cell receives r · δd insertions and r · δd deletions. There-
fore, the influence region of a top-k query q is affected by
2·C ·r·δd events. The time required to check whether the cor-
responding points belong to the current result is O(C ·r ·δd)
(by comparing with q.top score). Among them, k · r/N
new points are considered for insertion into q.top list, and
k · r/N old ones are deleted from it, with cost O(k · r ·
log k/N). Let Prrec be the probability that the query has
to be processed from scratch after the updates. It holds that
Prrec ≤ 1 − (1 − (r/N))k, where (1 − (r/N))k is the prob-
ability that none of the current top-k entries expire. The
quantity 1 − (1 − (r/N))k is an upper bound of Prrec, as
some arriving points may replace expiring entries. Summa-
rizing, the time complexity of TMA for a processing cycle is
TTMA = O(r +Q · (C · r · δd +k · r · log k/N +Prrec ·Tcomp)),
where Q is the number of running queries.

For SMA, the index update cost is the same as for TMA
(i.e., O(r)). Also, the number of the arriving (expiring)
points in the cells intersecting the influence region of a query
q is O(C · r · δd). Initially (after the application of the top-
k computation module), the skyband contains k elements.
Among the inserted (deleted) points, O(k · r/N) have score
greater than or equal to q.top score and have to be included
in (excluded from) the skyband. An insertion to q.skyband
requires O(k) time, because we have to retain the order (ac-
cording to score), and at the same time update the domi-
nance counters of the entries with score lower than that of
the new record. Similarly, each deletion has O(k) cost. Note
that for uniform data distribution, the number of insertions
in the influence region of q equals the number of deletions
therein, and the k-skyband contains exactly k entries. Thus,
SMA does not resort to top-k computation from scratch (this
observation is also verified in the experiments). In this case
the total running time is TSMA = O(r+Q·(C·r·δd+k2·r/N))
for each processing cycle.

Finally, we analyze the memory requirements of the pro-
posed methods. The index has O(N · d + N + Q · C) size,
where O(N · d), O(N) and O(Q · C) are the amounts of
storage required for the N valid d-dimensional points, for N
pointers (in the point lists of the cells), and for the influence
lists of the Q queries. Each query table entry for TMA has
size O(d + 2 · k), for storing the scoring function parame-
ters and the tuple <p.id, score(p)> for every point p in the
result. For SMA each entry of QT takes up O(d + 3 · k),
since in addition to the id and the score, q.skyband also
contains the dominance counters of the points. Recall that
SMA does not need to explicitly store q.top list, because
the result set consists of the first k entries of q.skyband.
Summarizing, the space requirements of TMA and SMA are
STMA = O(N · (d + 1) + Q · (C + d + 2 · k)) and SSMA =
O(N · (d + 1) + Q · (C + d + 3 · k)), respectively.

In general, SMA is expected to be faster than TMA be-
cause the latter one resorts more frequently (with proba-
bility Prrec) to top-k computation from scratch. On the
other hand, the result updating of TMA is more efficient
than the skyband maintenance of SMA (with time complex-
ities O(k · r · log k/N) and O(k2 · r/N) per query, respec-
tively). Therefore, if Prrec is very small, TMA outperforms
SMA. As shown in the experimental evaluation, however,
this case is rare. Concerning the space overhead, SMA uses
more memory than TMA because (i) the q.skyband stores
additional information about the dominance counters, and



(ii) in practice, the k-skyband may contain more than k
entries. The performance of both algorithms depends on
the cell side-length δ. Large cells minimize the time spent
on heap operations, but lead to unnecessary processing of
points that are outside the influence region (but fall in cells
that intersect the influence region). Large δ also implies
lower space consumption, because queries are affected by
fewer cells, and the cell influence lists take up less memory.
The running time of the proposed techniques increases with
k, Q, N , and r. The same holds for the space consumption,
with the exception of r.

7. OTHER QUERY TYPES AND STREAM
MODELS

In this section we discuss the extension of the presented al-
gorithms to special cases of top-k monitoring, as well as their
adaptation to another data stream model. A constrained
top-k query q monitors only points falling in the sub-space
defined by a set of input constraints. Typically, each con-
straint is expressed as a range along a dimension and the
conjunction of all constraints forms a hyper-rectangle (re-
ferred to as the constraint region) in the d-dimensional at-
tribute space. Figure 12 illustrates an example of a top-1
query q with f(x1, x2) = x1 + 2 · x2, where the constraint
region is an axis-parallel rectangle R. To compute the ini-
tial result of q, the top-k computation module starts with
cell c5,5 that maximizes f in R. Then, it proceeds with c4,5

where it encounters p1. Since p1 does not lie in R, it is
excluded from consideration. Finally, p2 is returned as the
result. The visited cells (appearing shaded) receive an en-
try for q in their influence lists. Among the point insertions
and deletions in these cells, only the ones falling in R are
processed by the maintenance algorithm.

p2

p1

x1

x2

c5,5

R

score(p2)=x1+2
.

x2

Figure 12: A constrained top-1 query example

Another interesting type of preference-based retrieval con-
cerns queries that request monitoring of all the points with
score above a user-specified threshold. A simple, but ex-
pensive, method is to check each arriving/expiring entry
against all the queries. On the other hand, the proposed
framework provides an efficient and scalable processing tech-
nique. Given a new threshold query q, the initial result com-
putation starts with the cell at the top-right corner of the
workspace, and proceeds with the adjacent cells provided
that their maxscore is higher than threshold. Since the vis-
iting order is not important, the search can be performed
with a list (instead of a heap), similar to the way discussed
in Section 4.3. An entry for q is inserted into the influence
list of each processed cell. The maintenance module simply

reports the point insertions and deletions in these cells for
points p with score(p) > threshold.

So far we have assumed the append-only data stream
model. In case of streams that contain explicit deletions, the
data no longer expire in a first-in-first-out manner. There-
fore, we do not maintain the valid data list described in Sec-
tion 4.1. Instead, when a tuple p arrives at the system, it is
directly placed into its cell in the grid. When a deletion up-
date is issued for p, it is deleted from the corresponding cell.
The point lists of the cells are implemented as hash-tables
for supporting random insertions/deletions in constant ex-
pected time. TMA applies directly to this scenario; when
some of the current top-k points of a query q are deleted,
then its result is computed from scratch. On the other hand,
the skyband computation and maintenance of SMA is not
possible because the expiry order of the tuples is not known
in advance.

8. EXPERIMENTAL EVALUATION
In this section we experimentally evaluate the proposed

methods using streams of independent (IND) and anti-correl-
ated (ANT) data distributed in a unit workspace of di-
mensionality d in the range from 2 to 6. For IND data,
the attribute values of each tuple are generated indepen-
dently, following a uniform distribution. ANT data are gen-
erated in the way described in [4], and represent an environ-
ment where points that have a large value on one dimension,
have small values on one or all of the remaining dimensions.
IND and ANT are common benchmarks for preference-based
queries [4, 24]. Figure 13 illustrates two example datasets.

We assume a count-based window with size N between
1 and 5 million tuples. During each timestamp, r new
points arrive at the system. We generate Q top-k mon-
itoring queries with scoring functions of the form f(p) =
�d

i=1 ai ·p.xi, where the ai coefficients are randomly chosen
between 0 and 1. The simulation length is 100 timestamps.
We compare the performance of three algorithms: (i) thresh-
old sorted list (TSL), that combines the TA algorithm with
the maintenance module of [30] (as discussed in Section 3.2),
(ii) TMA, and (iii) SMA. Table 1 summarizes the parame-
ters under investigation, along with their ranges and default
values. In each experiment we vary a single parameter, while
setting the remaining ones to their default values. For all
simulations we use a Pentium 3.2 GHz CPU with 1 GByte
memory.
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Figure 13: Datasets (d = 2)

First, we study the effect of the grid granularity on TMA
and SMA for IND and the default settings (i.e., d = 4,
N = 1M, r = 10K, Q = 1K, k = 20). Each axis is divided
into a number of equal intervals that varies between 5 and



Table 1: System parameters
Parameter Default Range

Data dimensionality (d) 4 2,3,4,5,6
Data cardinality (N) 1M 1,2,3,4,5 (M)

Arrival rate (r) 10K 1,5,10,50,100 (K)
Query cardinality (Q) 1K 100,500,1K,2K,5K
Result cardinality (k) 20 1,5,10,20,50,100

15 (corresponding to a grid of 54 up to 154 cells). Figure 14
illustrates the overall running time of the methods as well
as their space requirements. A grid of 124 cells is the best
choice in terms of speed for both algorithms. A finer grid is
more expensive because of the heap operations on the cells
(some of which are empty), whereas a sparser grid leads to
unnecessary processing of points outside the query influence
regions (as discussed in Section 6). Regarding the memory
footprints, a finer grid results in higher space consumption,
mainly due to the book-keeping. The diagrams for ANT
follow the same trends and are omitted.
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Figure 14: Performance vs. grid granularity (IND)

For fairness, we also fine-tune the value of kmax in the TSL
algorithm, for different values of k. Using the default set-
tings and the IND dataset, we identified the optimal values
(4, 10, 20, 30, 70, 120) for kmax, corresponding to the values
(1, 5, 10, 20, 50, 100) of k. Notice that in the original paper
[30] the authors propose an algorithm that dynamically ad-
justs the value of kmax, according to the ratio of the refill
operation cost over the tuple update cost. However, this
approach performs worse than TSL with fine-tuned kmax.

In Figure 15 we set N = 1M and r = 10K, and measure
the running time for different data dimensionalities d (rang-
ing between 2 and 6). The cell extent is selected so that
the grid contains approximately 124 cells because, as shown
in Figure 14, this value provides the best performance with
reasonable space requirements. The cost of all algorithms
increases with d. For SMA and TMA, this happens because
more cells are processed during the top-k computation from
scratch (recall that after de-heaping a cell, we en-heap d ad-
jacent ones). For TSL, this is because the number of lists
and the cost of TA computations is proportional to d. The
significant gain of TMA over TSL demonstrates the benefits
of the top-k computation module compared to the TA al-
gorithm (notice that TMA maintains exactly k results and,
thus, performs more top-k computations than TSL). The
advantage of SMA over TMA, is due to the less frequent
re-computations (of the top-k result) from scratch.

In Figure 16 we vary N from 1M to 5M, and set the ar-
rival rate r to N/100 tuples per timestamp. In other words,
during each timestamp, 1% of the data points are replaced
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Figure 15: CPU time vs. d

by new ones. As expected, the performance of all algo-
rithms degrades with N . However, both our methods scale
much better than TSL, and they are more than one order
of magnitude faster in most cases. An interesting observa-
tion, which is apparent in all experiments, is that the cost
increases for anti-correlated data. This happens because
for ANT, the data are concentrated close to the plane that
passes through point (0.5,0.5,0.5,0.5) and is perpendicular
to the line crossing (0,0,0,0) and (1,1,1,1). Thus, the top-k
computation module (that starts from the top-right corner
of the data space) has to process many cells before retrieving
k results.
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Figure 16: CPU time vs. N (r = N/100)

Next, we set N = 1M and vary r between 1K and 100K,
i.e., 0.1% up to 10% of the valid tuples are replaced per
timestamp. As shown in Figure 17, the cost of TMA and
SMA increases with r, verifying the analysis of Section 6.
For all values, both our monitoring algorithms outperform
TSL, showing better resilience against frequent updates. This
is due to the high update cost of TSL that involves the
on-line maintenance of d sorted lists. Furthermore, SMA
performs significantly better than TMA for anti-correlated
data, since the cost of the (frequent) top-k computations is
higher (as explained in the context of Figure 16). Figure
18 measures the effect of the query cardinality, ranging be-
tween 100 and 5K. The running time of all methods scales
linearly with Q, while their relative performance is similar
to the previous experiments.

Figure 19 shows the running time versus k for IND and
ANT. The influence regions of the queries and, consequently,
the number of processed cells grow with k, implying higher
result computation and maintenance overhead. Initially, the
costs of TMA and SMA are similar, but their performance
gap increases with k. This happens because high values of
k raise the probability Prrec that some of the current top-k



points expire. For k = 100 and ANT, the cost of TMA is
almost as high as that of TSL, due to the very frequent and
expensive re-computations of top-k results from scratch.
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Figure 18: CPU time vs. Q
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Figure 19: CPU time vs. k

Figure 20 displays the space overhead for the same ex-
periment. TMA and SMA need to maintain for each cell
(i) the influence lists, and (ii) the corresponding point list.
The overhead of the algorithms increases with k because
they have to store more result tuples per query. Moreover,
for TMA and SMA, the influence lists grow with k. TSL
consumes more space compared to our methods due to the
additional d sorted lists. Table 2 shows the average cardinal-
ity of the materialized views and of the skybands, for TSL
and SMA, respectively. In accordance with the analysis of
Section 6, SMA maintains very few extra points. Note that
SMA maintains fewer points in the top-k view than TSL,
since it continuously discards those tuples that can never
appear in the result.

Finally, we demonstrate the effectiveness of the proposed
algorithms for non-linear functions. Figures 21(a) and 21(b)

evaluate the cost of queries with score(p) =
�d

i=1(ai +p.xi),

where ai ∈ [0, 1], as a function of d for IND and ANT. Fig-
ures 21(c) and 21(d), repeat the experiment for 1K queries

with score(p) =
�d

i=1 ai · p.x2
i . The relative performance

of the algorithms is similar to the case of linear functions
(Figure 15), illustrating the generality of our methods.
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Table 2: Average view/skyband size per query
IND ANT

k TSL SMA TSL SMA

1 3.3 1.1 3.1 1.1
5 8.6 5.9 8.4 5.9
10 17.1 11.2 17.2 11.5
20 26.7 21.6 26.9 22.4
50 63.0 53.3 64.4 54.4
100 113.2 104.6 113.6 106.5
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9. CONCLUSIONS
This paper constitutes the first work on continuous mon-

itoring of top-k queries over sliding windows. We use a reg-
ular grid to index the valid records in main memory. The
initial result of each query is computed by a top-k compu-
tation module that processes the minimum number of cells.



Only record updates within these cells can potentially in-
validate the current top-k set. Therefore, the maintenance
of the result considers only point arrivals and expirations
therein. We propose two monitoring algorithms, TMA and
SMA, that differ in the way that they handle expirations of
top-k records. TMA re-computes the result from scratch,
whereas SMA maintains a superset of the current answer
in the form of a k-skyband, in order to avoid frequent re-
computations. An extensive experimental evaluation illus-
trates that incremental result maintenance pays off for both
TMA and SMA. Moreover, it demonstrates that SMA out-
performs TMA for all parameter settings, with a small space
overhead. An interesting direction for future work concerns
processing queries with non-monotone preference functions.
Geometric reasoning could be employed for answering sev-
eral classes of such functions. For example, a function with
finite and analytically computable local maxima could be
evaluated with a proper partitioning of the space into sub-
domains where it is monotone.

10. ACKNOWLEDGMENTS
This work was supported by grant HKUST 6184/05E from

Hong Kong RGC.

11. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream systems.
In PODS, pages 1–16, 2002.

[2] B. Babcock and C. Olston. Distributed top-k
monitoring. In SIGMOD, pages 28–39, 2003.
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