
HITC: Data Privacy in Online Social Networks with
Fine-Grained Access Control

Ahmed Khalil Abdulla
ahabdulla@mail.hbku.edu.qa

Division of Information and Computing Technology
College of Science and Engineering

Hamad Bin Khalifa University
Doha, Qatar

Spiridon Bakiras
sbakiras@hbku.edu.qa

Division of Information and Computing Technology
College of Science and Engineering

Hamad Bin Khalifa University
Doha, Qatar

ABSTRACT
Online Social Networks (OSNs), such as Facebook and Twitter,
are popular platforms that enable users to interact and socialize
through their networked devices. The social nature of such appli-
cations encourages users to share a great amount of personal data
with other users and the OSN service providers, including pictures,
personal views, location check-ins, etc. Nevertheless, recent data
leaks on major online platforms demonstrate the ineffectiveness of
the access control mechanisms that are implemented by the service
providers, and has led to an increased demand for provably se-
cure privacy controls. To this end, we introduce Hide In The Crowd
(HITC), a flexible system that leverages encryption-based access
control, where users can assign arbitrary decryption privileges to
every data object that is posted on the OSN platforms. The decryp-
tion privileges can be assigned on the finest granularity level, for
example, to a hand-picked group of users. HITC is designed as
a browser extension and can be integrated to any existing OSN
platform without the need for a third-party server. We describe our
prototype implementation of HITC over Twitter and evaluate its
performance and scalability.

CCS CONCEPTS
• Security and privacy → Access control; Social network se-
curity and privacy; Privacy protections;

KEYWORDS
Data privacy; access control; hidden vector encryption; online social
networks

ACM Reference Format:
Ahmed Khalil Abdulla and Spiridon Bakiras. 2019. HITC: Data Privacy in
Online Social Networks with Fine-Grained Access Control. In The 24th
ACM Symposium on Access Control Models and Technologies (SACMAT ’19),
June 3–6, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3322431.3325104

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6753-0/19/06. . . $15.00
https://doi.org/10.1145/3322431.3325104

1 INTRODUCTION
Online Social Networks have fundamentally changed the way peo-
ple interact with their social contacts. Face-to-face meetings and
private phone calls have been replaced by posts, tweets, and in-
stant messages. OSNs come in many different flavors: some focus
on personal relationship interactions (Google+), some are tailored
to career and professional interactions (LinkedIn), others focus
on short posts and comments (Twitter), where others specialize
in photo-sharing services (Instagram and Flickr). Their impact on
our daily lives has been significant; in Jan 2018, Twitter reported
100 million daily active users [8] while, in Mar 2017, Facebook
announced an average of 1.28 billion daily active users [4], by far
the most popular platform that comes with a wide range of social
applications, including personal interactions, photo-sharing, and
instant messaging.

When users subscribe to an OSN, they tend to share a lot of pri-
vate information [15], such as their personal identity, their friends’
and family members’ identities, their political and religious views,
and even personal photographs. Unfortunately, data privacy is of-
ten neglected by the OSN service providers. Some OSNs do offer
configurable privacy controls that limit access to shared data, but
users might misconfigure these controls due to their complexity
or lack of clear instructions [6, 20]. Furthermore, the controls are
typically coarse-grained, because they lack flexibility in defining
and grouping authorized users and protected information. More
importantly, as demonstrated in Facebook’s latest data breach [30],
existing privacy controls do not restrict third-party applications
and developers from accessing users’ private information. Finally,
OSN service providers have full access over the data stored on
their servers, which raises numerous privacy and security con-
cerns. For example, OSNs might share such data with third parties
(e.g., advertisers), malicious employees could access them without
authorization, and hackers could target them for personal gains.

As a result, the research community has proposed several tech-
niques that employ cryptographic primitives to provide provably
secure privacy controls. Nevertheless, some solutions necessitate
the implementation of brand new OSN platforms [9, 13, 14], others
rely on third-party servers [17, 18, 31], and some are implemented
as native applications on the OSN platform [18, 22]. To the best
of our knowledge, the current literature lacks a comprehensive
approach that (i) implements fine-grained access control over en-
crypted data, (ii) works seamlessly over existing OSN platforms,
(iii) does not require third-party servers, and (iv) hides its activities
from the OSN users and service providers (low profile).

https://doi.org/10.1145/3322431.3325104
https://doi.org/10.1145/3322431.3325104

In this paper, we introduce Hide In The Crowd (HITC), a flexible
and user-friendly system that leverages encryption-based access
control to assign arbitrary decryption privileges to every data ob-
ject that is posted on the OSN platforms. HITC employs hidden
vector encryption (HVE) [24], which is a ciphertext policy-based
access control mechanism. Under HVE, each user generates his/her
own master key (one-time) that is subsequently used to generate a
unique decryption key for every user with whom they share a link
in the underlying social graph. Moreover, during the encryption
process (i.e., when posting a new object), the user interactively
selects a list of friends that will be granted decryption privileges for
that particular data object. To facilitate the deployment of our sys-
tem over existing OSN platforms, we designed HITC as a Chrome
browser extension and utilize steganographic techniques [23] to
hide the encrypted data objects within randomly chosen cover im-
ages. As such, HITC can operate undetected by other OSN users
and even the OSN service provider itself.

Another important feature of our system is that it employs in-
band mechanisms to perform its basic operations, such as key distri-
bution. Specifically, the users’ social relationships information and
their HVE-based decryption keys (assigned to them by other users),
are all hidden within cover images posted on the OSN platform.
The only offline communication required is a one-time exchange of
a secret passphrase, during the relationship establishment process
between two users. Furthermore, HITC retrieves all the necessary
information on-demand, by utilizing the APIs of the underlying
OSN platform. Therefore, HITC does not rely on third-party servers,
which removes a potential attack vector that can compromise the
operation of the system.

The contributions of our work can be summarized as follows:
• We propose HITC, the first system for data privacy in online
social networks that operates entirely at the end-devices
without any infrastructure support.
• We design our system as a Chrome browser extension that
provides a user-friendly environment for enforcing fine-
grained access control on shared data. The design is inde-
pendent of the underlying social network platform.
• We deploy a prototype implementation of HITC on the Twit-
ter platform and evaluate its performance and scalability.

2 PRELIMINARIES
This section briefly describes the cryptographic primitives that are
employed in our system, namely hidden vector encryption and
image steganography.

2.1 Hidden Vector Encryption
In this work, we utilize the ciphertext policy HVE (CP-HVE) scheme
by Phuong et al. [24]. Under this scheme, every ciphertext and
decryption key is associated with an access vector of length L that
contains letters from an alphabet Σ. The decryption operation is
successful if and only if the two vectors match, i.e., the letters in
each of the L positions are identical. However, the access vector of
the ciphertext (encryption) is allowed to contain wildcard symbols
(’⋆’) in at most N positions. A wildcard symbol will match any
letter of the alphabet in the access vector of the decryption key.
The protocol consists of the following four algorithms:

• Setup(1k , Σ,L,N): on input a security parameter 1k , an al-
phabet Σ, a vector length L, and a maximum number of
allowed wildcards N in the encryption vector, the algo-
rithm outputs a public key hve .PK and a master secret key
hve .MK .
• GenDecKey(hve .MK ,hve .PK , ®z): on input a master secret
key hve .MK , a public key hve .PK , and a decryption vector
®z, the algorithm outputs a decryption key hve .DK .
• Enc(hve .PK , ®x , ®j,M): on input a public key hve .PK , an en-
cryption vector ®x , a vector ®j containing the locations of the
wildcards in ®x , and a message M , the algorithm outputs a
ciphertext C .
• Dec(hve .DK , ®j,C): on input a decryption key hve .DK , a vec-
tor ®j containing the locations of the wildcards in the en-
cryption vector, and a ciphertext C , the algorithm outputs a
messageM .

In HITC, we use the alphabet Σ = {0, 1} and every user i is
assigned a decryption vector that consists of zeroes, except for
position i which holds the value of one. Similarly, when a user
wants to encrypt a message for users i and j , the encryption vector
contains wildcards at positions i and j, while all the remaining
values are zero. Appendix A describes the construction of the HVE
scheme [24] that leverages pairing-based cryptography.

2.2 Image Steganography
Steganography is the art of concealing secret information within
non-secret data. Image steganography is one branch of steganogra-
phy, where secret data is being hidden within the image’s pixels.
The image used to carry the secret data is commonly called a cover
image and the resulting image, after the secret data is embedded,
is called a stego image. One pixel of a grayscale image can have
a value from 0 to 255 (8 bits), whereas a color image’s pixel has
3 channels (RGB), each with an 8-bit value (i.e., a total of 24 bits).
Color images can also have a fourth channel per pixel, called alpha,
with an additional 8-bit value. This alpha channel controls the trans-
parency level of the pixel in an image. The embedding of secret
data within an image can be achieved with different techniques
[23]. We highlight below the most common image steganography
techniques:
• Structure-based technique: This technique exploits spe-
cific, usually optional, markers in the JPEG format to embed
secret data. For example secret data can be embedded into the
Exchangeable Image File (EXIF) [7], the Comment markers
[1, 2], or after the end of the image (EOI) marker.
• Spatial domain technique:Due to the fact that the human
eye’s perception is not sensitive to slight changes in an im-
age’s pixels, this technique exploits the Least Significant Bit
(LSB) of the pixel values of the cover image to embed the
secret data.
• Frequency domain technique: To avoid visual distortion,
the frequency domain technique replaces the LSBs in the
quantized DCT coefficients whose values are not zero [23].
• Distortion-resistant schemes: These schemes are most
robust to image processing which lowers the bit error rate
(BER) by using redundancy and/or marker techniques. For
example, YASS [27] uses a redundancy parameter to control

the number of times an information bit is repeated inside an
image.

Moreover, image formats differ from one to another. Some for-
mats have a lossy compression feature (e.g., JPEG images), where
an image permanently loses some of its data when compressed
that can never be retrieved. The primary aim of this feature is to
decrease the image quality in order to reduce its size. Other image
formats have a lossless compression feature, where an image retains
all its data when compressed that allows it to be fully recovered
without any loss after decompression (e.g., PNG images).

3 HITC DESIGN
This section presents in detail the design of HITC. It involves the
basic operations of the system and is independent of the underlying
OSN platform (e.g., Facebook, Twitter). In the following section we
will introduce a proof-of-concept implementation for Twitter.

3.1 Design Goals
We designed HITC with the following goals in mind:
• Encryption-based privacy: Protecting the privacy of data
shared over OSNs is the ultimate and primary goal of our
system. We aim to offer the end-user the ability to protect
his/her own shared data, not only from other OSN users but
also from the OSN service provider itself.
• Fine-grained access control: We aim to provide the end-
user with the ultimate flexibility for sharing private data.
Unlike existing approaches that define groups where users
subscribe, HITC supports dynamic grouping for every object
that is posted. The list of friends that can access a single
object is decided on-the-fly when the object is posted on the
OSN.
• Utilize existing OSNs: Given the popularity of existing
OSNs, their large user base, and the already established re-
lationships between its users, it is impractical to build a
new OSN with stringent privacy controls, as it would be
very difficult to convince existing OSN users to move to a
new platform. Therefore, we aim to build a system that can
operate on top of existing OSNs.
• Eliminate third parties:Wewant to eliminate the need for
a third-party server, either trusted or untrusted. As explained
previously, third parties introduce another attack vector for
adversaries and can be used to compromise the availability
of the system.
• Low profile: OSN service providers may not allow the shar-
ing of secret information over their platforms, because unen-
crypted user data is the source of their revenue. As a result,
they may be prone to restrict access to users whom they
suspect of employing covert communications. Therefore, we
want to design a system that is transparent to both unautho-
rized users and the OSN service providers.
• Stateless mobility: Nowadays, users are not logging into
OSN services from a single device. For example, a user might
login using his personal laptop, the company’s workstation,
or his mobile device. Thus, HITC aims to support user mo-
bility, where a user can login from any device without the
need to transfer any state from another device.

3.2 Threat Model
The threat model defines the adversaries and the possible attacks
that can be performed to compromise the privacy guarantees of
our system. Specifically, with HITC, we want to protect the privacy
of shared data against the following threat actors:
• OSN service provider: HITC protects the privacy of data
shared over OSNs by means of encryption. Naturally, an
OSN service provider might attempt to break the encryption
algorithm and retrieve the raw data. Such attempts might
be for the sake of collecting user data for analytics purposes
(e.g., studying users’ behaviors) [19], displaying customized
content (e.g., customized advertisements), providing user
data to authorities (e.g., law enforcement, governments) [16],
or even selling user data and information to third parties
[21]. A malicious OSN may also try to launch a man-in-the-
middle (MITM) attack, by modifying the stego images that
store the public keys of the users. Finally, in this work, we do
not address denial of service (DoS) attacks, where the OSN
provider deliberately alters all posted images to sabotage
HITC’s operation.
• Curious OSN user: An OSN user who is not granted access
to data shared by another user might get curious to see what
the user has shared, and try to conduct attacks to gain unau-
thorized access to such protected data. Similar to the case of
the OSN provider, this attack involves the compromise of the
underlying encryption algorithm. We allow users to collude
with each other and with the OSN provider, by sharing secret
information about other users (such as passphrases). How-
ever, we do not consider the disclosing of content decryption
keys as an attack, because any user can share the content
they have access to with others, if they choose to do so (i.e.,
this is not a weakness of HITC).

3.3 System Architecture
The architecture of our system (Figure 1) consists of three major
components that interact with each other. We describe each com-
ponent below.

(1) End-user: The end-user is the OSN user who is registered
with an OSN service and has a device that is connected to
the Internet.

(2) Web browser: A web browser software that is installed
on the end-user’s device to surf the world wide web (i.e.,
access the OSN’s web page). Moreover, today’s browsers
can include extensions that act as add-ons, which provide
extra features to the browser’s built-in functionalities. In
our system, all the operations (e.g., encryption and decryp-
tion) are performed at the client-side by an extension within
the browser itself. Additionally, browsers provide different
flavors of local storage systems (e.g., local storage, session
storage, indexed databases, Web SQL, cookies). We utilize
the local storage of the web browser to store data locally in
the end-user’s device.

(3) OSN services: Our system interacts with OSN services that
consist of theOSN service provider’s servers (e.g., web servers),
storage systems, and application layer components (e.g., ap-
plication programming interfaces, APIs).

Figure 1: HITC architecture

3.4 Operations
HITC supports six main operations that are independent of the
underlying OSN platform. Each operation is discussed in detail in
the following paragraphs and, to make the discussion clear and
understandable, we summarize the notations used in Table 1.

REGISTER Operation: The REGISTER operation is the user reg-
istration phase in HITC. It’s main purpose is to initialize the user’s
secrets: a strong password, a secret passphrase, and a pointer to a
posted cover image that stores his RSA public key. Specifically, the
following actions are performed:

(1) Useru’s OSN unique identifier (username),u .id , is read. This
identifier must be unique for each registered user in the
HITC system.

(2) Userumanually enters a password,u .pw , a secret passphrase,
u .sp, and a pointer (e.g., a string or a hashtag), u .ptr .

(3) The password hash,H (u .pw), is computed using the SHA512
cryptographic hash function and a 2048-bit RSA public/private
key pair, u .rsa.PK and u .rsa.SK , respectively, is generated
automatically using H (u .pw) as an input to the key genera-
tion function (PRNG random seed).

(4) User u’s RSA public key is then embedded into the cover im-
ageCI (selected by the user), using image steganography. The
result is a stego image SI : SI ← CI .Embed(u .rsa.PK ,H (u .sp)).
The stego image is finally posted on the OSN platform and
tagged with u .ptr , user u’s pointer. The hash of u .sp is used
as a seed to a PRNG to ensure that data is embedded into the
cover image in a random manner, i.e., not in fixed locations.

Note that, the password hash is used as a random seed to a PRNG
that generates all the user’s keys (both RSA and HVE). As such, it
should be a strong password that is hard to brute force. On the other
hand, the role of the pointer and secret passphrase is to hide the
user’s public key inside a random cover image on his social media
feed, in order to thwart MITM attacks. Indeed, as we will discuss
shortly, RSA public keys are used to distribute HVE decryption
keys, so a malicious OSN provider may try to replace a user’s public
key with their own in order to obtain the decryption keys sent by
other users. The uncertainty of the selectedCI and the randomness
of the embedding pattern of the key inside the CI , make such an
attack infeasible (the adversary can not verify whether his guess is
correct).

LOGIN Operation: This operation is performed once, when the
user logs into the HITC system for the first time (i.e., on a new
device). The following actions are performed:

(1) Userumanually enters a password,u .pw , a secret passphrase,
u .sp, and a pointer, u .ptr .

Table 1: HITC design notations

Term Definition
u User u is a registered user in the OSN
u .id User u’s unique identifier
u .pw User u’s password
u .sp User u’s secret passphrase
u .ptr User u’s pointer
u .s A shared random PRNG seed generated

by user u
u .rsa.PK User u’s RSA public key
u .rsa.SK User u’s RSA private key
u .hve .PK User u’s HVE public key
u .hve .MK User u’s HVE master key
u .hve .DK[v] User v’s HVE decryption key generated

by user u
u .relationshipId[v] A relationship id ∈ {0, . . . ,L − 1} gener-

ated by user u and associated with user
v .

u .S[v] Sender token generated by user u (the
sender) associated with user v (the re-
ceiver)

u .R[v] Receiver token generated by user u (the
sender) associated with user v (the re-
ceiver)

u .secret Data object shared on the OSN platform
by user u

u .secret .AV An access vector of L elements con-
structed by user u to control access to
u .secret

SI ← CI .Embed(d, s) Use image steganography to embed data
d into cover image CI , where s is a seed
to a PRNG function to ensure random
data embedding

d ← SI .Extract(s) Use image steganography to extract data
d from a stego image SI , where s is the
PRNG seed

(2) The password hash,H (u .pw), is computed using the SHA512
cryptographic hash function and a 2048-bit RSA public/private
key pair, u .rsa.PK and u .rsa.SK , respectively, is generated
automatically using H (u .pw) as an input to the key genera-
tion function.

(3) Following u .ptr , the stego image that holds u .rsa.PK is re-
trieved. Then, using H (u .sp) as a PRNG seed, u .rsa.PK is
extracted from the stego image and compared to the public
key generated in Step (2). If it matches, user u is successfully
authenticated and can perform the other system’s operations
correctly.

(4) With the hve.Setup function described in Section 2.1, user u
generates his HVE master and public keys, u .hve .MK and
u .hve .PK , respectively. These keys are deterministically gen-
erated using H (u .pw) as a seed to the PRNG function.

(5) In order for user u to decrypt his own HVE-encrypted data
posted on the OSN platform, he generates anHVE decryption

key for himself, u .hve .DK[u]. For that purpose, we reserve
the relationship ID 0 (i.e., u .relationshipId[u] = 0), which
cannot be assigned to any other user.

(6) A shared random seed u .s is generated by computing the
hash of the concatenation of the user’s RSA private key and
his password, u .s = H (u .RSA.SK | |u .pw), using the SHA512
hash function.

(7) All the following data objects are stored locally in useru’s de-
vice:H (u .pw),u .rsa.PK ,u .rsa.SK ,u .s ,u .hve .PK ,u .hve .MK ,
and u .hve .DK[u].

In a nutshell, the LOGIN operation generates and stores locally
all the keys that are necessary for the correct operation of HITC. In
addition, Step (3) acts as an authentication mechanism that verifies
the identity of the HITC user. The shared PRNG seed u .s is utilized
in the access control phase of our protocol, and is distributed to
all users that have established a social relationship (on the HITC
system) with user u.

ESTABLISH_RELATIONSHIP Operation: This operation is in-
voked when user u (the sender) wants to establish a relationship
with user v (the receiver). It basically involves user u generating
and sharing an HVE decryption key with user v . The following
actions are performed:

(1) User u assigns a random relationship ID u .relationshipId[v]
∈ {1, . . . ,L − 1} to user v . Next, using u .relationshipId[v],
u .hve .MK , and u .hve .PK as inputs to the hve.GenDecKey
function, user u generates an HVE decryption key for user
v : u .hve .DK[v].

(2) Useru constructs a sender token,u .S[v], which is the encryp-
tion of the concatenation of v .id and u .relationshipId[v]
with a symmetric cipher (AES), using H (u .pw) as the key.

(3) Usersv and u establish an out-of-band communication chan-
nel (e.g., face-to-face communication or through a secure
messaging app) where userv reveals his secret pointer,v .ptr ,
and secret passphrase, v .sp, to user u. Following v .ptr , user
u retrieves the stego image SI where user v has embedded
his own RSA public key, and utilizes H (v .sp) to extract it:
v .RSA.PK ← SI .Extract(H (v .sp)).

(4) Useru constructs a receiver token,u .R[v], by RSA encrypting
the following informationwithv .rsa.PK :u .relationshipId[v],
u .id , v .id , u .hve .DK[v], and u .s .

(5) User u embeds the sender token, u .S[v], in the first half of
a selected cover image CI , using H (u .pw) as a seed for the
random embedding sequence. In addition, he embeds the re-
ceiver token, u .R[v], into the second half of the image, using
H (v .rsa.PK) as a seed for the random embedding sequence.
The resulting stego image, SI , is posted by useru on the OSN
platform after being tagged with a reference to user v .

This operation presents a malicious OSN provider (or an adver-
sary that has gained unauthorized access to the OSN servers) with
an opportunity to intercept a user’s HVE decryption key(s) through
a MITM attack. Specifically, if an adversary has knowledge of a
user’s secret pointer and passphrase, they can replace the user’s
RSA public key with their own, thus getting access to any future
HVE key shared with the user. While this attack necessitates an

exact guess by the adversary without the possibility of a verifica-
tion ahead of time, it becomes very feasible if a user’s social friend
colludes with the adversary. Therefore, to mitigate such attacks,
the user should immediately modify the secret passphrase after
sharing it via the ESTABLISH_RELATIONSHIP operation. This can
be done by invoking the REGISTER operation.

REFRESH_RELATIONSHIPS Operation: This is a data collec-
tion operation performed by user u, in order to gather (i) the HITC
social relationships information (where useru acts as either a sender
or a receiver) and (ii) all the HVE decryption keys assigned to him
by other users. The following two tasks are performed:
• Sender tokens collection: User u progressively retrieves
images shared by himself over the OSN platform (in which
other users are tagged) and checks whether a valid sender
token,u .S[v], exists, wherev is a user with whom user u has
already established a relationship. The validity of the sender
token is confirmed by the successful decryption of the token
using H (u .pw) as the AES key. Once the token is decrypted,
user u stores v .id and u .relationshipId[v] locally.
• Receiver tokens collection: Useru progressively retrieves
images shared with him by other users (i.e., u is tagged) over
the OSN platform and checks if a valid receiver token,v .R[u],
is embedded in the image shared by user v . The validity of
the receiver token is confirmed by the successful decryption
of the token using his RSA private key u .rsa.SK . Once the
token is decrypted, user u stores v .id , v .relationshipId[u],
v .hve .DK[u], and v .s locally.

This operation is invoked when (i) the user logs into HITC
from a new device and (ii) after the user participates in an ES-
TABLISH_RELATIONSHIP operation as a receiver, i.e., to retrieve
a new HVE decryption key.

POST_SECRETOperation: This operation implements the access
control mechanism of HITC. It is invoked when user u wants to
enforce HITC’s stringent access control protocol on an arbitrary
object, u .secret , that is posted on the OSN platform. To achieve
that, the following actions are performed:

(1) User u generates a random AES key k and encrypts u .secret :
Ek (u .secret).

(2) User u constructs u .secret .AV , the access vector with L ele-
ments, where L is the maximum number of supported friends.
For each user v that has a relationship with user u (where v
acts as the receiver), user u can either grant or deny access
to the private data, by setting the value of the access vector
at position u .relationshipId[v] as follows:
• Grant access: Set the value to ‘⋆’.
• Deny access: Set the value to ‘0’.
Note that, user u always sets u .secret .AV [0] = ‘⋆ ’, in order
for him to decrypt his own encrypted data.

(3) User u invokes the hve .Enc function to encrypt the secret
key k : C ← hve .Enc(u .hve .PK ,u .secret .AV ,k).

(4) User u constructs an object SECRET , by concatenating C ,
Ek (u .secret), and u .secret .AV .

(5) User u embeds SECRET into a randomly selected cover im-
age, CI , and shares the resulting stego version of the im-
age, SI , over the OSN platform. The shared PRNG seed, u .s ,

is used to generate the random data embedding sequence:
SI ← CI .Embed(SECRET ,u .s).

To summarize, access control is enforced by AES encrypting
the shared object and giving access to the underlying key through
HVE decryption. Also note that we do not need to post the entire
access vector u .secret .AV on the OSN platform, since the number
of friends τ granted decryption privileges would typically be τ ≪ L.
Therefore, it suffices to post only the relationship IDs of the users
that have been granted access. Finally, we should point out that, due
to the randomness of the embedding sequence, it is very difficult for
the OSN provider to identify HITC-related content. On the other
hand, since all of useru’s friends have access to the shared seed,u .s ,
they can immediately recognize HITC’s stego images by identifying
the access vector. As a result, if any of user u’s friends discloses
u .s to the OSN provider, it would enable it to identify (i) the stego
images and (ii) the relationship IDs associated with the hidden
content (but not the actual users). Nevertheless, we do not view
this as a serious weakness, because we assume that users would
only distribute HVE decryption keys to trusted social friends.

EXTRACT_SECRET Operation: This operation is performed on
a stego image, SI , in order to retrieve the embedded secret,v .secret .
It involves the following actions:

(1) User u invokes the SI .Extract function to retrieve the em-
bedded SECRET object from a stego image SI shared by user
v : SECRET ← SI .Extract(v .s).

(2) Once SECRET is successfully retrieved, user u scans the ac-
cess vector,v .secret .AV , to see if he has been granted access,
i.e., whether v .relationshipId[u] appears on the access list.
If not, user u aborts the operation.

(3) If user u is granted access to the secret, he invokes the
hve .Dec function to decrypt the HVE ciphertext C (with
v .hve .DK[u] as the key) and retrieve the AES key k .

(4) User u extracts v .secret by decrypting Ek (v .secret).

4 IMPLEMENTATION
In this section, we present our prototype implementation of HITC
on the Twitter platform.

4.1 Implementation Overview
We built a fully functional HITC implementation in the form of a
Chrome browser extension and applied it on the Twitter platform as
a proof-of-concept. Our source code is publicly available on GitHub
[5]. The reason for choosing Twitter is twofold. First, Twitter of-
fers a very coarse-grained access control to its users; the user can
either make his account publicly available or completely private.
Therefore, we want to give users the ability to enforce fine-grained
access control over their tweets. Second, Twitter allows the posting
of PNG images that are not modified when uploaded. As a result, we
do not need to employ error correcting codes in the stego images.

We implemented the browser extension with the client-side
JavaScript language. The reason for implementing the system as a
browser extension is the simplicity and ease of use when it comes to
the average user. Furthermore, browser extensions depend on the
browser software itself, which is already installed on the end-user’s
device and is used to navigate through the OSN website. Therefore,

HITC does not require any additional software or configuration on
behalf of the user. For storing HITC related data (keys, passphrases,
relationships, etc.), we utilized the local storage of the Chrome
browser.

The image steganography technique adopted in our implementa-
tion is the spatial domain technique. For each pixel within a colored
image, there are three channels: red, green, and blue. Each channel
corresponds to an 8-bit value, where we embedded one bit of secret
data into one of 4 LSBs, chosen randomly. For the cryptographic pro-
tocols, we employed the following cryptographic libraries: crypto-js
[32] for SHA512 hashing and 256-bit AES encryption, and cryp-
tico [29] for 2048-bit RSA encryption. We implemented our own
CP-HVE library by leveraging the mcl pairing-based cryptographic
library [26].

4.2 Operations Implementation
We now introduce and discuss our implementation, starting from a
user registering with HITC until he communicates (e.g., shares and
reads) private data objects over the Twitter platform.

Twitter authentication and authorization: Before proceeding
with HITC’s basic operations, the extension needs to get permission
from the user to access his Twitter account. To this end, once the
user clicks on the extension icon next to the browser’s address bar, a
page is displayed asking the user to authenticate and authorize the
extension to have access permission to the user’s Twitter account,
as shown in Figure 2. This step is performed in order to verify that
the user is authorized to access this specific Twitter account, thus
avoiding impersonation and identity-stealing attacks. Furthermore,
it gives HITC the authority to make Twitter API calls on behalf of
the user.

Figure 2: HITC asking for Twitter authorization

User registration: The user provides a strong password that he
must remember for future logins (e.g., after logging out or to login
from a different device), a secret passphrase, a hashtag, and a cover
image from his local device, as illustrated in Figure 3. Once this
information is provided, the REGISTER operation is invoked that

leverages the Twitter API to post the stego image containing the
user’s RSA public key. The post ismarkedwith the provided hashtag,
which serves as a pointer that is later shared with other users, in
order for them to retrieve the RSA public key of the user during
the relationship establishment operation.

Figure 3: HITC registration popup screen

User login: An already registered user can login to HITC by pro-
viding his password, secret passphrase, and hashtag that were used
in the registration process. The login popup screen where this in-
formation is entered is very similar to the one in Figure 3. Next, the
extension utilizes the hashtag to pull the tweet that includes the
image storing the user’s RSA public key. Following the successful
authentication of the user (as explained in the LOGIN operation)
the rest of the data objects (keys, random values) are generated and
stored locally.

Relationship establishment: After a successful login, the main
popup screen of the HITC extension includes two buttons for man-
aging relationships. With the first one, the user can establish a
relationship with user v , by entering user v’s unique identifier (i.e.,
Twitter screen name) and secret passphrase, the hashtag linked to
user v’s RSA public key, and a random cover image. The ESTAB-
LISH_RELATIONSHIP operation is then invoked, as described in
Section 3.4, that pulls the image tweeted by user v and extracts
user v’s public key, in order to encrypt the receiver token. After
that, both the sender and receiver tokens are constructed and then

embedded into the cover image. The resulting stego image gets
tweeted, and user v is explicitly mentioned in that tweet.

Refresh relationships: The second button on the main extension
screen allows the user to invoke the REFRESH_RELATIONSHIPS
operation. Once started, the operation searches (using Twitter’s
API) for all tweeted images by the logged user (to collect sender
tokens), and all tweeted images by other users where the logged user
is mentioned (to collect receiver tokens). The extracted relationship
information is stored locally in the browser.

Sharing secret: For a logged in HITC user, as illustrated in Figure
4(a), an extra “Secret Tweet” button is added to the original Twitter
page. Once clicked, a Twitter-like box is displayed, as shown in
Figure 4(b). From this box, the user can choose the type of data
object to share: a text, an image, or a file. Once the user selects the
actual data object he wants to share, another box is displayed that
allows the user to choose the social friends that are granted access
to this object. This model box is depicted in Figure 4(c). As each data
object is transformed into its binary representation before being
embedded into the cover image, HITC can support the sharing of
private files with arbitrary format (e.g., .pdf, .exe), even though
Twitter and almost all other OSNs, do not allow this. We view this
as an inherited added feature for HITC users.

Extracting secret: Extraction of secrets is a seamless process that
is performed while surfing the Twitter pages. The extension contin-
uously reads the HTML markup of the pages and identifies tweets
that are posted by users that have sender relationship with the
logged in user (i.e., the logged in user is the receiver in this relation-
ship). Any image in these tweets is investigated for steganography,
by performing the EXTRACT_SECRET operation. The extension
marks such images with an informational message that is being
displayed beneath the image. The informational messages cover the
following cases: (i) a secret is not found, (ii) a secret is successfully
extracted, or (iii) no access is granted to that secret. These messages
are illustrated in Figure 4(d). On the successful extraction of a secret,
the user can view the secret data by hovering the mouse over the
stego image. We choose the mouse hovering action to reduce the
risk of shoulder surfing attacks. In the case where the protected data
object is an arbitrary file, once the image is hovered and clicked,
the protected file is automatically downloaded on the end-user’s
device.

5 EVALUATION
This section presents the results of our performance evaluation that
measures the computational overhead of HITC.

5.1 Operations Performance Measurement
In our experiments, we focus on evaluating the cost of the various
cryptographic primitives involved in each of the system’s opera-
tions, as discussed in Section 3.4. In all measurements, we used a
1200×1200 cover image (the largest accepted dimension of an image
without invoking re-sizing or cropping operations by Twitter), a
300×300 secret image, a 2048-bit RSA key pair, and the following
parameters for the HVE functions: elliptic curves on 256-bit prime
order groups (see Appendix A), L = 1000 (maximum number of
friends), N = 20 (maximum number of friends with access to a

(a) “Secret Tweet” button is displayed on
Twitter page

(b) Twitter-like model box to share a private data object (c) Access vector construction

(d) Informational messages displayed beneath the shared image

Figure 4: HITC’s access control interface

Figure 5: Response time of HITC operations

single secret), and τ = 5 (number of friends granted access to a
single secret). We ran HITC on a laptop equipped with a 2.7GHz
Intel Core i5 processor and 8GB of RAM.

We intentionally left out themeasurements for posting/retrieving
images on/from the OSN, as these processes depend on many vari-
ables, including internet connection, network latency, caching, etc.
Moreover, we do not measure the overhead of hashing (SHA512)
or symmetric key (256-bit AES) operations, because their impact is
negligible compared to public key and hidden vector encryption op-
erations. The results are summarized in Figure 5 and are discussed
in the following paragraphs.

REGISTER: The time to generate the RSA keys is 3.6 seconds,
while the embedding of the data into the cover image requires less
than 0.5 seconds. Even though RSA key generation is an expensive
operation, it is performed very rarely and does not affect the user’s
browsing experience.

LOGIN: Overall, the LOGIN operation is the most time consuming
operation in HITC, with a total cost of 27.3 seconds. Nevertheless,
this is not a major concern, because the LOGIN operation is per-
formed only once per device. The HVE-related functions, hve.Setup
and hve.GenDecKey, are the most expensive ones, contributing 23.3
seconds to this process. On the other hand, the time to generate
the RSA keys and the time to process the image steganography
function are equivalent to the ones reported above.

ESTABLISH_RELATIONSHIP: The relationship establishment
cost is dominated by the cost of generating an HVE decryption key,
which takes approximately 17.4 seconds. The RSA encryption of
the receiver token, the AES encryption of the sender token, and the
embedding of data into the cover image take a total of 1.6 seconds.
Again, the high computational cost of this operation is not a serious
concern, because it is only invoked when a new relationship is
established under HITC (only close social friends would typically

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 250 500 750 1000

Ti
m

e
(s

ec
on

ds
)

Maximum number of friends (L)

LOGIN
ESTABLISH_RELATIONSHIPS

POST_SECRET
EXTRACT_SECRET

(a) Response time vs. L

 0

 3

 6

 9

 12

 15

 18

 21

 24

 10 20 30 40

Ti
m

e
(s

ec
on

ds
)

Maximum number of wildcards (N)

LOGIN
ESTABLISH_RELATIONSHIPS

POST_SECRET
EXTRACT_SECRET

(b) Response time vs. N

 0

 3

 6

 9

 12

 15

 18

 5 10 15 16 17 18 19 20

Ti
m

e
(s

ec
on

ds
)

Number of users granted an access to a secret (τ)

LOGIN
ESTABLISH_RELATIONSHIPS

POST_SECRET
EXTRACT_SECRET

(c) Response time vs. τ

Figure 6: Response time for varying HVE parameters

get an HVE decryption key). Note that, the steganography-related
functions are more expensive compared to the ones reported in the
LOGIN operation. This is due to the size of the HVE decryption
keys that is significantly larger than RSA keys (Appendix A).

REFRESH_RELATIONSHIPS: The total average time required
for this operation is 1.3 seconds and is dominated by the extrac-
tion of embedded data in the stego images. The time reported in
Figure 5 corresponds to the average time required to process two
relationships: one where the user acts as a sender and the other as
a receiver. This is an operation that is not executed frequently and
does not affect the normal operation of HITC.

POST_SECRET: The HVE encryption function when posting a
secret takes an average of 6.3 seconds, while embedding the private
data into the cover image necessitates 1.4 seconds of processing
time. Even though encryption is a time consuming function, the
POST_SECRET operation is not the bottleneck of HITC’s perfor-
mance. Indeed, social media content follows the write once, read
many model where, in our case, every user’s tweet appears in the
Twitter feed of all his followers. As such, the most critical operation
that dictates the user’s experiencewithHITC is EXTRACT_SECRET,
which is discussed next.

EXTRACT_SECRET: This is the most frequently executed opera-
tion in HITC, which runs continuously as the user scrolls through
his Twitter feed. Fortunately, it is also very efficient; data extraction
from the stego image takes 1.4 seconds, and the HVE decryption of
the AES key costs only 0.1 seconds. Note that the data extraction
time reported here corresponds to a “hit,” i.e., the stego image con-
tains decipherable data. In the general (and most frequent) case, the
EXTRACT_SECRET operation would terminate early if (i) there is
no secret data embedded into the image or (ii) the access vector
does not include the user’s ID.

5.2 HVE Performance Measurement
Given the large overhead of HVE-related functions (Figure 5), we
next assess the performance of HITC’s operations when modify-
ing the underlying HVE parameters: L, N , and τ . The results are
summarized in Figure 6, where the response time is measured on
a live system, i.e., it includes the cost of the steganographic oper-
ations as well. First, Figure 6(a) illustrates the response time as a

function of the maximum number of friends, L (N = 20,τ = 5). The
LOGIN, ESTABLISH_RELATIONSHIP, and POST_SECRET oper-
ations have a cost that grows linearly with L, because the corre-
sponding HVE functions hve.Setup, hve.GenDecKey, and hve.Enc,
respectively, are all linear in L (Appendix A). On the other hand,
the EXTRACT_SECRET operation is not affected, since the hve.Dec
function is independent of L.

Figure 6(b) shows the response time as a function of N , the
maximum number of wildcards allowed in the encryption vector
(L = 1000,τ = 5). As shown in Appendix A, the only function that is
affected by N is hve.GenDecKey, i.e., the function that generates de-
cryption keys. As such, the POST_SECRET and EXTRACT_SECRET
operations remain mostly unaffected. The reason why the cost of
the LOGIN operation also grows linearly with N , is because it in-
cludes the generation of an HVE decryption key (for the user to
decrypt his own posts).

Finally, Figure 6(c) depicts the response time of the four opera-
tions as a function of τ , the number of wildcards in the encryption
vector (L = 1000,N = 20). As evident in Appendix A, only the
hve.Dec function depends on τ and, as such, all other operations
exhibit constant cost. It is worth noting that the exponential growth
of the cost is due to the computation of Viete’s formulas, where
aτ−k necessitates the enumeration of all k-subsets out of τ elements.
Nevertheless, the decryption function is very efficient for groups
of up to 15 friends.

6 DISCUSSION
In this section, we discuss the limitations of HITC and highlight
some research directions that we plan to investigate in the future.

6.1 Key Revocation
HITC does not support key revocation. We do not consider it an
essential function, because access control is performed on the finest
granularity level (no grouping of members). As a result, there is
no need to explicitly revoke a user’s key; it suffices to exclude that
user from the access control vectors of future shared objects. The
downside of this approach, is that a revoked user can still access all
the data for which he was given decryption privileges in the past.
To avoid that, the straightforward (but not practical) solution is to
re-encrypt every object that the user had access to. Nevertheless,

we do not view this as a serious privacy concern, because users can
easily collect and store private data while authorized, and retrieve
them locally even after their keys are revoked.

6.2 Embedded Data Survival
In our implementation, we chose to embed secret data into PNG
images, which is a lossless compression format. However, some ex-
isting OSNs, such as Facebook, only support JPEG images on their
platforms. In addition to JPEG’s lossy compression format, these
OSNs further manipulate the uploaded images and may destroy the
embedded data (e.g., Twitter manipulates uploaded JPEG images).
To that end, in our future work, we aim to employ a more robust im-
age steganography technique (by employing Reed-Solomon codes)
that is able to survive the image processing performed by the OSN
service providers.

6.3 Secret Data Capacity
In the evaluation reported on Section 5, we randomly embedded
one bit of secret data into one of the 4 LSBs of a pixel’s channel
value, i.e., the overall secret data capacity is 3 bits/pixel. As a result,
the maximum amount of data that we can embed into a 1200× 1200
cover image is 520KB. To increase the secret data capacity, we could
utilize more bits per channel, but this may ultimately introduce
noticeable changes in the image itself. Such changes may violate
our low-profile requirement, and make HITC visible to the OSN
users and service providers.

6.4 Access Vector Visibility
The HVE protocol that we employed necessitates the attachment of
the cleartext access vector associated with each ciphertext. Due to
the random embedding sequence with a shared secret seed, the OSN
service provider is unable to identify and read the access vector
and is, thus, oblivious to the underlying data sharing. However,
all users that have a receiver relationship with the sender of the
protected data can read the contents of the access vector. An in-
herited limitation is that any user with access to the shared secret
seed of another user u can read the access vector constructed by
user u and identify the number (and IDs) of users who are given
access to a specific object. Nevertheless, this is not a serious privacy
concern, because user IDs can not be mapped directly to OSN users
(recall that relationship IDs are assigned randomly). Furthermore,
the access vector itself does not leak any information regarding the
secret object.

6.5 APIs Availability
Our implementation relies on Twitter APIs to perform image search
and post new images. To implement HITC in an OSN other than
Twitter, only minimal changes are required, in order to utilize the
other OSN’s APIs. Moreover, the process of posting images, tagging,
and reading them needs to be independently implemented for each
OSN (e.g., write on a user’s wall for Facebook). However, all the
changes are introduced in the implementation part only, without
affecting the design presented in Section 3. On the other hand, using
the OSN’s APIs can be considered a drawback if the OSN decides
to disable them or dramatically limit their usage. Nevertheless,

disabling APIs is unlikely, because OSNs are encouraging third-
party developers to integrate their applications and services with
the OSNs’ platforms, in order to have a larger exposure and reach
a larger user base.

6.6 DoS Attacks
One of our main goals is to prevent malicious OSNs from observing
and disrupting our system’s activities. Due to our random embed-
ding sequence, it may be difficult for an OSN to identify whether an
image includes hidden data or not. However, an OSN with knowl-
edge of HITC’s protocols will realize that the secret data is em-
bedded into one of the 4 LSBs in each pixel’s channels. The OSN
may then launch a preemptive DoS attack, by flipping all 4 LSBs in
each channel for every image uploaded by its users (regardless of
whether they actually use HITC). Obviously, such an attack would
sabotage HITC’s operation, but we do not believe it is a viable solu-
tion on behalf of the OSN provider. Indeed, such aggressive pixel
modifications would severely affect the quality of the uploaded
images, thus frustrating the user base and possibly forcing them to
leave the platform.

6.7 Survival Against Steganalysis
Another defense against HITC is for the OSN service provider to
apply steganography detection techniques on the uploaded images,
and ban all images that are flagged as suspicious. To this end, we
tested 10 random images (shown in Figure 7) that are produced by
our system, against two PNG image steganalysis tools: StegExpose
[11] and zsteg [3]. The StegExpose tool inspects the input image
and flags it as suspicious or not. On the other hand, the zsteg tool
tries to extract data embedded into an input image using different
patterns. The results showed that both tools failed to mark the
inspected images as suspicious or extract any embedded data. As a
result, we are confident that HITC can remain undetected by the
OSN service providers.

Figure 7: Random stego images tested by steganalysis tools

7 RELATEDWORK
Persona [9] is an OSN that replicates Facebook’s functionalities, but
adds encryption-based access control, by combining both public-
key and attribute-based encryption (ABE) [10], where users are able
to enforce their own policies. Moreover, to avoid centralized storage
at the OSN site, Persona uses decentralized persistent storage which
enables its users to store their data with intermediaries without the
need to trust those intermediaries.

EASiER [18] is similar to Persona, in that leverages ABE to pro-
vide encryption-based access control. Its novelty is that it provides

an efficient key revocation procedure, which is the major limitation
in Persona. Revocation necessitates a trusted proxy that enforces
the revocation constraints by participating in the decryption pro-
cess. In particular, the proxy is initially assigned a secret key with
revocation details by the data owner. Then, before performing the
decryption process, a user would share part of the encrypted data
with the proxy. The proxy would then use its key to extract the
necessary information that only non-revoked users can use to suc-
cessfully complete the decryption operation.

Sun et al. [28] introduced a private OSN with an efficient revoca-
tion mechanism for restricting access to personal data that reside
within an untrusted storage service. For sharing private data with
other OSN users, a privacy-preserving construction is performed
that allows the owner of the data to implement access control over
the shared data. The data owner acts as a group manager by clas-
sifying contacts according to their role (e.g., co-workers, friends)
and grants contacts a membership to those groups. The proposed
scheme provides the data owner with a convenient way to cope
with membership changes without the need to rebuild the group
or re-key group members. It also includes an efficient revocation
mechanism against changing group membership that has minimal
impact on data privacy.

Hummingbird [14] is a privacy-preserving Twitter-like micro-
blogging OSN. It adds several cryptographic protocols, such as
blind RSA signatures [12], that allow users to post tweets and
follow users with privacy. Specifically, Hummingbird introduces
the following privacy features: (i) it allows the tweeter to apply
fine-grained access control on his tweets and (ii) it offers privacy to
followers, i.e., followers can subscribe to hashtags without sharing
their interests with any entity.

Safebook [13] is a decentralized OSN for privacy-preserving ap-
plications. It exploits real-life trust and integrates several privacy
and security mechanisms that provide data storage and data man-
agement functions to its users. The authors also examine the archi-
tecture of existing social network services, in order to assess and
analyze their security and privacy threats.

NOYB [17], which stands for none of your business, is a scheme
that provides privacy in existingOSNs. It is based on the observation
that existing OSNs are not verifying the data shared over their
platform for authenticity. If users can map shared fake data back
into real data, they can still use the OSN service while limiting
the correct mapping operation to authorized users only. NOYB
partitions private data into multiple atoms and then replaces each
atom with a “fake” atom, using external dictionaries (for that, it
relies on distributed store-lookup infrastructures [25]). A proof-of-
concept NOYB was implemented for Facebook as a Firefox web
browser extension that interprets and modifies Facebook pages.

Lockr [31] is a system that enhances the level of privacy in both
centralized and decentralized content sharing networks. It offers
the following privacy benefits to existing OSN users: (i) separation
of the content shared over an OSN’s platform from all other func-
tionalities that an OSN service provider offers, (ii) employment of
digitally signed social relationships that can not be re-used by the
OSN to access social data, and (iii) encryption of messages using so-
cial relationship keys. Lockr has been implemented for both Flicker
and BitTorrent.

flyByNight [22] is a system that mitigates the privacy risks of
Facebook. It was implemented as a native Facebook applicationwith
the aim of encrypting and decrypting secret data at the client-side.
flyByNight benefits from Facebook in managing users’ social rela-
tionships and relies on Facebook’s interface for key management.
It supports both one-to-one and one-to-many communications and
ensures that cleartext data and private keys are never stored on
Facebook’s servers.

Ning et al. [23] proposed a framework for private communica-
tions in OSNs by establishing covert channels in the existing OSNs’
infrastructure. The idea is to use steganography to embed secret
messages in cover images before posting them on the OSN platform.
The authors made three key contributions in this field. First, they
analyzed the effects of image processing done by photo-sharing
OSNs on the embedded secret messages. Second, they proposed a
simple change to the traditional image steganography techniques,
which ensures that secret messages survive the image processing
introduced by the OSN service providers. Finally, they proposed
a bootstrapping protocol for in-band communication in order to
share encryption keys and perform key exchange.

8 CONCLUSIONS
In this paper, we introduced the design and implementation of Hide
in the Crowd (HITC), a system that incorporates encryption-based
access control to existing OSN platforms. HITC offers many advan-
tages compared to previous approaches. First, it supports dynamic
group formation, by assigning decryption privileges to individual
users in an interactive manner, when a new object is posted on the
OSN platform. Second, HITC employs in-band mechanisms for key
exchange, with minimum out-of-band communication for relation-
ship establishment, and uses image steganography to hide keys and
shared objects within the OSN servers. As such, it does not rely
on third parties to operate successfully. Third, it supports stateless
mobility and can be installed on different devices without the need
to transfer any piece of information. Finally, HITC is implemented
as a browser extension which, in combination with the underlying
steganographic techniques, makes HITC invisible to unauthorized
OSN users and the OSN service provider itself. To illustrate the fea-
sibility of our design, we implemented a proof-of-concept system
that provides fine-grained access control over the Twitter platform.
The results of our evaluation show that HITC is scalable and has a
minimal impact on the user’s experience.

REFERENCES
[1] 2014. Camouflage. http://camouflage.unfiction.com/.
[2] 2014. JpegX Software. http://www.freewarefiles.com/Jpegx_program_19392.

html.
[3] 2014. zsteg. https://github.com/zed-0xff/zsteg.
[4] 2017. Facebook Stats. https://newsroom.fb.com/company-info/.
[5] Ahmed Khalil Abdulla. 2019. HITC source code. https://github.com/AKhalil90/

HITC-Hide-In-The-Crowd/.
[6] Alessandro Acquisti and Ralph Gross. 2006. Imagined Communities: Awareness,

Information Sharing, and Privacy on the Facebook. In Proc. Workshop on Privacy
Enhancing Technologies (PET). 36–58.

[7] Paul Alvarez. 2004. Using Extended File Information (EXIF) File Headers in
Digital Evidence Analysis. IJDE 2, 3 (2004).

[8] Salman Aslam. 2019. Twitter by the Numbers: Stats, Demographics and Fun
Facts. https://www.omnicoreagency.com/twitter-statistics/.

[9] Randolph Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel
Starin. 2009. Persona: an online social network with user-defined privacy. In

http://camouflage.unfiction.com/
http://www.freewarefiles.com/Jpegx_program_19392.html
http://www.freewarefiles.com/Jpegx_program_19392.html
https://github.com/zed-0xff/zsteg
https://newsroom.fb.com/company-info/
https://github.com/AKhalil90/HITC-Hide-In-The-Crowd/
https://github.com/AKhalil90/HITC-Hide-In-The-Crowd/
https://www.omnicoreagency.com/twitter-statistics/

Proc. ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM). 135–146.

[10] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy
Attribute-Based Encryption. In Proc. IEEE Symposium on Security and Privacy
(S&P). 321–334.

[11] Benedikt Boehm. 2014. StegExpose - A Tool for Detecting LSB Steganography.
CoRR abs/1410.6656 (2014). http://arxiv.org/abs/1410.6656

[12] David Chaum. 1982. Blind Signatures for Untraceable Payments. In Proc. CRYPTO.
199–203.

[13] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. 2009. Safebook: a
privacy-preserving online social network leveraging on real-life trust. IEEE
Communications Magazine 47, 12 (2009), 94–101.

[14] Emiliano De Cristofaro, Claudio Soriente, Gene Tsudik, and Andrew Williams.
2012. Hummingbird: Privacy at the Time of Twitter. In Proc. IEEE Symposium on
Security and Privacy (S&P). 285–299.

[15] Ralph Gross and Alessandro Acquisti. 2005. Information revelation and privacy
in online social networks. In Proc. ACM Workshop on Privacy in the Electronic
Society (WPES). 71–80.

[16] Joshua Gruenspecht. 2011. “Reasonable” grand jury subpoenas: asking for in-
formation in the age of big data. Harvard Journal of Law Technology 24, 2
(2011).

[17] Saikat Guha, Kevin Tang, and Paul Francis. 2008. NOYB: privacy in online social
networks. In Proc. ACM Workshop on Online Social Networks (WOSN). 49–54.

[18] Sonia Jahid, Prateek Mittal, and Nikita Borisov. 2011. EASiER: encryption-based
access control in social networks with efficient revocation. In Proc. ACM Sympo-
sium on Information, Computer and Communications Security (ASIACCS). 411–415.

[19] Long Jin, Yang Chen, Tianyi Wang, Pan Hui, and Athanasios V. Vasilakos. 2013.
Understanding user behavior in online social networks: a survey. IEEE Commu-
nications Magazine 51, 9 (2013).

[20] Balachander Krishnamurthy and Craig E. Wills. 2008. Characterizing privacy
in online social networks. In Proc. ACM Workshop on Online Social Networks
(WOSN). 37–42.

[21] Balachander Krishnamurthy and Craig E. Wills. 2009. On the leakage of person-
ally identifiable information via online social networks. In Proc. ACM Workshop
on Online Social Networks (WOSN). 7–12.

[22] Matthew M. Lucas and Nikita Borisov. 2009. flyByNight: mitigating the privacy
risks of social networking. In Proc. Symposium on Usable Privacy and Security
(SOUPS).

[23] Jianxia Ning, Indrajeet Singh, Harsha V. Madhyastha, Srikanth V. Krishnamurthy,
Guohong Cao, and Prasant Mohapatra. 2014. Secret message sharing using online
social media. In Proc. IEEE Conference on Communications and Network Security
(CNS). 319–327.

[24] Tran Viet Xuan Phuong, Guomin Yang, and Willy Susilo. 2014. Efficient Hidden
Vector Encryption with Constant-Size Ciphertext. In Proc. European Symposium
on Research in Computer Security (ESORICS). 472–487.

[25] Sean C. Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,
Scott Shenker, Ion Stoica, and Harlan Yu. 2005. OpenDHT: a public DHT service
and its uses. In Proc. ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM). 73–84.

[26] Mitsunari Shigeo. 2018. a portable and fast pairing-based cryptography library.
https://github.com/herumi/mcl.

[27] Kaushal Solanki, Anindya Sarkar, and B. S. Manjunath. 2007. YASS: Yet Another
Steganographic Scheme That Resists Blind Steganalysis. In Proc. International
Workshop on Information Hiding (IH). 16–31.

[28] Jinyuan Sun, Xiaoyan Zhu, and Yuguang Fang. 2010. A Privacy-Preserving
Scheme for Online Social Networks with Efficient Revocation. In Proc. IEEE
International Conference on Computer Communications (INFOCOM). 2516–2524.

[29] Rye Terrell. 2012. An easy-to-use encryption system utilizing RSA and AES for
javascript. https://github.com/wwwtyro/cryptico.

[30] New York Times. 2018. Zuckerberg, Facing Facebook’s Worst Crisis Yet,
Pledges Better Privacy. https://www.nytimes.com/2018/03/21/technology/
facebook-zuckerberg-data-privacy.html.

[31] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman. 2009.
Lockr: better privacy for social networks. In Proc. ACM Conference on Emerging
Networking Experiments and Technology (CoNEXT). 169–180.

[32] Evan Vosberg. 2018. JavaScript library of crypto standards. https://github.com/
brix/crypto-js.

A CP-HVE CONSTRUCTION
In this work, we utilize the CP-HVE construction by Phuong et al.
[24] that is based on bilinear maps on prime order groups. Specifi-
cally, given two groups G, GT of the same prime order q, a bilinear
map e : G × G→ GT satisfies the following properties:

(1) It is computable, i.e., given u,v ∈ G, there is a polynomial
time algorithm for computing e(u,v) ∈ GT .

(2) It is bilinear, i.e., for any u,v ∈ G and a,b ∈ Zq , e(ua ,vb) =
e(u,v)ab .

(3) It is non-degenerate, i.e., if д is a generator of G then e(д,д)
is a generator of GT .

Based on the groups G and GT , and the bilinear map e , the four
algorithms of the CP-HVE protocol are implemented as shown be-
low. Note that the security of the protocol is based on the Decisional
L-Bilinear Diffie-Hellman Exponent (L-BDHE) assumption.

Setup(1k , Σ,L,N): on input a security parameter 1k , an alphabet
Σ, a vector length L, and a maximum number of allowed wildcards
N in the encryption vector, the algorithm outputs a public key PK
and a master secret keyMK .
• Choose random elements V ,H0,H1, . . . ,HL−1 ∈R G.
• Choose random generators д,w, f ∈R G.
• Compute Y = e(д,w).
• The public key is PK = ⟨Y ,V , (H0, . . . ,HL−1),д, f ,q,G,GT , e⟩.
• The master secret key isMK = w .

GenDecKey(MK , PK , ®z): on input a master secret keyMK , a pub-
lic key PK , and a decryption vector ®z, the algorithm outputs a
decryption key DK .
• Choose random elements r , r1 ∈R Zq .
• Compute the decryption key DK as:

K1 = д
r ,K2 = д

r1 ,

©«

K3,0 = w(
L−1∏
i=0
(Hzi

i V)r)f r1

K3,1 =
L−1∏
i=0
(Hzi

i V)(i+1)r

. . .

K3,N =
L−1∏
i=0
(Hzi

i V)(i+1)
N r

ª®®®®®®®®®®®®®¬
Enc(PK , ®x , ®j,M): on input a public key PK , an encryption vector
®x , a vector ®j containing the locations of the wildcards in ®x , and a
messageM , the algorithm outputs a ciphertext C .
• Let τ ≤ N be the number of wildcards in ®x that occur at
positions ®j = (j1, j2, . . . , jτ).
• Using Viete’s formulas below, compute t = a0.

aτ−k = (−1)k
∑

1≤i1<i2 ...<ik ≤τ
ji1 ji2 · · · jik , for 0 ≤ k ≤ τ

• Choose random s ∈R Zq .
• Compute C0 = MY s ,C1 = д

s
t ,C2 = f s , and

C3 =
L−1∏
i=0
(VHxi

i)

∏τ
k=1(i+1−jk)s

t

• Output ciphertext C = ⟨C0,C1,C2,C3, ®j⟩.

Dec(DK , ®j,C): on input a decryption key DK , a vector ®j contain-
ing the locations of the wildcards in the encryption vector, and a
ciphertext C , the algorithm outputs a messageM .
• Using Viete’s formulas above, compute

M =
e(K1,C3) · e(K2,C2)

e(
∏τ

k=0 K
ak
3,k ,C1)

·C0

http://arxiv.org/abs/1410.6656
https://github.com/herumi/mcl
https://github.com/wwwtyro/cryptico
https://www.nytimes.com/2018/03/21/technology/facebook-zuckerberg-data-privacy.html
https://www.nytimes.com/2018/03/21/technology/facebook-zuckerberg-data-privacy.html
https://github.com/brix/crypto-js
https://github.com/brix/crypto-js

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hidden Vector Encryption
	2.2 Image Steganography

	3 HITC Design
	3.1 Design Goals
	3.2 Threat Model
	3.3 System Architecture
	3.4 Operations

	4 Implementation
	4.1 Implementation Overview
	4.2 Operations Implementation

	5 Evaluation
	5.1 Operations Performance Measurement
	5.2 HVE Performance Measurement

	6 Discussion
	6.1 Key Revocation
	6.2 Embedded Data Survival
	6.3 Secret Data Capacity
	6.4 Access Vector Visibility
	6.5 APIs Availability
	6.6 DoS Attacks
	6.7 Survival Against Steganalysis

	7 Related Work
	8 Conclusions
	References
	A CP-HVE Construction

