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ABSTRACT
Proximity detection is an emerging technology in Geo-Social
Networks that notifies mobile users when they are in prox-
imity. Nevertheless, users may be unwilling to participate in
such applications if they are required to disclose their exact
locations to a centralized server and/or their social friends.
To this end, private proximity detection protocols allow any
two parties to test for proximity while maintaining their lo-
cations secret. In particular, a private proximity detection
query returns only a boolean result to the querier and, in
addition, it guarantees that no party can derive any informa-
tion regarding the other party’s location. However, most of
the existing protocols rely on simple grid decompositions of
the space and assume that two users are in proximity when
they are located inside the same grid cell. In this paper, we
extend the notion of private proximity detection, and pro-
pose a novel approach that allows a mobile user to define an
arbitrary convex polygon on the map and test whether his
friends are located therein. Our solution employs a secure
two-party computation protocol and is provably secure. We
implemented our method on handheld devices and illustrate
its efficiency in terms of both computational and communi-
cation cost.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
spatial databases and GIS ; K.4.1 [Computers and Soci-
ety]: Public Policy Issues—privacy

General Terms
Algorithms
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1. INTRODUCTION
The emergence of Geo-Social Networks (GeoSNs), such

as Foursquare1 and Loopt2, facilitates the development of
novel applications that combine social networking features
with location based services. In particular, a GeoSN en-
hances the traditional social networking graph with spatial
information, by allowing users to “check in” at arbitrary ge-
ographic locations. Mobile users may then utilize this in-
formation to identify their social friends that are spatially
close (e.g., in order to meet at a nearby coffee shop). This
is typically called a proximity detection query.

A trivial way to process such queries is to store all loca-
tion information at the GeoSN server, in plaintext format.
Alternatively, users may choose to bypass the server and ex-
change their locations (in plaintext), on-demand, in a peer-
to-peer manner. Clearly, both methods might reveal a lot
of information about an individual’s lifestyle to the GeoSN
server and/or his friends. If the leaked information is more
than what the user is willing to disclose, he may be discour-
aged from registering with the GeoSN. Therefore, to protect
privacy, GeoSN queries should not disclose any additional
information regarding the location of a user, besides the in-
formation that can be derived from the query result.

To this end, private proximity detection protocols allow
any two parties to test for proximity while maintaining their
locations secret. In particular, a private proximity detection
query returns only a boolean result to the querier and, in
addition, it guarantees that no party can derive any informa-
tion regarding the other party’s location. Nevertheless, the
current state-of-the-art private proximity detection proto-
cols [15, 23] rely on simple grid decompositions of the space
and assume that two users are in proximity when they are
located inside the same grid cell.

However, this approach may not be sufficient in certain
situations. Assume, for example, that Alice is enjoying her
free time in the Central Park area of Manhattan. She wants
to know whether Bob is also visiting the park (the area
marked with the dashed line in Figure 1), in order to pur-
sue some outdoor activities together. Traditional proxim-
ity detection queries are only able to discover Bob within
a (roughly) circular area around Alice, as shown in Figure
1. A näıve solution to overcome this limitation is to enlarge
the search range, so that it encloses the entire Central Park
area. Clearly, this approach is not optimal, as it may lead
to a large number of false positives. An alternative method
is to leverage the existing space partitioning protocols, i.e.,

1https://foursquare.com/
2https://www.loopt.com/



Figure 1: Motivating example

allow Alice to search for Bob in multiple grid cells, instead
of just one. While this is a viable solution, it has two ma-
jor shortcomings. First, to achieve an acceptable accuracy
level, the underlying grid has to be very fine, thus leading
to high query processing costs. Second, the query itself will
reveal the size of Alice’s search space, which is obviously a
privacy breach.

To this end, this paper extends the notion of private prox-
imity detection, and introduces a novel approach that allows
a mobile user to define an arbitrary convex polygon on the
map and test whether his friends are located therein. Re-
turning to the example of Figure 1, Alice would simply spec-
ify the coordinates of the four rectangular edges in order to
detect Bob’s presence in Central Park. Our solution employs
a secure two-party computation protocol that is based purely
on public key homomorphic encryption operations. In ad-
dition, it offers the highest level of privacy to the involved
parties, since (i) Alice only learns the query result and (ii)
Bob only learns the number of edges in Alice’s polygon. We
implemented our method on handheld devices running iOS
6, and illustrate its efficiency in terms of both computational
and communication cost.

In summary, the main contributions of our work are the
following:

• We introduce a generalized proximity detection query
that incorporates arbitrary convex polygons instead of
fixed tessellations.

• We provide a secure and efficient solution based on
public key homomorphic encryption.

• We show how to extend our basic method to handle
certain instances of concave shapes.

• We implement our basic protocol on handheld devices
and present real query processing times.

The rest of the paper is organized as follows. Section 2
describes the cryptographic primitives utilized in our meth-
ods and summarizes previous work on private proximity
detection. Section 3 presents the formal definition of the
new proximity detection query and describes the underlying
threat model and security. Section 4 introduces the details
of our solutions and Section 5 illustrates the results of our

implementation on iOS devices. Finally, Section 6 concludes
our work.

2. BACKGROUND
Section 2.1 introduces the cryptographic primitives uti-

lized in our methods and Section 2.2 surveys the related
work on private proximity detection.

2.1 Preliminaries

Homomorphic encryption. Most public key cryptosys-
tems in the literature are partially homomorphic, i.e., they
facilitate the evaluation of one algebraic operation (either
addition or multiplication) directly on the ciphertext space.
In our work, we utilize additively homomorphic encryption,
which allows for the following computations. First, given the
encryptions E(m1) and E(m2) of two plaintext messages m1

and m2, we can compute the encryption of (m1 + m2) by
multiplying the two ciphertexts:

E(m1 +m2) = E(m1) · E(m2)

Second, any message m can be multiplied with a plaintext
constant c as follows:

E(c ·m) = E(m)c

In our implementation, we utilize two different additively
homomorphic cryptosystems, namely the Paillier [16] and
ElGamal [4] cryptosystems. The major advantage of Pail-
lier’s scheme (Figure 2) is that it can decrypt arbitrarily
large plaintexts very efficiently. However, all operations are
computed in modulo n2 arithmetic, where n2 is typically a
2048-bit number. As a result, the basic cryptographic oper-
ations, such as modular multiplication and exponentiation,
are relatively expensive. On the other hand, the modulus
size in ElGamal’s scheme (Figure 3) is typically 1024 bits, so
it is much more efficient in terms of computational cost. The
limitation of the ElGamal cryptosystem is that it can only
decrypt small plaintext values, because the decryption func-
tion involves the computation of a discrete logarithm, which
is a very difficult problem in cryptography. Both schemes
produce ciphertexts of size 256 bytes, so they are comparable
in terms of communication cost.

Paillier cryptosystem

Key generation
1. Choose two large primes p and q of equal length, and

compute the RSA modulus n = pq
2. The public key is n
3. The private key is ϕ(n) = (p− 1)(q − 1)

Encryption
1. Let m be the private message
2. Choose r uniformly at random from Z∗

n
3. Compute ciphertext c = (mn+ 1)rn mod n2

Decryption

1. Compute m =
(cϕ(n) mod n2)−1

n
· ϕ(n)−1 mod n

Figure 2: The Paillier cryptosystem

Note that, both cryptosystems are semantically secure,
i.e., it is infeasible to derive any information about a plain-
text, given its ciphertext and the public key that was used



ElGamal cryptosystem

Key generation
1. Instantiate a cyclic group G of prime order p, with

generator g (G, g, and p are public knowledge)
2. Choose a private key x, uniformly at random from Z∗

p
3. Publish the public key h = gx

Encryption
1. Let m be the private message
2. Choose r, uniformly at random from Z∗

p

3. Compute ciphertext (c1, c2) = (gr, hr+m)

Decryption
1. Compute hm = c2 · (cx1 )−1

2. Solve the discrete logarithm to retrieve m

Figure 3: The ElGamal cryptosystem

to encrypt it. The security of Paillier’s scheme is based
on the decisional composite residuosity assumption, while
the security of ElGamal’s scheme is based on the decisional
Diffie-Hellman assumption.

Secure two-party computation. A secure two-party com-
putation protocol [10] enables two parties, Alice and Bob, to
jointly compute a function based on their respective inputs,
without having to reveal their input to the other party. In
other words, the two parties will only learn the result of the
computation and nothing else. Yao’s garbled circuit tech-
nique [21] is a generic two-party computation protocol that
can evaluate securely any function f , given its Boolean cir-
cuit representation. In particular, Bob first generates an
encrypted version of the circuit that incorporates his own
input, and sends it to Alice. Then, Alice and Bob engage in
a series of Oblivious Transfer (OT) [14] executions that al-
low Alice to retrieve securely the keys corresponding to her
input bits. Finally, Alice evaluates the circuit and learns
the result of the function. Even though the actual circuit
evaluation can be very efficient [8], the large number of OT
invocations is a performance bottleneck in terms of both
computational and communication cost.

Consequently, researchers have looked into more special-
ized, i.e., application dependent, protocols that are typically
built around homomorphic encryption. One such example is
private equality testing, which is used extensively in previous
work [15, 23]. In this protocol, Alice and Bob hold a pair
of values a and b, respectively, and want to know if the two
values are equal. Alice encrypts her input with her public
key and sends E(a) to Bob. Next, Bob utilizes the proper-
ties of homomorphic encryption to produce E(r · (a − b)),
where r is a random number that masks the result so that
it is infeasible for Alice to derive any information regarding
the value (a−b). Finally, Alice decrypts the result and infers
that a = b if and only if the result is zero. The security of
this protocol has been proven in [11, 15].

2.2 Related Work
Ruppel et al. [17] utilize a symmetric key cipher that

encrypts locations by applying a distance-preserving trans-
formation. A set of friends share a common key and use it
to encrypt their location prior to uploading it to the server.
Due to the distance-preserving property of the transforma-
tion, the server can determine whether any two friends are

within a given proximity threshold. Clearly, this approach
leaks some location information, as the server learns the
actual distances among all users. Furthermore, if a user col-
ludes with the server and reveals the shared key, all user
locations are compromised. Longitude [12] is a similar ap-
proach, but the underlying transformation does not disclose
the exact distances (i.e., it results in a loss of accuracy).

Most private proximity detection algorithms in the litera-
ture employ a tessellation method (typically a regular grid)
to partition the space into a fixed number of cells. In this
way, they reduce the proximity detection problem into an
equality testing problem: identify whether the two parties
are located inside the same or nearby cells. FriendLocator
[19] and VicinityLocator [18] assume that the two parties
share a secret key and use it to encrypt (with a deterministic
symmetric cipher) the ids of certain cells nearby their loca-
tion. The encrypted values are uploaded to server, who can
determine (by matching the ciphertexts) whether the two
users lie in the same or adjacent cells of the grid. Clearly,
both schemes are vulnerable to collusions with the server,
since the party that colludes can learn the approximate lo-
cation of the other party.

In C-Hide&Seek [13], every user shares his secret key with
his friends, and uses this key to encrypt his up-to-date lo-
cation. When another user issues a proximity request, the
server simply forwards all the encrypted locations that it
currently stores. Therefore, the proximity detection is per-
formed at the querier, which enables him to identify (with
a simple brute force approach) the approximate locations of
all his friends. C-Hide&Hash [13] assumes a similar location
update procedure as C-Hide&Seek. However, for proximity
detection, it employs a secure computation protocol between
the server and the querier. Nevertheless, due to the shared
keys among the users, this scheme is also vulnerable to col-
lusions with the server.

Zhong et al. [23] propose three schemes, namely Louis,
Lester and Pierre that are based on secure computations.
The main idea in all protocols is to compute the distance
between two parties using the properties of homomorphic
encryption. First, Louis computes the actual distance, but
requires a trusted third-party that only returns the result
(i.e., true or false) of the proximity detection query. Lester
does not require a third-party, but instead masks the actual
distance d in a way that its computation time increases lin-
early with d (i.e., d is retrieved efficiently only when its value
is relatively small). Finally, Pierre utilizes a regular grid to
discretize the users’ locations. It then employs a secure two-
party computation protocol to determine whether the users
lie within the same or adjacent cells in the grid. Narayanan
et al. [15] partition the space with three overlapping tessel-
lations, in order to improve the accuracy of the proximity
detection. When two parties want to test for proximity, they
employ a secure computation protocol (similar to Pierre) to
identify whether they are located in the same cell of at least
one tessellation.

Among all the aforementioned protocols, Pierre [23] and
Narayanan et al. [15] provide the strongest privacy guaran-
tees, i.e., the querier only learns the proximity result, while
all remaining parties learn nothing. However, as mentioned
in Section 1, these schemes are not directly applicable to
our problem setting, because they cannot handle arbitrary
polygonal shapes.



More similar to our work are protocols for the secure point
inclusion problem. This problem was first introduced by
Atallah and Du [1] as part of a collection of protocols for
secure multiparty computational geometry. The two-party
protocol for the secure point inclusion problem leverages a
number of basic sub-protocols (such as scalar product and
vector dominance) that are also proposed in [1]. Neverthe-
less, these protocols are computationally expensive and lack
formal security proofs. Thomas [20] solves the secure point
inclusion problem for star-shaped polygons, while Yun et al.
[22] address convex polygons. However, these methods are
not secure in our problem setting, because the proximity
result is computed by the party that owns the fixed point,
and has to be transmitted to the querier in an additional
round. This property enables collusions among the partici-
pating entities that may leak location information regarding
the querier’s polygon. On the other hand, our method avoids
such collusions, because the proximity result is computed at
the querier.

3. PROBLEM DEFINITION
Alice (the querier) holds a convex polygon P consisting

of N vertices p0, p1, . . . pN−1. The vertices are labeled in a
counterclockwise order, as shown in Figure 4. The coordi-
nates of vertex pi are denoted as (pxi , p

y
i ). Bob holds a single

point q = (qx, qy) that represents his current location. Al-
ice wants to know whether Bob is located inside, or on the
boundary of, P . The privacy guarantees provided by our
protocol are the following:

• Alice learns only the result of the proximity detection
query (a boolean value). Bob’s exact location remains
secret.

• Bob does not learn the query result. Furthermore, the
only information he can derive about Alice’s polygon
is the number of edges N . The location, shape, and
size of P remain secret.

p0p5

p4

p3 p2

p1
q

Figure 4: Proximity detection example

We assume that both parties can be the adversaries in this
protocol. Alice’s goal is to pinpoint Bob in an area smaller
than the one that can be inferred from the outcome of the
protocol. On the other hand, Bob wants to deduce any ad-
ditional information regarding Alice’s polygon, besides the
number of edges. Finally, we assume that both parties run
in polynomial time and are “semi-honest,” i.e., they will fol-
low the protocol correctly, but will try to gain any advantage
by analyzing the information exchanged during the protocol
execution.

Note that Bob may have his own privacy requirement,
namely that he does not want to be found within an area

smaller than a certain threshold. Unfortunately, this re-
quirement cannot be enforced in our current protocol. One
direction that we plan to investigate in the future is to use
cryptographic commitment schemes [7] that will allow Al-
ice to commit to her input prior to the protocol execution.
Then, if the proximity result is true, Alice will be forced to
reveal her polygon to Bob, in order for him to verify that
his privacy was not violated. Furthermore, it is possible for
Alice to locate Bob with a brute-force attack, i.e., she can
initiate a sequence of proximity detection queries that cover
the entire space where Bob might be located. A straightfor-
ward solution here is for Bob to decline successive queries
that are not sufficiently apart in time.

4. PRIVATE PROXIMITY DETECTION
Section 4.1 presents a geometric, i.e., insecure, algorithm

to our problem and Section 4.2 introduces a secure two-party
computation protocol that implements this algorithm. Sec-
tion 4.3 describes a secure comparison protocol that we uti-
lize in our method and Section 4.4 outlines a security sketch
of our protocol. Finally, Section 4.5 describes a solution that
can handle certain instances of concave polygons.

4.1 Geometric Solution
Our proximity detection query can be easily solved by per-

forming N point orientation computations [3]. Specifically,
given an ordered triple of points 〈pi, q, pi+1〉 in the plane, we
say that they have (Figure 5)

• Positive orientation if their angle is a counterclockwise
turn

• Negative orientation if their angle is a clockwise turn

• Zero orientation if they are collinear

pi

pi+1

q

pi

pi+1

q

Positive orientation Negative orientation

pi

pi+1

q

Zero orientation

Figure 5: Point orientation

Given the coordinates of the three points, the orientation
is computed by the sign of the following determinant:

θi =

∣∣∣∣∣∣
1 pxi pyi
1 qx qy

1 pxi+1 pyi+1

∣∣∣∣∣∣ = qx(pyi+1 − p
y
i ) + qy(pxi − pxi+1)

+ (pyi p
x
i+1 − pxi pyi+1)

(1)

Therefore, the following algorithm computes the correct
proximity result:

1. For i ∈ {0, 1, . . . N − 1} and j = (i + 1) mod N , com-
pute the orientation θi of point q with respect to the
line segment pipj . The vertices are visited in a coun-
terclockwise order, as shown in Figure 4.



2. If θi ≤ 0 ∀i ∈ {0, 1, . . . N − 1}, return true; otherwise,
return false.

The correctness of this algorithm (for convex polygons)
follows from the point orientation property. That is, the
orientation result determines the half-plane where point q is
located if you infinitely extend the line segment pipj in both
directions. In other words, q lies in the intersection of the N
half-planes. When all point orientations are negative, this
area is equal to the convex polygon.

4.2 Secure Protocol
We assume that, prior to the protocol execution, Alice

has published her public keys for the Paillier and ElGamal
cryptosystems. In what follows, we use EP (·) to denote
encryption under Paillier’s scheme and EG(·) to denote en-
cryption under ElGamal’s scheme. The protocol consists of
three major steps. First, Bob computes the encryptions of
all θi’s under Alice’s public key. Next, Alice and Bob engage
in a series of secure comparison protocols that allow Bob to
compute the encryptions of the signs for all θi’s. Finally,
Bob merges these results into a single message that he sends
to Alice. The detailed protocol is shown in Figure 6.

PPD Convex

Input: Alice has polygon P with N vertices p0, p1, . . . , pN−1

Bob has point q
Output: true if q in P , false otherwise

1. For i ∈ {0, 1, . . . N − 1} and j = (i+ 1) mod N , Alice sends
to Bob EP (pyj − p

y
i ), EP (pxi − pxj ), and EP (pyi p

x
j − pxi p

y
j )

2. For i ∈ {0, 1, . . . N − 1} and j = (i+ 1) mod N , Bob

computes EP (θi) = EP (pyj − p
y
i )

qx · EP (pxi − pxj )q
y ·

EP (pyi p
x
j − pxi p

y
j ) · EP (−1)

3. Alice and Bob engage in a series of secure comparison
protocols and Bob computes, ∀i ∈ {0, 1, . . . , N − 1}, EP (σi),
where σi > 0 if θi ≥ 0 and σi = 0 if θi < 0

4. Bob chooses r uniformly at random from Z∗
n, where n is

the RSA modulus of Alice’s public key

5. Bob computes the masked result EP (r · σ) = [
∏N−1

i=0 EP (σi)]
r

and sends it to Alice

6. Alice decrypts EP (r · σ) with her private key and,
if r · σ = 0, she returns true; otherwise, she returns false

Figure 6: The private proximity detection protocol

Initially, Alice uses her Paillier public key to encrypt (for
each edge) her own input, as dictated by Equation (1). She
then sends a total of 3N ciphertexts to Bob (Step 1). Bob
cannot decrypt any of these ciphertexts because he does not
have Alice’s public key. However, he is able to incorporate
his own input, using the properties of additively homomor-
phic encryption (Step 2). Note that, the final result in Step
2 is not the encryption of θi, as it is shown in Equation (1).
The last term adds the value −1 to the result, in order to
produce the encryption of (θi − 1). The reason behind this
approach is to enforce the points that lie on a polygon edge
to produce a negative orientation result, instead of zero.

Next, Alice and Bob employ a secure comparison proto-
col (which is introduced in the next section) to compute

an encrypted representation of the sign of each θi (Step 3).
Specifically, the protocol allows Bob to compute the encryp-
tion of σi, where σi = 0 if and only if θi < 0 (otherwise it has
a fixed value t > 0). During the protocol execution, no party
can derive any information regarding the actual value or the
sign of θi. Bob then combines all orientation results into one
ciphertext, i.e., EP (σ) = EP (σ0+σ1+. . .+σN−1). However,
he cannot send this value to Alice because, if σ > 0, Alice
can figure out the number of edges that produced a positive
orientation and, thus, she can eliminate some areas from the
search space. Therefore, Bob multiplicatively masks the ag-
gregate result (Steps 3–5), by computing EP (r · σ). Finally,
Bob sends the masked result to Alice who decrypts it with
her private key (Step 6). If the decrypted value is zero, q is
located inside (or on the boundary of) P . Otherwise, it is
impossible for Alice to determine how many point orienta-
tions were positive.

4.3 Secure Comparison Protocol
In Step 3 of the PPD Convex protocol, Bob holds the en-

cryptions of all point orientation results and wants to com-
pute the encryptions of their corresponding signs. For this
task, we borrow a secure comparison protocol (Figure 7)
that is introduced by Erkin et al. [5] as part of their privacy
preserving face recognition protocol.

Sec Comp

Input: Bob has EP (θi) under Alice’s public key
` is the max bit-size of θi

Output: Bob computes EP (σi) where σi > 0 if θi ≥ 0 and
σi = 0 if θi < 0

1. Bob computes EP (s) = EP (θi + 2`) = EP (θi) · EP (2`)

2. Bob generates a uniformly random (k + `+ 1)-bit number
r (where k = 100), computes EP (s+ r) = EP (s) · EP (r),
and sends it to Alice

3. Alice decrypts the message, computes a = (s+ r) mod 2`,
and sends EP (a) to Bob

4. For i ∈ {0, 1, . . . , `− 1}, Alice sends to Bob EG(ai), i.e.,
the ElGamal encryption of the i-th bit of ai

5. Bob computes b = r mod 2`

6. For i ∈ {1, 2, . . . , `− 1}, Bob sets EG(wi) equal to EG(ai)
if bi = 0, or EG(1) · EG(ai)

−1 if bi = 1 (the i-th bit of b)

7. Bob chooses d ∈ {1,−1} and, for i ∈ {0, 1, . . . , `− 1}, he
computes EG(ci) = EG(ai) · EG(bi)

−1 · EG(d)·
[
∏`−1

j=i+1 EG(wj)]
3

8. For i ∈ {0, 1, . . . , `− 1}, Bob chooses vi uniformly at
random from Z∗

p, computes EG(vi · ci) = EG(ci)
vi , and

sends a permuted version of the results to Alice

9. Alice decrypts all messages and, if one of them is zero, she
sets δ = 1; otherwise δ = 0. She sends EP (δ) to Bob

10. If d = −1, Bob sets EP (δ) = E(1) · EP (δ)−1

11. Bob computes EP (σi) = EP (s) · [EP (a) · EP (b)−1 · EP (δ)2
`
]−1

Figure 7: The secure comparison protocol



Suppose we use `-bit numbers to represent the orientation.
In Step 1, Bob computes the encryption of s = (θi + 2`),
which is an (` + 1)-bit number whose most significant bit
(MSB) determines the sign of θi: if it is 1, θi ≥ 0; otherwise,
θi < 0. The value of the MSB can be inferred from the
result of [s − (s mod 2`)], which is 0 if MSB = 0 and 2`

if MSB = 1. Therefore, Alice and Bob engage in a series
of steps to securely compute (s mod 2`). Initially (Step 2),
Bob generates a uniformly random number r in order to
additively mask s, i.e., he sends the encryption of (s + r)
to Alice. Alice decrypts the message, reduces it modulo 2`,
and sends the encryption of a = [(s + r) mod 2`] back to
Bob (Step 3).

Bob now needs to subtract b = (r mod 2`) from a, in order
to compute (s mod 2`). However, this is not sufficient, as the
subtraction may cause the result to underflow when a < b.
Instead, the correct approach is to securely compute the
outcome of the above comparison (δ = 1 if true, δ = 0 if
false) and then compute the desired result:

(s mod 2`) = a− b+ δ · 2`

Consequently, we are left with an instance of Yao’s mil-
lionaire problem, i.e., we need to determine whether a (held
by Alice) is smaller than b (held by Bob). Both inputs are
`-bit numbers, so we use index i ∈ {0, 1, . . . , `− 1} to repre-
sent the individual bits. First (Step 4), Alice sends to Bob
the encryptions of all her bits ai. Note that, at this point,
Alice switches to the more computationally efficient ElGa-
mal scheme. Bob then chooses a random value d (either 1
or −1) and computes the following encryptions (Steps 6–7),
where wj = aj ⊕ bj :

ci = ai − bi + d+ 3

`−1∑
j=i+1

wj

Suppose that d = 1. If a ≥ b, then all ci’s will be non-zero.
On the other hand, if a < b, then exactly one ci will be zero
(at the most significant bit position where the corresponding
bits differ). If d = −1 the situation is identical, except that
the zero value occurs when a ≥ b. Next, Bob multiplicatively
masks the individual ci’s by raising them to a random power
vi. He also permutes the encryptions and sends them back
to Alice (Step 8).

Alice decrypts all the ci’s and checks whether one of them
is zero. If this is the case, she sets δ = 1; otherwise she
sets δ = 0. Note that, Alice does not know the value of
d that Bob has selected, so she cannot determine whether
an underflow has occurred. Finally, she switches back to
Paillier’s cryptosystem and sends the encryption of δ to Bob
(Step 9). If d = −1, Bob adjusts the value of δ (Step 10)
and eventually computes (Step 11) the encryption of

σi = s− (a− b+ δ · 2`)

where σi = 0, if θi < 0 and σi = 2`, if θi ≥ 0.

4.4 Security
We will prove the security of the PPD Convex protocol

(which also includes the Sec Comp protocol) for semi-honest
adversaries, following the simulation paradigm [10]. In par-
ticular, we need to show that, for each party, we can simulate
the distribution of messages that the party receives, given
only the party’s input and output in this protocol. This is
true because, if we can simulate each party’s view from only

their respective input and output, the messages themselves
reveal no additional information.

First, Alice’s input consists of N vertices and her output
is r ·σ. In Step 2 of Sec Comp, Alice receives the encryption
of a uniformly random number from Bob. The simulator
knows Alice’s public key, so it can simply generate the en-
cryption of a random (k + `+ 1)-bit number. Furthermore,
in Step 8 of Sec Comp, Alice receives ` numbers that are
either all random or there is a single one with value zero.
The simulator knows how the protocol works, so it can ei-
ther generate ` random encryptions, or (` − 1) random en-
cryptions plus an encryption of zero. Finally, in Step 5 of
PPD Convex, Alice receives the encrypted result from Bob.
The simulator knows Alice’s output and can, thus, produce
the corresponding ciphertext (an encryption of either zero
or a random number).

In Bob’s case, the input is a point q and there is no out-
put. In Step 2 of PPD Convex, Bob receives 3N encryptions
from Alice. Here, the simulator can simply generate 3N en-
cryptions of zero. Given the assumption that the underlying
encryption scheme is semantically secure, Bob cannot distin-
guish these ciphertexts from the ones that are produced by
Alice’s real input. Similarly, Bob receives a number of en-
cryptions in Steps 3, 4, and 9 of Sec Comp. This is also
simulated by multiple encryptions of zero.

4.5 Handling Concave Polygons
In certain cases, the querier may need to define a con-

cave polygon, in order to better approximate the underlying
proximity region. The PPD Convex protocol of Figure 6
is not applicable in this scenario, as it may produce some
false negatives. Nevertheless, using well-known algorithms
for the optimal convex decomposition problem [9] in com-
putational geometry, we can decompose any concave shape
into the minimum number of convex polygons. An example
is shown in Figure 8, where P is decomposed into convex
polygons Pa and Pb.

p0

p4 p3

p2

p1

P

(a) Concave polygon

p0

p4 p3

p2

p1

Pb

Pa

(b) Convex decomposition

Figure 8: Optimal convex decomposition

A straightforward algorithm to evaluate private proxim-
ity detection queries would then be to invoke PPD Convex
multiple times, and have Bob return all results (permuted)
back to Alice. Alice would then decrypt the results and infer
that Bob lies within P if and only if there is a zero value
among the plaintexts. Furthermore, the permutation pre-
vents Alice from identifying the exact polygon where Bob is
located. While this approach would work in some cases, it
is not secure if Bob lies on an edge that is shared between
two convex polygons. In the example of Figure 8, if Alice
decrypts two zero values she can be certain that Bob lies
somewhere along the line segment p1p4.



This privacy breach is due to the fact that Alice receives
the actual proximity result for each convex polygon. There-
fore, if Bob were able to multiply the underlying plaintexts
and return a single result to Alice, the protocol would be
secure. Fully homomorphic encryption [6] can accomplish
that, because it allows both addition and multiplication op-
erations on the underlying plaintexts. Nevertheless, fully
homomorphic encryption is extremely expensive in terms of
computational and communication cost and, thus, it is not
practical for a real implementation. What we propose in-
stead, is a solution based on the BGN cryptosystem [2] that
is additively homomorphic, but allows a single multiplication
between two plaintexts. This property enables us to develop
a secure protocol for concave shapes that are decomposable
into exactly two convex polygons.

The resulting protocol is illustrated in Figure 9, where
EB(·) denotes encryption with the BGN cryptosystem (Al-
ice is again the owner of the corresponding private key).
The key idea is for Bob to obtain the encryptions of σa

and σb under the BGN cryptosystem (Steps 1–5), in order
to multiply them and compute the encryption of the result
(σa ·σb). An important remark here concerns the utilization
of both Paillier and BGN cryptosystems. One could argue
that Steps 2–5 can be avoided if we replace Paillier’s scheme
in the PPD Convex algorithm with BGN. The reason is that,
similar to ElGamal’s scheme, BGN’s decryption function is
based on discrete logarithms, so it cannot decrypt arbitrar-
ily large plaintexts. Furthermore, the BGN cryptosystem
is based on elliptic curve groups of composite order and
is, thus, significantly more expensive than Paillier’s scheme.
Note that we did not implement the PPD Concave protocol
on our handheld devices, but this is something we plan to
do in the future.

PPD Concave

Input: Alice has two polygons Pa and Pb

Bob has point q
Output: true if q in Pa ∪ Pb, false otherwise

1. Alice and Bob invoke PPD Convex twice (for Pa and Pb),
and Bob computes the results EP (σa) and EP (σb)

2. Bob chooses ra, rb uniformly at random from Zm, where m
is a large (e.g., 200-bit) number

3. Bob computes the masked results EP (ra + σa) and
EP (rb + σb), and sends them to Alice

4. Alice decrypts the ciphertexts, re-encrypts them with BGN,
and sends EB(ra + σa), EB(rb + σb) to Bob

5. Bob uses the additive property of BGN to compute EB(σa)
and EB(σb)

6. Bob uses the multiplicative property of BGN to compute
EB(σ) = EB(σa · σb)

7. Bob chooses random r and uses the additive property of BGN
to compute EB(r · σ), which he sends to Alice

8. Alice decrypts EB(r · σ) with her private key and,
if r · σ = 0, she returns true; otherwise, she returns false

Figure 9: The private proximity detection protocol
for concave polygons

5. IMPLEMENTATION RESULTS
In this section, we present our results from an actual im-

plementation of the PPD Convex protocol on iOS 6 devices.
The implementation of the cryptographic primitives is writ-
ten in C, and leverages the GMP3 multiple precision arith-
metic library and the OpenSSL4 cryptographic library. In
particular, we cross compiled both libraries for the ARM ar-
chitecture and incorporated them in our app. We deployed
the app on two devices (an iPhone 5 and a 3rd generation
iPad) and connected the devices over a WiFi network using
a secure SSL connection.

Before running the actual protocol, we created a bench-
mark program to test the performance of the two homo-
morphic encryption schemes. Specifically, we deployed the
benchmark app on the iPhone 5 device and measured the
cost of the basic cryptographic operations. The results are
shown in Table 1. The two modular exponentiation entries
correspond to the size of the exponent, which is the decid-
ing factor for the cost of this operation. Small exponents are
involved when a party multiplies its plaintext input into an
existing ciphertext, e.g., as Bob does in Step 2 of protocol
PPD Convex. Large exponents are normally necessary dur-
ing a multiplicative masking operation, such as the one in
Step 5 of PPD Convex. The advantage of ElGamal’s scheme
is very clear in this table (as explained in Section 2.1), and
justifies the usage of two different cryptosystems in the same
protocol.

Table 1: Cost of cryptographic primitives
Paillier cryptosystem

Encryption 40.7 ms
Decryption 40.6 ms
Modular exponentiation (small exponent) 1.3 ms
Modular exponentiation (large exponent) 39.9 ms
Modular multiplication 0.9 µs

ElGamal cryptosystem

Encryption 3.6 ms
Decryption 1.8 ms
Modular exponentiation (small exponent) 0.7 ms
Modular exponentiation (large exponent) 3.6 ms
Modular multiplication 0.7 µs

Next, we investigate the impact of the domain size (i.e.,
the number of bits required to store one coordinate) on the
performance of a single point orientation computation. Fig-
ure 10 illustrates the CPU time required at the two parties,
as well as the overall communication cost. Both costs grow
linearly with the domain size, because the bit-size ` of the
orientation result increases. This, in turn, increases the cost
of the Sec Comp protocol that has a linear complexity with
respect to `. Nevertheless, the CPU time is affected less
than the communication cost, due to the dominant effect
of the Paillier operations that are not influenced by the do-
main size. Also, Bob’s CPU time increases more sharply
than Alice’s, because Bob needs to perform a lot of public
key operations in Steps 6 and 7 of the Sec Comp protocol.

Figure 11 shows the CPU time and the communication
cost as a function of the number of edges N in the proximity
region (for a domain size of 20 bits). Clearly, both costs scale

3http://gmplib.org/
4http://www.openssl.org/



linearly with N , since the proximity detection query involves
exactly N point orientation computations. We expect that,
in a real application, a rectangular region would probably be
the most common query type. In this case, the query could
be answered in around 5 sec and incur a communication
cost of 90 KB. We believe that this is an acceptable cost for
privacy preserving query processing on handheld devices.
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Figure 10: Cost vs. domain size (for a single edge)
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Figure 11: Cost vs. number of polygon edges

6. CONCLUSIONS
Traditional private proximity detection protocols are very

restrictive in the definition of the proximity region. In par-
ticular, they typically constrain users to select (at most) a
few cells from a fixed grid decomposition of the space. To
this end, this paper extends the notion of private proximity
detection, by allowing users to define regions of arbitrary
convex shapes. We propose a novel solution based on a se-
cure two-party computation protocol that is provably secure.
By slightly modifying our basic protocol, we show that it is
also possible to handle certain instances of concave polygons.
Finally, we implement our basic method on handheld devices
and illustrate its applicability in a real-life application.
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