Adjusting the Trade-Off between Privacy
Guarantees and Computational Cost in Secure
Hardware PIR

Spiridon Bakiras' and Konstantinos F. Nikolopoulos?

1 John Jay College, City University of New York
sbakiras@jjay.cuny.edu
2 The Graduate Center, City University of New York
knikolopoulos@gc.cuny.edu

Abstract. Database queries present a potential privacy risk to users,
as they may disclose sensitive information about the person issuing the
query. Consequently, privacy preserving query processing has gained sig-
nificant attention in the literature, and numerous techniques have been
proposed that seek to hide the content of the queries from the database
server. Secure hardware-assisted private information retrieval (PIR) is
currently the only practical solution that can be leveraged to build al-
gorithms that provide perfect privacy. Nevertheless, existing approaches
feature amortized page retrieval costs and, for large databases, some
queries may lead to excessive delays, essentially taking the database
server offline for large periods of time. In this paper, we address this
drawback and introduce a novel approach that sacrifices some degree of
privacy in order to provide fast and constant query response times. Our
method leverages the internal cache of the secure hardware to constantly
reshuffle the database pages in order to create sufficient uncertainty re-
garding the exact location of an arbitrary page. We give a formal defi-
nition of the privacy level of our algorithm and illustrate how to enforce
it in practice. Based on the performance characteristics of the current
state-of-the-art secure hardware platforms, we show that our method can
provide low page access times, even for very large databases.

1 Introduction

Internet users are becoming increasingly wary of the potential privacy risks as-
sociated with their everyday online activities. Web search engines, for example,
maintain detailed logs of every query that they receive. However, with sophisti-
cated data mining techniques, these query logs can reveal sensitive information
about a user’s lifestyle, health, habits, etc. [4I15]. Similarly, the emergence of
location based services (LBS) allows mobile users to browse points of interest
(e.g., restaurants) in their surroundings. Since these queries are also logged at
the LBS provider, a user’s location over a period of time can be tracked with
very high accuracy [23].

Clearly, ordinary database queries involve an inherent privacy risk for users
and, as a result, privacy preserving query processing is an emerging research

W. Jonker and M. Petkovi¢ (Eds.): SDM 2011, LNCS 6933, pp. 128144 2011.
© Springer-Verlag Berlin Heidelberg 2011

Adjusting the Trade-Off between Privacy Guarantees 129

field in the database community. A popular approach that enhances the level of
privacy in certain applications, is anonymity. The central principle of anonymity
is to inject sufficient noise into a query, so that the user has plausible deniability
over the exact content of the query. For instance, the client could combine the real
query with several dummy ones (that are typically unrelated) or alter slightly the
query parameters. Algorithms based on anonymity have been proposed for both
text search engines (e.g., [21122]) and location based services (e.g., [BIRIT6120]).
However, since the database server has access to the plaintext queries, it may be
able to determine the real content of a query using background knowledge (e.g.,
detailed information about a specific user).

Data encryption is another technique that can be leveraged to hide the con-
tent of a query. In this scenario, the server interacts with an encrypted version
of the original database. Queries are also encrypted in a similar fashion and,
thus, the server can not deduce any information about the query content. Re-
search work is this area has focused on developing efficient encryption algorithms
that facilitate exact query processing at the server side [1I2]. The limitation of
encryption schemes, however, is that two identical queries always produce the
same encrypted result. Consequently, if the server has knowledge of the access
patterns of the database records (i.e., their relative popularities), it can extract
some information about a query through the records included in the result set.

Private information retrieval (PIR) is the only solution available that can be
leveraged to build algorithms that provide perfect privacy. In particular, PIR
protocols [7] allow a client to retrieve any record from a database, while making
it impossible for a computationally bounded server to determine which record
was retrieved. Note that, when PIR is employed, the server cannot perform the
actual query processing. Instead, the client accesses (privately) the disk-resident
index structure at the database server and resolves the query locally through
a series of PIR retrievals [23]. Currently, secure hardware-assisted PIR is the
only practical PIR construction. It is implemented on top of a tamper-resistant
CPU (secure hardware), which acts as a proxy between the server and the clients.
Nevertheless, existing approaches feature amortized page retrieval costs, because
they necessitate periodic reshuffle operations on the database. As a result, some
queries may lead to excessive delays, essentially taking the database server offline
for large periods of time.

In this paper, we address this drawback and introduce a novel approach that
sacrifices some degree of privacy in order to provide fast and constant query
response times. The goal is to design a system that balances the trade-off between
computational cost and privacy guarantees. In other words, we aim to provide
a much stronger notion of privacy compared to anonymity or encryption based
schemes, but with a computational cost that is considerably lower compared
to existing PIR techniques. Such a system would benefit applications that do
not require perfect privacy, but are instead satisfied with a sufficient level of
uncertainty.

Our algorithm initially encrypts and obliviously permutes the database pages.
Each page is then retrieved efficiently by accessing (through the secure hardware)

130 S. Bakiras and K.F. Nikolopoulos

its encrypted version from the server’s disk. To further enhance the privacy of
our approach, we introduce a randomized algorithm that constantly reshuffles
the underlying pages in order to create sufficient uncertainty regarding the exact
location of an arbitrary page. The algorithm works by randomly moving every
requested page to a new location on the disk. In particular, it leverages a built-in
cache at the secure hardware that stores a fixed number of previously retrieved
pages. Reshuffling occurs during each page request, with a random page from the
cache being written to a new location on the disk. We give a formal definition
of the privacy level of this approach and illustrate how to enforce it in practice.
Based on the performance characteristics of the current state-of-the-art secure
hardware platforms, we show that our method can provide low page access times,
even for very large databases. In summary, the contributions of our work are the
following.

— We propose a novel architecture, based on state-of-the-art secure hardware,
that reduces significantly the cost of private page retrievals compared to
existing PIR based techniques.

— We formally define the privacy level of our approach and use analytical
models to derive the corresponding security parameter.

— We evaluate the performance of our method, using (i) analytical results from
a secure hardware deployment and (ii) measurements from a software imple-
mentation. We show that, given sufficient secure storage capacity, our system
can achieve sub-second query response times, even for TB-sized databases.

The remainder of this paper is organized as follows. Section [2] reviews previous
work on database privacy and private information retrieval techniques. Section 3]
describes the architecture of our approach and outlines the underlying adversar-
ial model. Section M introduces our private page retrieval algorithm and Section
presents the analytical results from a secure hardware implementation. Finally,
Section [6] concludes the paper.

2 Related Work

PIR was first introduced by Chor et al. [7], and is formally defined as follows.
The server holds a database, which is assumed to be a binary string X of length
n. The client wants to retrieve the i-th bit (x;) of the database, without the
server knowing the value of the index 7. In general, PIR protocols can be classi-
fied into three main categories: information theoretic, computational, and secure
hardware.

First, information theoretic PIR [BI7IT12[27] ensures that the query discloses
no information about the retrieved bit, even if the server has unbounded com-
putational power. However, these protocols are not practical, as they require
that the database be replicated into k non-colluding servers. On the other hand,
computational PIR, protocols [BITOI8ITI] work with a single server, and employ
well known cryptographic primitives that guarantee query privacy for a compu-
tationally bounded server. Nevertheless, these protocols are extremely expensive

Adjusting the Trade-Off between Privacy Guarantees 131

for large databases, as they require at least one modular multiplication for every
bit of the database.

Finally, secure hardware PIR [14124)25]26] relies on a tamper resistant CPU
(located at the server side), which acts as a proxy between the clients and the
server. These protocols are significantly faster than computational PIR, because
they do not need to scan the whole database for every query. Wang et al. [24]
utilize the internal storage of the secure hardware that can hold k out of n
database pages. Every request inserts a new page into the secure storage and,
when the storage capacity is reached, the database is reshuffled. Therefore, the
amortized computational cost of this approach is O(n/k). Ref. [14125126] lever-
age the Oblivious RAM model [13], which arranges the database pages into
a pyramid-like structure. To achieve access pattern privacy, (i) every level of
the structure is accessed during a page retrieval and (ii) the pyramid levels
are periodically reshuffled by the secure hardware. Iliev and Smith [I4] propose
a method with O(y/nlogn) amortized computational cost, while Williams and
Sion [25] improve this amortized cost to O(log® n). Currently, the state-of-the-art
approach is due to Williams et al. [26], and provides an amortized logarithmic
computational cost of O(logn loglogn). However, due to the periodic reshuffling
of the pyramid levels, the response time of a single PIR retrieval may vary from
hundreds of milliseconds to thousands of seconds (as illustrated in [26]).

PIR based solutions have been explored previously in the context of spatial
nearest neighbor queries. In particular, Khoshgozaran et al. [I7] and Papadopou-
los et al. [23] utilize secure hardware protocols, while Ghinita et al. [11] employ
an expensive computational PIR algorithm [I8]. Ref. [23] is a more general and
comprehensive study on the applicability of PIR protocols on multi-level index
structures. The authors introduce a solution that provides perfect privacy, and
also present a detailed experimental evaluation based on secure hardware [25]
simulations. Their results show that query processing may require tens of sec-
onds, even for moderate databases, due to the large number of PIR retrievals on
the underlying disk-resident index structures. Motivated by this fact, we propose
an alternative approach that sacrifices some degree of privacy in order to reduce
significantly the query processing cost.

3 Preliminaries

Section [B.1] describes the basic architecture of our approach and Section
outlines the underlying threat model.

3.1 System Architecture

Figure [illustrates the proposed system architecture. The secure hardware is
a tamper resistant CPU, such as the IBM 4764 PCI-X secure coprocessorﬂ. It
is attached at the server machine, but it can be trusted to operate without

! http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml

132 S. Bakiras and K.F. Nikolopoulos

any interference from the server. Specifically, it includes tamper detecting and
responding circuitry that, in the event of an attack, destroys all the critical
keys and certificates. The secure hardware incorporates an internal cache (up to
64MB for the IBM 4764 secure coprocessor) that is inaccessible by the server,
and also has direct access to the server’s disk.

Server
o |22
1|57
2 | 99 Encrypted Secure SSL
— pages s connection
3 |76 ecure)
— Hardware Client
4o
. Cache
-
Disk

Fig. 1. System architecture

Note that the secure hardware is only necessary in the three-party query-
ing model, i.e., when any client (including the adversary) is allowed to query
the database server. Nevertheless, our methods are also applicable in the two-
party querying model. The two-party model applies to the database outsourcing
paradigm, where the data owner is the only client that accesses the database.
In this setting, the owner outsources its data to a third-party service provider
and wishes to access these data in a private manner. Since the data owner is
the sole client in this architecture, there is no need for a secure hardware plat-
form at the service provider. Instead, the functionality of the secure hardware
can be implemented entirely at the owner’s side (physically isolated from the
adversary), using any standard server configuration. We explore the feasibility
of this approach in Section Bl

In our problem formulation, we consider a database consisting of n pages
(Table [l summarizes the symbols used throughout the paper). Each page is a
tuple (id, data), where the id attribute uniquely identifies the page. Prior to
query processing, the secure hardware encrypts and obliviously permutes the
database pages. It utilizes a symmetric-key encryption algorithm, such as AES
[9], and the encryption key is secret from both the database server and the clients.
Clients communicate with the secure hardware via secure SSL connections. A
client query Q(i) is simply a request to retrieve the page with id = ¢ from the
database (we assume pages are assigned id values ranging from 0 to n — 1).
To facilitate query processing, the secure hardware stores in its cache a look-up
table that maps each page id to its actual position on the disk. After identifying
the corresponding position, the secure hardware retrieves the page from the disk,
decrypts it, and finally transmits it to the client via the secure connection.

Adjusting the Trade-Off between Privacy Guarantees 133

Table 1. Summary of symbols

|Symbol|Description |

Database size (number of pages)
Block size (number of pages)

Number of blocks in database (= n/k)
Cache capacity (number of pages)
Page size (bytes)

W 3|8 =3

To provide perfect query privacy, previous approaches apply periodically an
oblivious permutation algorithm to reshuffle the database pages. Note that, after
the reshuffling operation, every database page has an equal probability (= 1/n)
of landing in any of the n available locations. Consequently, any query that
accesses a new page from the disk becomes indistinguishable from any other
query. In this work, we aim to relax this stringent constraint and allow pages to
land in different disk locations according to a non-uniform distribution. Unlike
prior methods, we do not reshuffle the entire database at once; instead, during
each request instant, one previously retrieved page (that resides temporarily
inside the cache) is relocated to a new position on the disk. In particular, for
any value ¢ > 1, we introduce the notion of c-approximate PIR as follows.

Definition 1. A scheme provides c-approximate PIR if, after moving a single
page p to a new location on the disk and for any pair of disk locations l;,1;, the
probability of p landing in location l; is at most c times larger than the probability
of landing in location ;.

The value ¢ is the privacy parameter of our approach, as it determines the
variability of the distribution that models the individual page relocation process.
Smaller values of ¢ result in better privacy, while the case ¢ = 1 offers perfect
privacy (i.e., equivalent to PIR).

3.2 Adversarial Model

We assume that the adversary is the server itself, and its goal is to derive any
non-trivial information regarding the id of a requested page. Because of the un-
derlying secure SSL connections, both the client queries and the generated replies
are unreadable by the server. Nevertheless, the server can see the accessed loca-
tions on the disk and has knowledge of all the algorithms that are implemented
inside the secure hardware. We also assume that the server can only perform
polynomial time computations and is “curious but not malicious” (i.e., it will
not tamper will the actual data).

4 Private Page Retrieval Algorithm

Section [£1] describes the page retrieval algorithm, while Section [£2] provides
an analytical model that quantifies its privacy level. Section [£.3] illustrates the
database update procedure.

134 S. Bakiras and K.F. Nikolopoulos

id data

. id data

: 0 |47 | data,, Server Disk
L1 [10] data

pageCache
L2 [62] datag, | <G>
inCache position

L3 [55| datas
ll 75 | datagg

serverBlock

pageMap

Fig. 2. Data structures at the secure hardware

4.1 Algorithm

Our approach leverages the built-in cache at the secure hardware to obliviously
miz a pool of database pages and copy them into random positions on the disk.
We assume that the cache can store a total of m pages and employs a randomized
cache replacement policy. Note that the purpose of the cache is not to improve
the page retrieval time, but to facilitate this continuous page reshuffling process.

During each page request, the algorithm retrieves a fixed number of k+1 pages,
where k is the security parameter. In particular, the secure hardware initially
reads (in a round-robin manner) a block of k contiguous pages. Specifically, on
the first request it accesses the database pages at locations 0 through k — 1, next
the pages at locations k through 2k — 1, etc. The (k + 1)-th page that is read is
either the page requested by the client or a random one (the detailed algorithm
is explained shortly). The reason for reading multiple pages is to guarantee
that any cached page has a non-negligible probability of being written to any
location on the disk (discussed in Section [£2). If n is not a multiple of k, the
secure hardware inserts an appropriate number of dummy pages during the initial
reshuffling stage.

Figure 2] shows the data structures maintained at the secure hardware. First,
the cache is implemented as a vector (pageCache) holding m database pages.
pageMap is a vector of size n and corresponds to the look-up table for all the
database pages. Each entry in pageMap is a tuple (inCache, position). Attribute
inCache uses a single bit that, when set, indicates that the corresponding page
is stored inside the cache. Attribute position is an integer value that has a dual
interpretation: if inCache = 1, it represents the index in the pageCache vector
where the page is stored; otherwise, it identifies the location of that page at
the server disk under the current permutation order (see Figure [2)). Finally,
serverBlock is the vector (of size k + 1) that temporarily stores the pages that

Adjusting the Trade-Off between Privacy Guarantees 135

Retrieve(i)

// read next block (of size k) in a round-robin fashion
serverBlock[0..k — 1] « read(nextBlock)
2: if (pageMapli].inCache or i € serverBlock)
// select a random page that is not cached
// and is not retrieved in serverBlock
do
p < random(0,n — 1)
while (pageMap[p].inCache or p € serverBlock)
if (pageMapli].inCache)
result < pageCache[pageMapli].position]
// else use requested page
else
p—i
// read page p from the disk
10: serverBlock[k] < read(pageM ap|p].position)
// decrypt all pages in serverBlock
11: decrypt(serverBlock)
12: if (!pageMapli].inCache)
13: ¢ < index of page i in serverBlock
14: result «— serverBlock[q]
15: else
16: g« k
// select a random page from the block
17: 7 < random(0,k — 1)
18: swap(serverBlock[r], server Block|q])
// select random page from cache
19: s « random(0,m — 1)
20: swap(pageCache[s], server Block[r])
// re-encrypt all pages in serverBlock (with a new nonce)
21: encrypt(serverBlock)
// write updated pages at the disk
22: write(serverBlock)
// update pageMap (3 pages)
23: update(pageMap[pageCache[s]])
24: update(pageMap[server Block[r]])
25: update(pageMap[serverBlock[q]])
// send page i to the client over the SSL connection
26: return result

[

NS D ew

©®

Fig. 3. The page retrieval algorithm

are written to or read from the disk. In the sample configuration of Figure [2]
n =100, m = 10, and k£ = 4.

The page retrieval algorithm is shown in Figure [3] and operates as follows.
First, the client sends a query to the secure hardware, containing the id of the
required page (e.g., page). The secure hardware then reads and stores into
server Block the next block of k pages, according to the round-robin schedule.
Next, it accesses pageMapli] and identifies the current location of that page. If
page ¢ is located at the server and is not included in the serverBlock vector,
the page is retrieved from the corresponding location on the disk and stored
into serverBlock. If, on the other hand, page i is included in the serverBlock
vector, the secure hardware selects a random page from the database that is not
currently cached or stored into serverBlock.

Subsequently, the secure hardware decrypts all k+1 pages in server Block and
extracts the requested page. It then selects a random page from the cache and
replaces it with the newly requested page . Similarly, the cached page is copied

136 S. Bakiras and K.F. Nikolopoulos

into serverBlock, overwriting page i. However, to ensure that the cached page
is moved to any of the k locations in the read block (corresponding to the first &
pages in server Block) with equal probability, the requested page initially swaps
places with a random page in the block (line 18). Next, the pages in server Block
are re-encrypted with a new random nonce, and are eventually transferred back
to the server’s disk. Finally, the secure hardware modifies the necessary entries
(for the swapped pages) at the pageMap vector.

In the case where the requested page produces a cache hit, the secure hardware
retrieves a random page p from the disk and repeats the same steps as above,
i.e., as if page p was requested by the client. To summarize, during every query,
the requested page (or a random page, in the case of a cache hit) is stored into
the cache and a random page from the cache is moved to one of the k locations
in the block that was accessed as part of that request. Note that, due to the
randomized cache replacement policy, a certain cached page may be evicted
while it is being requested by the client. Also, to avoid timing attacks, a cached
page is not returned immediately to the client, because that would reveal the
cache hit to the adversary.

4.2 Security Analysis

The page retrieval algorithm works by spreading the accesses for a single page
over multiple disk locations. Once a page is requested and moves into the cache,
it will be relocated to a new position during a subsequent request. Consequently,
an adversary can only track probabilistically the location of an arbitrary page
within the server’s disk. Our goal is to properly adjust the block size k, in order
to meet the privacy requirements of the c-approximate PIR definition (Section
BI).

Consider a sequence of client requests at instants t = 0,1, 2, Assume that
page p is copied into the cache during a client request at ¢ = 0. Then, the
probability that it moves back to the disk at time ¢ > 1 is computed as:

Pt = <1%>H.% (1)

Therefore, if the secure hardware accesses a set of k locations (from a single
block) £; = {l1,l2,...,l;x} during the request at time ¢, the probability that
page p is relocated to position I; (1 < j < k) is equal to:

1Nt 11
Pt =(1—- — R 2
Pl (m) m k (2)

The value k is the security parameter of our approach, since it controls the time
interval T' = n/k (given as number of requests) that is required to scan every
location on the disk exactly once through the round-robin schedule. Note that
Equation (2) is a monotonically decreasing function, so the k locations that are
accessed at t = 1 have the highest probability of hosting page p. Specifically, for

Adjusting the Trade-Off between Privacy Guarantees 137

the locations l; € £, the probability that p is relocated there is:
00 T
1 1 1

P!, = — N 3
o= () ®)

Similarly, the locations I; € L7 have the lowest probability of storing page p:

oo (i4+1)-T—1
1 1 1

pr = 1—-—— R 4
=3 (1) L 0

Consequently, the value of k£ can be determined by setting

P, 1 1
ZZ.F 4= T—1 1 = C ()
Bty (1= 3) (1-5)"
Solving the above equation, we get:
n
= log(1/c) (6)

log(1—1/m) +1

Note that, the value ¢ = 1 corresponds to the trivial case of PIR, i.e., when the
whole database is read for every request (k = n). On the other hand, a value
such as ¢ = 2 would indicate that any location is at most twice as likely to
host a previously cached page as any other location on the disk. For a given
database size n and privacy parameter c, the value of the security parameter k
is determined by the available cache capacity. As evident in Equation (), for a
fixed value of T, the privacy parameter ¢ converges towards 1 as the value of m
increases.

4.3 Database Updates

A final remark concerns the handling of database updates in our system archi-
tecture. Similar to query processing, the database owner interacts only with the
secure hardware through a secure SSL connection. Our system can handle triv-
ially any type of updates, including insertions, deletions, and page modifications.
In particular, every database update is treated as a regular query, i.e., the secure
hardware (i) retrieves k + 1 pages from the disk, (ii) swaps one page from the
cache with one of the retrieved pages, and (iii) writes the k + 1 pages back to
the disk after re-encrypting them. Consequently, the type of update operation
performed on the database is kept secret from the server.

Deletions are handled as cache hits, i.e., the (k + 1)-th page is selected ran-
domly. Additionally, if the deleted page is stored inside the cache, it is always
selected to swap positions with one of the k pages in the block. Finally, the
position attribute of the pageMap entry for that page is set to a reserved value
(e.g., all 1’s) that signifies the deletion event. Note that, if there are numerous
page deletions on the database, the owner may choose to reshuffle (offline) the

138 S. Bakiras and K.F. Nikolopoulos

whole database in order to physically remove the deleted pages. Page modifica-
tions are handled as regular queries, i.e., they can either produce a cache hit (if
the page is stored inside the cache) or a cache miss. In any case, the original
page is replaced with the new version.

To handle insertion operations, the secure hardware should reserve in advance
sufficient storage space in its internal data structures. Therefore, during the
initial reshuffling stage, the secure hardware should create numerous dummy
pages that may be utilized to store the newly inserted pages. These pages are
marked as deleted, so pages that are explicitly deleted by the data owner may
serve the same purpose as well. When a new page is created in the database, the
secure hardware accesses the next block of k pages as usual. However, the (k+1)-
th page is always a deleted page. The newly inserted page is then stored inside
the cache, replacing one of the pages therein. Finally, the deleted page swaps
positions with one of the k locations of the retrieved block, and the evicted page
is copied over the deleted page.

5 Secure Hardware Deployment

In this section we analyze the storage requirements and query processing cost
of our methods in a secure hardware deployment. Our analysis is based on the
configuration shown in Table Bl which is similar to the ones assumed in related
studies [23125].

Table 2. System specifications

|Parameter | Value |
Secure hardware cache 64MB
Disk seek time (t5) 5ms
Disk read/write (rq) 100 MB/s
Secure hardware link bandwidth (r)| 80 MB/s
Encryption/decryption (req) 10 MB/s

Secure Storage Requirements. The page retrieval algorithm necessitates the
storage of the three vectors depicted in Figure 2] inside the secure hardware
cache. Given a database of n pages, each of size B bytes, the pageCache vector
stores exactly m pages, thus consuming m - B bytes. The serverBlock vector
stores the k + 1 pages that are read from the server, i.e., it requires (k + 1) - B
bytes of space. Finally, the pageMap vector maintains information about the
position of all database pages, plus an additional bit that indicates whether a
page is currently cached. Consequently, it requires n - (logn + 1) bits of storage
space. Summarizing, the total storage cost of our approach (in bytes) is given
as:

Sen. [(lognqL 1)

- W+(m+k+1).3 (7)

Adjusting the Trade-Off between Privacy Guarantees 139

1 60 1 160
Response time —l— Response time —l—
- Storage —@— 50 5 Storage —@— p 140
Q) Q o
- 40 = < 120 2
IS @ £ @
= 1 Q = 1 Q
2 10 30 ° 2 10 100 g
g g g g
% 20 g q%_ 80 g
o 10 o 60
102 0 102 40
1510 20 50 10 20 50 80 100
Cache size (#pagesx1000) Cache size (#pagesx1000)
(a) 1GB (n = 10°%) (b) 10GB (n = 107)
1 - - 5.0
Response time —l— Response time ——
Storage —@— Storage —@—
’g 5 ’g 4.8 &
e S e S
£ i £ 46
= 107 o ° 4 ©
%] (o] 7] (4]
g g g 4.4 g
@ S @]
2 < a 2 42 @
102 . X 4.0
50100 200 300 500 100 200 300 400 500
Cache size (#pagesx1000) Cache size (#pagesx1000)
(c) 100GB (n = 10®) (d) 1TB (n = 10°)

Fig. 4. Page retrieval costs for 1KB pages (¢ = 2)

Page Retrieval Cost. For every client query the secure hardware needs to per-
form 4 random accesses at the server’s disk. Two of those correspond to the read
operations (one for reading the next block, and one for the additional page), while
the remaining two are performed for writing back the re-encrypted pages. The
k + 1 accessed pages are transferred twice between the secure hardware and the
server (read/write) and are also processed twice by the encryption/decryption
circuitry inside the secure hardware. Therefore, the query processing time at the
server for retrieving a single page from the disk is:

Qt:4-ts+2-(k+1)-B-(i—i-l-i-i) (8)
Td b Ted

Figures [4] and 5] show some sample configurations for retrieving 1IKB and 10KB
pages, respectively, from databases of different sizes (with a privacy parame-
ter ¢ = 2). Specifically, they depict the page retrieval times and storage space
requirements at the secure hardware as a function of the cache size m. For a
1GB database, a single secure coprocessor can retrieve privately 1KB pages in
27ms and 10KB pages in 94ms. Note that, unlike existing secure hardware PIR
schemes that feature amortized cost, the processing times shown here are con-
stant. For larger databases, we may leverage multiple coprocessors at the server
site to increase the secure storage capacity. This will boost the value of m, thus

140 S. Bakiras and K.F. Nikolopoulos

1 - 60 10 - 600
Response time —l— Response time —l—
N Storage —@— 50 . Storage —@— b 500
[s] —_ (%) —
1)) @ o
L = 3 =
g 40 ot GE) 1 400 <
1% 173
= _{ Q = 8
2 10 30 ° 2 300 °
c j=2) c [=2]
2 20 ¢ 2 10 200 ¢
3 & 3 &
o 10 o 100
q
102 0 102 0
1 2 3 4 5 2510 20 50
Cache size (#pagesx1000) Cache size (#pagesx1000)
(a) 1GB (n = 10°) (b) 10GB (n = 10°)
10 - 1.0 10 - 5.0
Response time —— Response time —l—
Storage —@— > Storage —@—
g 08 ’g 40 ~
:‘g_’ 06 3 “‘gj 30 3
o 1 o o 1 ©
%] Q %) [}
= 0.4 g S 2.0 ?
@ S @ o
< 02 @ & p 10 @
1071 0.0 107 0.0
10 20 40 60 80 50 100 200 300 400
Cache size (#pagesx1000) Cache size (#pagesx1000)
(c) 100GB (n = 107) (d) 1TB (n = 10%)

Fig. 5. Page retrieval costs for 10KB pages (¢ = 2)

reducing considerably the security parameter k. For instance, with 1 coprocessor
(up to 64MB of storage space) and a 10GB database, we can retrieve 1KB pages
in 197ms and 10KB pages in 731ms. On the other hand, combining the storage
space of 2 coprocessors can reduce those times to 65ms and 378 ms, respectively.

Larger databases cannot be trivially handled by the current technology of
tamper-resistant CPUs, due to the minimal storage resources that they provide.
Consequently, 100GB databases will require 10 coprocessors to retrieve 1KB
pages in 197ms and 10KB pages in 613ms. Even though this is an entirely
feasible solution, it may increase considerably the monetary cost of PIR. Finally,
for 1TB databases, sub-second page retrieval times (727ms for 1KB pages and
907ms for 10KB pages) are only feasible with over 4GB of secure storage. With
the current technology, this capacity translates to over 70 coprocessor units. This
excessive cost is mainly due to the pageMap data structure that maintains the
location of every database page on the disk. However, this is an unavoidable
cost because, unlike previous approaches that use hash functions to permute the
entire database, our scheme reshuffles on a per page level and necessitates each
page to be stored individually.

Figure [0 depicts the query response time as a function of the privacy pa-
rameter ¢ = 1 + . We consider 1KB pages and set the cache sizes for the
different databases to their largest values shown in Figure dl Clearly, there is a

Adjusting the Trade-Off between Privacy Guarantees 141

Response time —l— Response time —l—
o o
3 8
(0] (o} 1
£ £
° 0.1 ©
(2] 12}
c c
2 g o1
] 0
jo [
o o
0.01 0.01
0.01 0.05 0.1 05 1.0 0.01 0.05 0.1 05 1.0
€ €
(a) 1GB (m = 50000) (b) 10GB (m = 100000)
10 - 100 -
Response time —l— Response time —l—
o)
(] Q
2 R
° 1 ° 10
£ £
Q Q
1%} 1]
c c
§ 0.1 § 1
() jo
o o
0.01 0.1
0.01 0.05 0.1 05 1.0 0.01 0.05 0.1 05 1.0
€ €
(¢) 100GB (m = 500000) (d) 1TB (m = 500000)

Fig. 6. Response time as a function of c =1+ ¢ (B = 1KB)

trade-off between the privacy level of our approach and the computational cost.
If we wish to provide better privacy, we need to retrieve more pages per block
(increase k) in order to reduce the value of T. As shown in Equation (&), this
will essentially decrease the value of the privacy parameter c. Nevertheless, our
algorithm is efficient under strict privacy requirements and, for databases up to
100GB, sub-second query response times are achievable even for ¢ = 1.1.
Despite the restrictions of current secure hardware technology, our methods
are also applicable in the two-party querying model, as explained in Section Bl
In this setting, the functionality of the secure hardware can be implemented
on a powerful server (physically isolated from the adversary), thus allowing for
much larger cache sizes. Consequently, our page retrieval algorithm can be im-
plemented efficiently even for TB-sized databases. To verify the efficiency of this
approach, we measured the page retrieval costs from a real implementatioﬂg of
the two-party model. We set up the service provider and the owner to run on two
different machines that were connected through a WiFi network. The network
round-trip time (RTT) was set to 50ms and was simulated with the sleep func-
tion. Figure [7 illustrates the query response time and storage cost at the data

2 We used the Boost.Asio library for the networking primitives and the Crypto++
library for the AES implementation.

142 S. Bakiras and K.F. Nikolopoulos

3 6.0 5 11.0
Response time —l— Response time —l— ¢
N Storage 45 Storage —@— 10.0
8 25 55 @ g 4 0 ©
_g 2 3 _g 35 8.0 3
° 50 © ° 3 70 ©
%] (o) 1%} (o)
g 15 2 S 25 60 &
g < 4.5 § @ 2 5.0 :é
g e & o
1.5 4.0
0.5 4.0 1 3.0
500 1000 1500 2000 300 500 700 1000
Cache size (#pagesx1000) Cache size (#pagesx1000)
(a) 1KB pages (n = 10°) (b) 10KB pages (n = 10%)

Fig. 7. Page retrieval costs for 1TB database (¢ = 2)

owner as a function of the cache size m. With 6GB of storage space, the system
can accommodate 2 million pages in its cache, achieving a query response time
of 0.737ms (for 1KB pages). Note that the bottleneck in this architecture is the
network transfer cost, since our algorithm necessitates the transfer of (k 4 1)
database pages twice between the owner and the service provider. As a result,
retrieving larger pages (10KB) requires a significant amount of storage space (to
reduce the value of the security parameter k) and, as shown in Figure over
10GB of space is necessary to achieve a query response time of 1.3s.

6 Conclusions

Privacy preserving query processing is an emerging research field in the database
community, due to the increasing demand for protecting user privacy. Existing
techniques fail to provide adequate solutions, because they do not achieve a
good trade-off between computational cost and privacy guarantees. On one hand,
anonymity and encryption based schemes are computationally efficient, but they
provide weak privacy. On the other hand, private information retrieval techniques
offer perfect privacy, but their high computational cost renders them impractical
for large databases. In this paper, we introduce a novel approach that provides
a much stronger notion of privacy compared to anonymity or encryption based
schemes, but with a computational cost that is considerably lower compared to
existing PIR approaches. Our methods are built on top of a secure hardware
that acts as a proxy between the clients and the server. The secure hardware
encrypts and constantly reshuffles the database pages, in order to create sufficient
uncertainty regarding the exact location of an arbitrary page. We give a formal
definition of the privacy level of our algorithm and illustrate how to apply it
in practice. Based on the performance characteristics of the current state-of-
the-art secure hardware platforms, we show that our method is computationally
efficient, even for very large databases.

Acknowledgments. This research has been funded by the NSF CAREER
Award I1S-0845262.

Adjusting the Trade-Off between Privacy Guarantees 143

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Agrawal, D., Abbadi, A.E., Emekgi, F., Metwally, A.: Database management as a

service: Challenges and opportunities. In: ICDE (2009)

Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: SIGMOD (2004)

Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.: Lo-
cation privacy protection through obfuscation-based techniques. In: DBSec (2007)
Barbaro, M., Zeller, T.: A face is exposed for AOL searcher no. 4417749. The New
York Times (August 9, 2006)

Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.E.: Breaking the O(nl/(zk?f?l))
barrier for information-theoretic private information retrieval. In: FOCS (2002)
Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, p. 402. Springer, Heidelberg (1999)

Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS (1995)

Duckham, M., Kulik, L.: Simulation of obfuscation and negotiation for location
privacy. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp.
31-48. Springer, Heidelberg (2005)

Garrett, P.: Making, Breaking Codes: Introduction to Cryptology, 1st edn.
Prentice-Hall, Englewood Cliffs (2001)

Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803-815. Springer, Heidelberg
(2005)

Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries
in location based services: Anonymizers are not necessary. In: SIGMOD (2008)
Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE
Symposium on Security and Privacy (2007)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM 43(3), 431-473 (1996)

Iliev, A., Smith, S.: Private information storage with logarithmic-space secure hard-
ware. In: i-NetSec (2004)

Jones, R., Kumar, R., Pang, B., Tomkins, A.: I know what you did last summer:
Query logs and user privacy. In: CIKM (2007)

Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based
identity inference in anonymous spatial queries. TKDE 19(12), 1719-1733 (2007)
Khoshgozaran, A., Shahabi, C., Shirani-Mehr, H.: Location privacy: Going beyond
k-anonymity, cloaking and anonymizers. In: KAIS (2010)

Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS (1997)

Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lépez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314-328. Springer, Heidelberg (2005)

Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: Query processing for
location services without compromising privacy. In: VLDB (2006)

Murugesan, M., Clifton, C.: Providing privacy through plausibly deniable search.
In: SDM (2009)

144

22.

23.

24.

25.

26.

27.

S. Bakiras and K.F. Nikolopoulos

Pang, H., Ding, X., Xiao, X.: Embellishing text search queries to protect user
privacy. PVLDB 3(1), 598-607 (2010)

Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong
location privacy. PVLDB 3(1), 619-629 (2010)

Wang, S., Ding, X., Deng, R.H., Bao, F.: Private information retrieval using trusted
hardware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 49-64. Springer, Heidelberg (2006)

Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)

Williams, P.; Sion, R., Carbunar, B.: Building castles out of mud: Practical access
pattern privacy and correctness on untrusted storage. In: CCS (2008)

Woodruff, D.P., Yekhanin, S.: A geometric approach to information-theoretic pri-
vate information retrieval. In: IEEE Conference on Computational Complexity
(2005)

	Adjusting the Trade-Off between Privacy Guarantees and Computational Cost in Secure Hardware PIR
	Introduction
	Related Work
	Preliminaries
	System Architecture
	Adversarial Model

	Private Page Retrieval Algorithm
	Algorithm
	Security Analysis
	Database Updates

	Secure Hardware Deployment
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

