
Secure Similar Document Detection with

Simhash

Sahin Buyrukbilen1 and Spiridon Bakiras2

1 The Graduate Center
City University of New York
sbuyrukbilen@gc.cuny.edu

2 John Jay College
City University of New York
sbakiras@jjay.cuny.edu

Abstract. Similar document detection is a well-studied problem with
important application domains, such as plagiarism detection, document
archiving, and patent/copyright protection. Recently, the research fo-
cus has shifted towards the privacy-preserving version of the problem, in
which two parties want to identify similar documents within their respec-
tive datasets. These methods apply to scenarios such as patent protection
or intelligence collaboration, where the contents of the documents at both
parties should be kept secret. Nevertheless, existing protocols on secure
similar document detection suffer from high computational and/or com-
munication costs, which renders them impractical for large datasets. In
this work, we introduce a solution based on simhash document finger-
prints, which essentially reduce the problem to a secure XOR computa-
tion between two bit vectors. Our experimental results demonstrate that
the proposed method improves the computational and communication
costs by at least one order of magnitude compared to the current state-
of-the-art protocol. Moreover, it achieves a high level of precision and
recall.

1 Introduction

Similar document detection is an important problem in computing, and has
attracted a lot of research interest since its introduction by Manber [10]. Specif-
ically, with digital data production growing exponentially, efficient file system
management has become crucial. Detecting similar files facilitates better index-
ing, and provides efficient access to the file system. Furthermore, it protects
against security breaches by identifying file versions that are changed by a virus
or a hacker. Similarly, web search engines periodically crawl the entire web to
collect individual pages for indexing [11]. When a web page is already present
in the index, its newer version may differ only in terms of a dynamic advertise-
ment or a visitor counter and may, thus, be ignored. Therefore, detecting similar
pages is of paramount importance for designing efficient web crawlers. Finally,
plagiarism detection and copyright protection are two other major applications
that are built upon similar document detection.

While plaintext similar document detection is extremely important, it is not
sufficient for secure and private operations over sensitive data. In many cases,
owners of sensitive data may be forced to share their datasets with the govern-
ment or other entities, in order to comply with existing regulations. For example,
health care companies may be asked to provide data to monitor certain diseases
reported in their databases. This may be accomplished by identifying similar
attribute patterns in patient diagnosis information from different entities. Ob-
viously, such pattern searches cannot be performed without secure protocols,
since they may lead to severe privacy violations for the individuals included in
the various databases.

Data sharing for intelligence operations also involves risks when disclosing
classified information to other parties. A person of interest may have records at
several intelligence agencies under different names with similar attributes. To
identify similar records, the participating agencies may only wish to disclose the
existence of records akin to the query. Detecting violations of the academic dou-
ble submission policy is another problem with similar restrictions. For example,
a conference’s organization committee may want to know whether the articles
submitted to their conference are concurrently submitted to other publication
venues. Since research articles are considered confidential until published, their
contents cannot be revealed unless a similar article is found in another venue.

Secure similar document detection (SSDD) leverages secure two-party com-
putation protocols, in order to solve the above problems that arise due to the
distributed ownership of the data. In particular, SSDD involves two parties, each
holding their own private dataset. Neither party wants to share their data in
plaintext format, but they both agree to identify any similar documents within
their respective databases. The objective is to compute the similarity scores
between every pair of documents without revealing any additional information
about their contents. In existing work, document similarity is computed with
either the inner product of public key encrypted vectors [7, 12, 8] or with secure
set intersection cardinality methods based on N -grams [1]. However, the com-
putational cost of inner product based similarity is very high, due to numerous
public key operations. On the other hand, N -gram based methods are more com-
putationally efficient, but they incur a high communication cost as the number
of documents increases.

In this study, we present a novel method based on simhash document finger-
prints3. Simhash is essentially a dimensionality reduction technique that encodes
all the document terms and their frequencies into a fixed-size bit vector (typically
64 bits). Unlike classical hashing algorithms that produce uniformly random di-
gests, the simhash digests of two similar documents will only differ in a few bit
positions [6]. This enables us to (i) evaluate the similarity over a fairly small data
structure rather than large vectors, and (ii) reduce the similarity calculation to
a secure XOR computation between two bit vectors. To further improve the pri-
vacy preserving properties of our approach, we modify the basic method to hide
the similarity scores of the compared documents. In particular, the enhanced

3 We follow the simhash definition of Charikar [2].

version of our protocol returns all the document pairs whose similarity is above
a user-defined threshold, while maintaining the exact scores secret. This is the
first protocol in the literature that provides this functionality. Our experimental
results demonstrate that the proposed methods improve the computational and
communication costs by at least one order of magnitude compared to the cur-
rent state-of-the-art protocol. Moreover, they achieve a high level of precision
and recall.

The remainder of the paper is organized as follows. Section 2 describes the
various primitives utilized in our methods and summarizes previous work on
secure similar document detection. Section 3 presents the formal definition of the
SSDD query and describes the underlying threat model and security. Section 4
introduces the details of our basic protocol and Section 5 presents the enhanced
version that hides the exact similarity scores. Section 6 illustrates the results of
our experiments and Section 7 concludes our work.

2 Background

Section 2.1 introduces the cryptographic primitives utilized in our methods and
Section 2.2 describes the simhash algorithm. Section 2.3 surveys the related work
on secure similar document detection.

2.1 Cryptographic primitives

Homomorphic encryption. Homomorphism in encryption allows one to eval-
uate arithmetic operations, such as multiplication and addition, over plaintext
values by manipulating their corresponding ciphertexts. Most public key en-
cryption schemes in the literature are partially homomorphic, i.e., they allow
the evaluation of only one type of operation (either addition or multiplication).

In our work, we utilize ElGamal’s additively homomorphic encryption scheme
[5, 3]. The scheme incorporates key generation, encryption, and decryption algo-
rithms, as shown in Figure 1. The homomorphic properties of this cryptosystem
are as follows (where E(·) denotes encryption):

E(m1 +m2) = E(m1)E(m2)

E(m1 −m2) = E(m1)E(m2)
−1

E(m1k) = E(m1)
k

Note that, ElGamal’s scheme is semantically secure, i.e., it is infeasible to
derive any information about a plaintext, given its ciphertext and the public key
that was used to encrypt it. Its security is based on the decisional Diffie-Hellman
assumption. Also note that the decryption process involves a discrete logarithm
computation. If the encrypted values are not too large (which is the case in our
protocol) it is possible to precompute all possible results and use them as a
lookup table to speed up the decryption process.

ElGamal cryptosystem

Key generation

1. Instantiate a cyclic group G of prime order p, with
generator g (G, g, and p are public knowledge)

2. Choose a private key x, uniformly at random from Z
∗

p

3. Publish the public key h = gx

Encryption

1. Let m be the private message
2. Choose r, uniformly at random from Z

∗

p

3. Compute ciphertext (c1, c2) = (gr, hr+m)

Decryption

1. Compute hm = c2 · (c
x
1)

−1

2. Solve the discrete logarithm to retrieve m

Fig. 1. The ElGamal cryptosystem

Secure two-party computation. A secure two-party computation protocol [9]
allows two parties, Alice and Bob, to jointly compute a function based on their
inputs, while maintaining their inputs secret (i.e., they only learn the function
output). Yao’s garbled circuit technique [14] is a generic two-party computa-
tion protocol that can evaluate securely any function, given its Boolean circuit
representation. Nevertheless, Yao’s technique is efficient only for relatively sim-
ple functions, i.e., when the number of input wires and logic gates is small. In
particular, every input wire (for one of the parties) necessitates the execution
of an Oblivious Transfer (OT) [13] protocol that is computationally expensive,
while the total number of gates affects the overall communication and circuit
construction/evaluation costs.

Besides Yao’s generic protocol, researchers have also devised application de-
pendent protocols that typically leverage the properties of additively homomor-
phic encryption. As an example, consider the secure inner product computation
that is used extensively in previous work [12, 8]. For simplicity, assume that Al-
ice holds vector 〈a1, a2〉 and Bob holds vector 〈b1, b2〉. The objective is for Alice
to securely compute S = a1b1 + a2b2. Initially, Alice encrypts her input with
her public key and sends E(a1), E(a2) to Bob. Next, Bob utilizes the properties
of homomorphic encryption to produce E(S) = E(a1)

b1E(a2)
b2 . Finally, Alice

decrypts the result and learns the value of S.

2.2 Simhash

Simhash maps a high dimensional feature vector into a fixed-size bit string [2].
However, unlike classical hashing algorithms, simhash produces fingerprints that
have a large number of matching bits when the underlying documents are simi-
lar. Computing the simhash fingerprint from a text document is a fairly simple

process. First, one has to extract all the document terms along with their weights
(e.g., how many times they appear in the document). Then, a vector of l counters
〈c0, c1, . . . , cl−1〉 is initialized, where l is the size of the simhash fingerprint (e.g.,
64 bits). Each of the document’s terms is then hashed with a standard hashing
algorithm, such as SHA-1. If the bit at position i (i ∈ {0, 1, . . . , l− 1}) in the re-
sulting SHA-1 digest is 0, ci is decremented by the weight of that term; otherwise,
ci is incremented by the same weight. When all document terms are processed,
the simhash fingerprint is constructed as follows: for all i ∈ {0, 1, . . . , l − 1}, if
ci > 0, set the corresponding bit to 1; otherwise, set the bit to 0.

2.3 Related Work

The problem of secure similar document detection was first introduced by Jiang
et al. [7]. In their approach, Alice and Bob first run a secure protocol to identify
the common terms that appear in both datasets (dictionary). Then, similarity
is computed with the cosine of the angle between two document term vectors.
The cosine computation requires a secure inner product protocol, identical to
the one described in Section 2.1. Specifically, for Alice to compare a single docu-
ment against Bob’s database, she first uses her public key to encrypt the weights
of every term in the dictionary (if the term does not exist in Alice’s document,
its weight is 0). After Bob receives the encrypted vector, he uses his plaintext
term vectors to blindly compute the encryptions of the inner products for all
documents. Finally, Alice decrypts the results and computes the similarity be-
tween her document and each document in Bob’s database. This protocol is
computationally expensive, because of numerous public key operations at both
parties. Furthermore, its performance degrades as the size of the dictionary space
increases. For example, the similarity search between two document sets, each
containing 500 documents, takes about a week to complete [7].

The authors of [7] extend their work in [12] with two optimizations. First, to
reduce the number of modular multiplications at Bob, they ignore every cipher-
text in Alice’s vector where the corresponding plaintext value at Bob is zero.
Second, to reduce the number of document comparisons, each party applies (in
a pre-processing step) a k-means clustering algorithm on their documents. The
idea is to initially compare only the cluster representatives and measure their
similarity. If that similarity value is above a certain threshold, then the docu-
ments in both clusters are compared in a pairwise manner. Nevertheless, the
drawback of clustering is that it is sensitive to the value of k. If k does not accu-
rately reflect the underlying document similarities, it may result in a significant
loss in query precision and recall.

Jiang and Samanthula [8] propose the use of N -grams in their SSDD pro-
tocol. An N -gram representation of a document consists of all the document’s
substrings of size N (after removing all punctuation marks and whitespaces). In
general, N -grams are considered a better document representation method than
term vectors, because they are language independent, more sensitive to local
similarity, simple, and less sensitive to document modifications [8]. Specifically,
Jiang and Samanthula utilize 3-gram sets and define the similarity between two

documents as the Jaccard index of their 3-gram sets. Prior to protocol execu-
tion, both parties create the 3-gram sets of their documents and Bob discloses
his global 3-gram set to Alice. To compare a pair of documents, Alice and Bob
create the binary vectors of the corresponding 3-gram sets with respect to Bob’s
global 3-gram set (let A be Alice’s vector and B be Bob’s vector). Next, the two
parties invoke a secure two-party computation protocol to compute |A∩B| in an
additively split form. Finally, they run a secure division protocol to compute the

Jaccard index J = |A∩B|
|A∪B| . Unfortunately, the above protocol is not secure [1],

because Bob has to reveal his global 3-gram set to Alice. By utilizing this infor-
mation, Alice can easily check whether a word appears in Bob’s global collection,
which is an obvious security breach.

Blundo et al. [1] introduce EsPRESSo, a protocol for privacy-preserving eval-
uation of sample set similarity. It is based on the private set intersection car-
dinality (PSI-CA) protocol of De Cristafaro et al. [4]. The authors show that
one possible application of EsPRESSo is similar document detection and pro-
pose a solution based on 3-grams. To compare two documents, Alice and Bob
first create the 3-gram sets of their respective documents. Next, Alice hashes her
3-grams and raises the resulting digests to a random number Ra (let’s call this
set A). She then sends A to Bob who, in turn, raises these values to his ran-
dom number Rb and randomly permutes the set. He also hashes his 3-gram set
members and raises the hash values to Rb (let’s call this set B). Bob then sends
both sets back to Alice. Alice removes Ra from A and computes the cardinality
of the intersection between A and B (|A ∩ B|). From this value, she computes

the Jaccard index as J = |A∩B|
|A|+|B|−|A∩B| .

The limitation of the basic EsPRESSo protocol is that its performance de-
pends on the total number of 3-grams that appear in the compared documents.
To this end, the authors of [1] introduce an optimization based on the MinHash
technique. In particular, instead of incorporating every available 3-gram in the
corresponding 3-gram sets (A and B), Alice and Bob agree on k distinct hash
functions (H1, H2, . . . , Hk) to produce sets of size k, independent of the total
number of 3-grams. Specifically, for i ∈ {1, 2, . . . , k}, each party hashes all their
3-grams with the Hi hash function and select the digest with the minimum value
as a representative in their respective set. Once sets A and B are constructed,
the EsPRESSo protocol is invoked to compute the Jaccard index between the
two documents. The MinHash approximation reduces considerably the compu-
tational and communication costs and is currently the state-of-the-art protocol
in secure similar document detection.

3 Problem Definition

Bob (the server) holds a collection of N documents D = {D1, D2, . . . , DN}. Each
document Di ∈ D is represented as a set of pairs 〈wi, fi〉, where wi is a term
appearing in the document and fi is its frequency (i.e., the number of times it
appears in the document). Alice (the client) holds a single document q that is
represented in a similar fashion. Alice wants to know which documents in Bob’s

collection D are similar to q. Note that, if Alice herself holds a collection of M
documents, the query is simply evaluated M distinct times.

In this work we propose two protocols with different privacy guarantees. The
security of the basic protocol (Simhash, Section 4) is identical to the security
provided by all existing SSDD protocols:

– For all i ∈ {1, 2, . . . , N}, Alice learns the similarity score between q and Di.
– Bob learns nothing.

On the other hand, the enhanced version of our protocol (Simhash∗, Section
5) provides some additional security to the server (Bob):

– For all i ∈ {1, 2, . . . , N}, Alice learns whether Di’s similarity score is above
a user-defined threshold t (boolean value). The exact score remains secret.

– Bob learns nothing.

We assume that both parties could behave in an adversarial manner. Their
goal is to derive any additional information other than the existence of similar
documents and their similarity scores. For example, they could be interested in
the contents of the other party’s documents, statistical information about the
terms in the other party’s document collection, etc. Finally, we assume that
both parties run in polynomial time and are “semi-honest,” i.e., they will fol-
low the protocol correctly, but will try to gain any advantage by analyzing the
information exchanged during the protocol execution.

4 Basic protocol

In this section we introduce our basic protocol that reveals the exact similarity
score for each one of Bob’s documents to Alice. Section 4.1 presents the protocol
and Section 4.2 outlines its security proof.

4.1 The Simhash protocol

Prior to protocol execution, each party runs a preprocessing step to generate
the simhash fingerprints of their documents. The preprocessing includes lower
case conversion, stop word removal, and stemming. In the end, each document
is reduced to a set of terms and their corresponding frequencies. The simhash
fingerprints are then created according to the algorithm described in Section 2.2.
In what follows, we use a to denote Alice’s simhash (from document q) and bi
(i ∈ {1, 2, . . . , N}) to denote the simhash of document Di in Bob’s database.
Recall that all fingerprints are binary vectors of size l = 64 bits.

Similarity based on simhash fingerprints is defined as the number of non-
matching bits between the two bit vectors. In other words, a similarity score of 0
indicates two possibly identical documents, while larger scores characterize less
similar documents. Consequently, it suffices to securely compute (i) the bitwise
XOR of the two vectors and (ii) the summation of all bits in the resulting XOR

Simhash

Input: Alice has a simhash fingerprint a
Bob has N simhash fingerprints {b1, b2, . . . , bN}

Output: Alice gets N similarity scores {σ1, σ2, . . . , σN}

Alice

1: Alice sends to Bob E(a[0]), E(a[1]), . . . , E(a[l − 1]);

Bob

2: for (i = 1; i ≤ N ; i++) do
3: Set σi ← 0 and compute E(σi);
4: for (j = 0; j < l; j ++) do
5: if (bi[j] == 0) then
6: E(σi)← E(σi)E(a[j]);
7: else

8: E(σi)← E(σi)E(1)E(a[j])−1;
9: end if

10: end for

11: end for

12: Bob sends to Alice E(σ1), E(σ2), . . . , E(σN);

Alice

13: Alice decrypts all ciphertexts and retrieves σ1, σ2, . . . , σN ;

Fig. 2. The Simhash protocol

vector. Figure 2 shows the detailed protocol, where E(·) denotes encryption with
Alice’s ElGamal public key (which is known to Bob).

First (line 1), Alice encrypts every bit of her fingerprint a and sends l cipher-
texts to Bob. Bob cannot decrypt these ciphertexts but is still able to blindly
perform the required XOR and addition operations. In particular, for every doc-
ument Di in his database, Bob initializes the encryption of the similarity score
to E(σi) = E(0) (line 3). Next, he iterates over the l bits of the corresponding
fingerprint bi. If the bit at a certain position j is 0, then the result of the XOR
operation is equal to a[j] and Bob simply adds the value to the encrypted score
(line 6). Otherwise, the result of the XOR operation is (1 − a[j]) which is also
added to E(σi) in a similar fashion (line 8). After all documents are processed,
Bob sends the encrypted results to Alice (line 12). Finally, Alice uses her private
key to decrypt the scores and identify the most similar documents to q (line 13).

4.2 Security

In this section we prove the security of the Simhash protocol for semi-honest
adversaries, following the simulation paradigm [9]. In particular, we will show
that, for each party, we can simulate the distribution of the messages that the
party receives, given only the party’s input and output in this protocol. This

is a sufficient requirement for security because, if we can simulate each party’s
view from only their respective input and output, then the messages themselves
cannot reveal any additional information.

Alice’s input consists of a bit vector a and her output is {σ1, σ2, . . . , σN}.
The only messages that Alice receives from Bob are the encryptions of the N

similarity scores. The simulator knows Alice’s public key and it also knows her
output. Therefore, it can simply generate the encryptions of the corresponding
scores.

In Bob’s case, the input is N bit vectors and there is no output. In the begin-
ning of the protocol, Bob receives l encryptions from Alice. Here, the simulator
can simply generate l encryptions of zero. Given the assumption that the un-
derlying encryption scheme is semantically secure, Bob cannot distinguish these
ciphertexts from the ones that are produced by Alice’s real input.

5 Enhanced protocol

The basic Simhash protocol has the same security definition as all existing SSDD
protocols in the literature. That is, Alice learns the similarity score for every doc-
ument Di in Bob’s database. Nevertheless, making all this information available
to Alice may allow her to construct some “malicious” queries that reveal whether
a certain term (or 3-gram) exists in Bob’s database. Consider the EsPRESSo
protocol as an example. Alice’s query may consist of a number of fake 3-grams
(i.e., 3-grams that could not appear in Bob’s documents) plus a real one that
Alice wants to test against Bob’s database. After completing the protocol exe-
cution, Alice can infer that the 3-gram is present in Bob’s database if at least
one of the similarity scores is non-zero. This attack is not as trivial to perform
with the simhash or MinHash techniques, but it is still possible for sophisticated
adversaries to devise similar attacks.

To this end, in this section, we introduce Simhash∗, an enhanced version
of the basic Simhash protocol that maintains the similarity scores secret. This
is the first SSDD protocol in the literature that provides this functionality. In
particular, Alice and Bob agree on a similarity threshold t and the protocol
returns, for each document Di, a boolean value θi that indicates whether σi ≤ t.
The detailed protocol is shown in Figure 3.

The first steps of the protocol (lines 1–10) are identical to Simhash, i.e., Bob
blindly computes the encryptions of all N similarity scores. However, instead
of sending these ciphertexts to Alice, Bob computes, for each Di ∈ D, the en-
cryptions of rj · (σi − j) where j ∈ {0, 1, . . . , t} (lines 12–13). Specifically, rj is
a uniformly random value that masks the actual similarity score (σi) when it is
not equal to j. On the other hand, if σi is equal to j, then the computed value
is an encryption of 0. Next, Bob uses a random permutation πi for each set of
(t+ 1) ciphertexts corresponding to document Di, and eventually sends a total
of (t+ 1) ·N ciphertexts back to Alice (line 16). The different permutations are
required in order to prevent Alice from inferring the value of j (i.e., similarity
score) that produces the encryption of 0. Finally, Alice concludes that document

Simhash∗

Input: Alice has a simhash fingerprint a
Bob has N simhash fingerprints {b1, b2, . . . , bN}

Output: Alice gets N binary values {θ1, θ2, . . . , θN}

Alice

1: Alice sends to Bob E(a[0]), E(a[1]), . . . , E(a[l − 1]);

Bob

2: for (i = 1; i ≤ N ; i++) do
3: Set σi ← 0 and compute E(σi);
4: for (j = 0; j < l; j ++) do
5: if (bi[j] == 0) then
6: E(σi)← E(σi)E(a[j]);
7: else

8: E(σi)← E(σi)E(1)E(a[j])−1;
9: end if

10: end for

11: for (j = 0; j ≤ t; j ++) do
12: Choose rj , uniformly at random from Z

∗

p;
13: E(xij)← [E(σi)E(j)−1]rj ;
14: end for

15: end for

16: Bob sends to Alice {E(xij)}, ∀i ∈ {1, 2, . . . , N}, j ∈ πi({0, 1, . . . , t});

Alice

17: Alice decrypts all ciphertexts and retrieves {xij};
18: for (i = 1; i ≤ N ; i++) do
19: for (j = 0; j ≤ t; j ++) do
20: if (xij == 0) then
21: break;
22: end if

23: end for

24: if (j > t) then
25: θi ← false;
26: else

27: θi ← true;
28: end if

29: end for

Fig. 3. The Simhash∗ protocol

Di’s similarity score is within the predetermined threshold t, if and only if one
of the (t+ 1) ciphertexts corresponding to Di decrypts to 0 (lines 19–28).

The security proof of the Simhash∗ protocol is trivial and follows the proof
outlined in Section 4.2. In particular, only Alice’s case is different, since (i) her
output is N boolean values {θ1, θ2, . . . , θN} and (ii) she receives (t + 1) · N

ciphertexts from Bob. Nevertheless, the simulator knows Alice’s output and also
knows how the protocol operates. Therefore, for all documents Di where θi is
true, the simulator generates t random encryptions plus one encryption of 0. On
the other hand, for documents where θi is false, the simulator generates (t+ 1)
random encryptions.

6 Experimental evaluation

In this section we experimentally compare the performance of our methods
against existing SSDD protocols. Section 6.1 describes the experimental setup
and Section 6.2 illustrates the results of our experiments.

6.1 Setup

We compare our protocols against the work of Murugesan et al. [12] that utilizes
cosine similarity (labeled as “Cosine” in our results), and EsPRESSo (both the
basic protocol and the MinHash optimization) [1] that is based on 3-grams. We
implemented all protocols in C++ and leveraged the GMP4 library for handling
large numbers. To ensure a fair comparison, we set the bit length of p (the
order of the cyclic group G5 in Figure 1) to 160 bits, and the bit length of
the RSA modulus in Paillier’s cryptosystem to 1024 bits. This results in similar
security levels for the underlying cryptographic protocols. We ran both the client
and the server applications on a 2.4 GHz Intel Core i5 CPU. The performance
metrics that we tested include the CPU time, the communication cost, and the
precision/recall of the document retrieval process.

The document corpus is a collection of Wikipedia6 articles. In particular,
we selected 103 main articles from diverse topics and, for each article, we also
selected a number (around 10) of its previous versions from the history pages of
this topic. The total number of documents in the corpus is 1152. For Simhash
and Cosine, we applied lower case conversion, stop word removal, and stemming,
in order to derive the document terms along with their frequencies. For the
EsPRESSo protocols, we extracted the 3-grams as explained in [1]. The total
number of terms in the documents is 152,571 and the total number of 3-grams
is 10,392.

6.2 Results

In the first set of experiments we investigate the document retrieval performance
of the various protocols. The objective is to compare the underlying document
representation methods: term vectors, simhash, and 3-grams. The experiments
were performed as follows. We run 103 queries, where the query documents were

4 http://gmplib.org
5 Note that the EsPRESSo protocols are also implemented on top of group G.
6 http://en.wikipedia.org

selected to be the most recent versions of the 103 unique articles. Using different
threshold values, we observed the precision and soundness of the retrieved doc-
uments (recall that we know in advance the “correct” results, since the different
versions of each article are very similar to each other). For our methods we used
the threshold values {2, 3, 4, 5, 6}, while for the rest of the protocols we used
the values {0.6, 0.7, 0.8, 0.9, 0.99}. Observe that, for Simhash, larger threshold
values imply less similar documents, whereas for the other methods the opposite
is true.

We used the precision and recall as the performance metrics for the document
retrieval process. Precision is defined as:

precision =
|R ∩ V |

|R|

where R is the set of retrieved documents and V is the total number of docu-
ments that satisfy the query. In other words, precision is equal to the fraction
of retrieved documents that belong to the result set. Recall, on the other hand,
indicates the fraction of the result set that is retrieved by the query and is
computed as:

recall =
|R ∩ V |

|V |

Figures 4(a) and 4(b) show the precision and recall curves for the various
EsPRESSo protocols. As expected, the basic protocol has the best overall per-
formance and maintains a precision of 1.0 for all threshold values. The MinHash
approximations sacrifice some precision for better running times, but they all
perform very well for threshold values larger than 0.7. In terms of recall, all
EsPRESSo variants are very sensitive to the underlying threshold value, expe-
riencing a large drop when the threshold is larger than 0.8. The Cosine method
has a very stable performance, as shown in Figure 4(c). In particular, both the
precision and recall values remain over 0.75 under all settings. Finally, Simhash
exhibits excellent query precision for all threshold values (Figure 4(d)). Further-
more, the query recall raises steadily with increasing threshold values and, when
the threshold is 6, Simhash retrieves over 96% of the relevant documents.

In the next experiment we measure the computational cost of the various
methods. We select MinHash-50 (i.e., MinHash with k = 50 hash functions) to
represent the EsPRESSo family of protocols, since it has the best performance
in terms of CPU time. The experiments were performed as follows. We run the
cryptographic protocols for the 103 unique queries and measured the total CPU
time, excluding the initial query encryption time (which is performed only once,
independent of the database size N). From this value we determined the average
time needed to compare a pair of documents. Using this measurement, Figure 5
depicts the CPU time required to compare one document against a database of
size N , where N ∈ {100, 500, 1000, 3000, 5000} (the curves also include the query
encryption time). Simhash is by far the best protocol among all competitors and
it is one order of magnitude faster than MinHash-50. Cosine incurs a very high
computational cost, mainly due to the query encryption step that involves tens

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Threshold

MinHash-50
MinHash-100
MinHash-200

EsPRESSo

(a) EsPRESSo precision

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1

R
ec

al
l

Threshold

MinHash-50
MinHash-100
MinHash-200

EsPRESSo

(b) EsPRESSo recall

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1

P
re

ci
si

on
 -

 R
ec

al
l

Threshold

precision
recall

(c) Cosine

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6

P
re

ci
si

on
 -

 R
ec

al
l

Threshold

precision
recall

(d) Simhash

Fig. 4. Precision and recall

of thousands of public key encryptions. MinHash-50 is significantly slower than
Simhash, because it involves numerous (expensive) modular exponentiations for
every document in the server’s database.

Figure 5(b) shows the CPU overhead of the Simhash∗ protocol, where the
similarity threshold is set to t = 6. The additional cost is due to the (t + 1)
modular exponentiations that are required to hide a document’s similarity score.
However, Simhash∗ is considerably faster than MinHash-50, incurring 23.7 sec of
CPU time to compare 5000 documents, as opposed to 107.5 sec for MinHash-50.

Figure 6(a) illustrates the communication cost for Simhash, MinHash-50, and
Cosine. Clearly, Simhash outperforms significantly both competitor methods, in-
curring a communication cost that is at least 18 times smaller under all settings.
For example, to compare one document against a database of size N = 5000, re-
quires 1.24 MB of data communication for Simhash, 35.29 MB for MinHash-50,
and 38.47 MB for Cosine. The drawback of MinHash-50 is that it has to send
50 ciphertexts plus 50 SHA-1 hashes for every document in the database. On
the other hand, the overhead for Cosine lies exclusively on the transmission of
the encrypted term vector, which is why it seems to remain unaffected by the
database size N .

Finally, Figure 6(b) shows the communication overhead for the Simhash∗

protocol. In this experiment, the threshold t is set to 6, which necessitates the

10-1

100

101

102

103

104

1 2 3 4 5

C
P

U
 ti

m
e

(s
ec

)

Number of documents (x1000)

MinHash-50
Simhash

Cosine

(a) Simhash, MinHash, Cosine

 0

 5

 10

 15

 20

 25

1 2 3 4 5

C
P

U
 ti

m
e

(s
ec

)

Number of documents (x1000)

Simhash*
Simhash

(b) Simhash, Simhash∗

Fig. 5. CPU time

transmission of 7 ciphertexts for every document in the database. As a result,
the communication cost of Simhash∗ is around 7 times larger than the cost of
the basic Simhash protocol. Nevertheless, it is still significantly lower than the
competitor methods, requiring just 8.56 MB of data for N = 5000 documents.

10-2

10-1

100

101

102

1 2 3 4 5

C
om

m
un

ic
at

io
n

co
st

 (
M

B
)

Number of documents (x1000)

MinHash-50
Simhash

Cosine

(a) Simhash, MinHash, Cosine

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 3 4 5

C
om

m
un

ic
at

io
n

co
st

 (
M

B
)

Number of documents (x1000)

Simhash*
Simhash

(b) Simhash, Simhash∗

Fig. 6. Communication cost

7 Conclusions

Secure similar document detection (SSDD) is a new and important research
area with numerous application domains, such as patent protection, intelligence
collaboration, etc. In these scenarios, two parties want to identify similar doc-
uments within their databases, while maintaining their contents secret. Never-
theless, existing SSDD protocols are very expensive in terms of both compu-
tational and communication cost, which limits their scalability with respect to
the number of documents. To this end, we introduce a novel solution based on
simhash document fingerprints that is both simple and robust. In addition, we

propose an enhanced version of our protocol that, unlike existing work, hides
the similarity scores of the compared documents from the client. Through rig-
orous experimentation, we show that our methods improve the computational
and communication costs by at least one order of magnitude compared to the
current state-of-the-art protocol. Furthermore, they perform very well in terms
of query precision and recall.

Acknowledgments

This research has been funded by the NSF CAREER Award IIS-0845262.

References

1. Blundo, C., Cristofaro, E.D., Gasti, P.: Espresso: Efficient privacy-preserving eval-
uation of sample set similarity. In: DPM/SETOP. pp. 89–103 (2012)

2. Charikar, M.: Similarity estimation techniques from rounding algorithms. In:
STOC. pp. 380–388 (2002)

3. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European Transactions on Telecommunications 8(5),
481–490 (1997)

4. Cristofaro, E.D., Gasti, P., Tsudik, G.: Fast and private computation of set inter-
section cardinality. IACR Cryptology ePrint Archive 2011, 141 (2011)

5. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

6. Huang, L., Wang, L., Li, X.: Achieving both high precision and high recall in
near-duplicate detection. In: CIKM. pp. 63–72 (2008)

7. Jiang, W., Murugesan, M., Clifton, C., Si, L.: Similar document detection with
limited information disclosure. In: ICDE. pp. 735–743 (2008)

8. Jiang, W., Samanthula, B.K.: N-gram based secure similar document detection.
In: DBSec. pp. 239–246 (2011)

9. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality 1(1), 59–98 (2009)

10. Manber, U.: Finding similar files in a large file system. In: USENIX Winter. pp.
1–10 (1994)

11. Manku, G.S., Jain, A., Sarma, A.D.: Detecting near-duplicates for web crawling.
In: WWW. pp. 141–150 (2007)

12. Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficient privacy-
preserving similar document detection. VLDB J. 19(4), 457–475 (2010)

13. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

14. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS. pp. 162–167 (1986)

