Available online at www.sciencedirect.com

sc.ence@n.nem

Journal of

Parallel and
Distributed
Computing

J. Parallel Distrib. Comput. 65 (2005) 1483 —1496

www.elsevier.com/locate/jpdc

Adaptive schemes for distributed web caching

Spiridon Bakiras?®, Thanasis Loukopoulos?, Dimitris Papadias® *, Ishfaq Ahmad®

ADepartment of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
bDepartment of Computer Science & Engineering, University of Texas at Arlington, TX, USA

Received 8 September 2003; received in revised form 3 February 2005; accepted 23 May 2005
Available online 26 July 2005

Abstract

In distributed web caching architectures, institutional proxies take advantage of their neighbors’ contents in order to reduce the number
of requests forwarded to the server. Intuitively, the maximum benefit from this cooperation is expected when the proxies that exhibit
similar requests are grouped together. The current practice is to follow a static and manual configuration of neighbors. Such an approach
has a number of drawbacks: (i) static allocation may not determine the best neighbors, especially if global knowledge of the participating
proxies is not available, (ii) a manual allocation places significant administrative burden, (iii) static schemes are insensitive to changes
in access patterns, and (iv) they cannot deal with the introduction of new, potentially useful, proxies. In this paper, we propose a set of
algorithms that allow proxies to independently explore the network for better neighbors and continuously update their configuration in
an adaptive fashion. The simulation experiments illustrate that dynamic neighbor reconfiguration leads to significantly higher hit ratios
compared to the static approach. Although some researchers in the past have recognized the need for adaptive caching, to the best of our

knowledge this is the first study to propose concrete algorithms and evaluate their efficacy.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Distributed caching; Web proxies; Cache digests; Squid

1. Introduction

Proxy caching has emerged as a primary technique to re-
duce the latency experienced by end-users when download-
ing web pages. Its apparent success is based on the premise
that sharing cached contents in a multi-user environment
leads to increased hit ratio and, consequently, better perfor-
mance. The same premise led to the development of hierar-
chical [CDN+96] and distributed caching [TDV+99].

A caching hierarchy is defined through parent—child and
sibling relations among the participating proxies. In the basic
scheme introduced by the Harvest system [CDN+96], client
requests arrive at the lowest level and misses are forwarded
to the upper levels until the root node is reached. If the root

* Corresponding author. Fax: +8522358 1477.
E-mail addresses: sbakiras@cs.ust.hk (S. Bakiras), luke @cs.ust.hk
(T. Loukopoulos), dimitris@cs.ust.hk (D. Papadias), iahmad@cse.uta.edu
(I. Ahmad).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.05.020

is unable to satisfy a request, the web server is contacted.
Although hierarchies usually result in high hit ratios for
the intermediate and topmost nodes, they possess two main
drawbacks: (i) the benefit (in terms of response time) for
end-users is not always possible (especially if the topmost
cache lies behind a slow link), (ii) upper level nodes may
become overloaded. For these reasons, the number of levels
is commonly restricted to three, i.e., institutional, regional
and national.

Distributed caching can be viewed as a step forward in
an attempt to overcome the deficiencies of hierarchies. In
a purely distributed scheme, institutional proxies coopera-
tively satisfy user requests without the presence of regional
and national caches being necessary. Hybrids between dis-
tributed and hierarchical caching have also been proposed
(e.g., in [TDV+99] where the hierarchy is only used for
propagating metadata information concerning content loca-
tions). Squid [WWW 1], which is the successor of Harvest,
provides enough versatility in the cache configuration to

http://www.elsevier.com/locate/jpdc
mailto:sbakiras@cs.ust.hk
mailto:luke@cs.ust.hk
mailto:dimitris@cs.ust.hk
mailto:iahmad@cse.uta.edu

1484 S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496

Vi V) Vi 123
v; vy V7 V3
Ve Vv
V6 / V4 \‘ 4
Vs Vs
(a) original configuration (b) optimized

Fig. 1. A scenario of original and optimized configurations: (a) original
configuration; (b) optimized.

account for hybrid architectures, and includes a dedicated
protocol for inter-proxy querying (Internet Cache Protocol
ICP [WC97)). In the basic scheme, when a miss occurs, the
cache broadcasts the query to its neighbors and retrieves the
page from the first one that replies positively. If none of the
neighbors has a cached copy, the request is forwarded either
to the parent cache or to the web server. An alternative is
provided by cache digests [RW98], where proxies exchange
periodically their directory information in the form of com-
pressed hash arrays. In this way, a proxy checks the digests
of its neighbors (stored locally) and forwards the request
only to the neighbors that have cached the page.

Ideally, a distributed caching scheme should achieve the
hit ratio of a single proxy acting over the combined popula-
tion of all the proxies. In practice, significant performance
degradation occurs since users from different institutional
proxies can exhibit arbitrarily diverse surfing behaviors. Fur-
thermore, the number of neighbors for a single proxy must
be restricted, due to local resource limitations and in or-
der to avoid overloading the network with redundant mes-
sages. Therefore, enabling proxies to select the best neigh-
bor candidates in an automatic and dynamic way becomes
of paramount importance, and is the main motivation for our
work.

If possible, a proxy should only make neighbors other
nearby (in terms of network latency) proxies with similar
access patterns. As an example, assume the simple network
of Fig. 1(a) where the nodes correspond to proxies and the
edges to neighborhood relations (each proxy has two neigh-
bors). The similarity of node colors corresponds to similar-
ity of cache contents (the largest difference exists between
black and white proxies). Obviously, this configuration is
not very beneficial since the neighbor proxies are usually
dissimilar. On the other hand, the clustering of Fig. 1(b) is
more useful for content sharing, because similar proxies are
grouped together.

An optimal grouping of proxies into neighborhoods is dif-
ficult to determine for several reasons: (i) global information
about the cache contents is not available, (ii) access pat-
terns change and, as a result, the neighborhood graphs need
to be updated continuously, and (iii) each proxy should in-

outgoing neighbor

incoming neighbors

Fig. 2. Unidirectional and bidirectional neighbor relations.

symmetric neighbor

dependently take decisions about its neighbors in order to
maximize its hit ratio. In this paper, we propose a set of
distributed algorithms that dynamically group proxies into
neighborhoods. The algorithms estimate the potential for
content sharing, based solely on the information available at
each proxy. Since it is not feasible to have knowledge about
all the participating proxies, an exploration step discovers
caches with similar access patterns.

The problem can be thought of as second level caching,
where the cached objects are the best neighbors of each
proxy v. When v determines that a proxy v; (not currently
in v’s neighborhood) could provide a large number of hits, it
adds v; to the list of its best neighbors by evicting the least
beneficial existing neighbor. We distinguish two cases: in
the first case, called unidirectional (or asymmetric) caching,
we assume that although a proxy has a maximum number
k of outgoing neighbors (to which it forwards its requests),
it serves an arbitrary number of incoming proxies. As an
example consider Fig. 2, where v has only k = 2 outgo-
ing neighbors (v; and v,), but receives requests from four
incoming proxies (v to vs). In the second case, called bidi-
rectional caching, all neighborhood relations must be sym-
metric (e.g., v and vy in Fig. 2), i.e., a proxy has a total of
k neighbors, each of which is both incoming and outgoing.

The rest of the paper is organized as follows. Section 2
presents the related work on distributed caching. Sections
3 and 4 describe the algorithms for unidirectional and bidi-
rectional caching, respectively. Section 5 presents the exper-
imental results, and Section 6 concludes the paper with a
discussion about the future directions.

2. Related work

Several papers have focused on quantifying the potential
gains of distributed caching. In [KS98] the authors analyze
traces from Bell Labs reporting that the performance im-
provement for an ideal cooperative scheme is significant,
but varies considerably depending on the day of the traces.
They also observe that the cooperation of only a small set
of proxies has a high impact on performance. The study

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496 1485

in [WVS+99] analyzes traces from a large number (tens of
thousands) of end-clients, and provides an analytical model
to predict the system’s behavior. The authors conclude that
the largest benefit from distributed caching is expected when
the number of clients is relatively small.

In [DRO1], the authors estimate the average response
time in hierarchical and distributed caching architectures,
and conclude that the speedup from distributed caching is
higher than that of hierarchical caching. In [RSB99] the au-
thors break the response time into connection and transmis-
sion time. They suggest that distributed caching accounts
for larger connection times, but smaller transmission de-
lays, since lower level links are usually not congested. They
also argue that a hybrid architecture comprising multiple
caching meshes organized hierarchically, achieves the best
performance. The work in [BCZ98] extends the distributed
caching scheme in the active network context, by proposing
the placement of small-sized caches in network switches.
The authors provide trace-driven simulation results and an
analytical model to evaluate their proposal.

Another important issue of distributed caching is how to
locate a specific page. The solution in [TDV+99] proposes
the use of hints that are simple records of the form (object_id,
closest_neighbor), cacheable at each proxy. A static hier-
archy is used for hint propagation. Another approach in
[RCGI8] proposes a centralized control that keeps informa-
tion about the contents of all proxies. Cachemesh [W97T]
employs URL routing tables, maintained in a way similar
to the IP routing tables, for redirecting requests to appro-
priate caches. The Cache Array Routing Protocol (CARP)
[VRI8] splits the URL space using hash functions and al-
locates different portions to each proxy, taking into account
their processing capacity.

In general, existing work seems to agree on the benefits
of sharing caches, although the level of the gain depends on
several parameters (e.g., proxy configuration, access pat-
terns, cache sizes, network latency, etc.). Currently, the most
popular system for distributed caching is Squid [WWW1]
according to which proxies are manually configured in fixed
neighborhoods. The current version of Squid implements
cache digests [RW98,FCA+98], which are compact repre-
sentations of cache contents based on Bloom filters [B70].
Fig. 3 illustrates a simple example, when the cache digest
is an array of m bits which are initially set to 0. When a
new page W is cached, its MDS5 signature [R92] is hashed
using n hashing functions hi,...,h, (each with range
{1,...,m}), and the bits at positions h{ (W), ..., h,(W) are
set to 1. In addition, there exists a second array of counters.
The insertion of W will increase the counters at positions
hi(W), ..., hy,(W). When W is evicted from the cache, the
value of each counter in these positions is decreased by
one. If some counter becomes 0, the corresponding bit in
the cache digest is also set to 0.

The counter array is only kept at the corresponding proxy,
whereas the cache digest (bit array) is sent to all the neigh-
bors. When a local miss occurs at proxy v, v redirects the

cache digest counter array

broadcasted to neighbors kept locally
hy(W)] —— [+

w hy(W)
1] — [+1

h,(W)
\T — +1

Fig. 3. Example of cache digest.

request to a neighbor proxy v; that has the required page (ac-
cording to the digest of v; stored locally at v), thus avoiding
the extra latency introduced by ICP. In order for v to locate
a page Win v;’s digest, it only needs to check the bits at po-
sitions k1 (W), ..., h,(W): (i) If all bits are 1, v conjectures
that W is in v;’s cache, although there is a probability of
a false positive. False positives occur when multiple pages
set the same bits. The trade-off between space overhead and
percentage of false positives is tuned by choosing appropri-
ate values for parameters n and m. (ii) If any of the bits at
positions A1 (W), ..., h,(W) is 0, v concludes that W is not
in v;’s cache.

Since v;’s digest is not necessarily up-to-date, a false miss
may occur if v; has cached W after it sent its digest to v.
Similarly, an outdated digest may also cause false hits, if a
page that appears in the remote digest has meanwhile been
evicted from the local cache. As shown in the simulation re-
sults of [FCA+98], cache digests achieve significant band-
width savings compared to ICP querying. Furthermore, the
authors observe that even with infrequent summary updates
the performance loss (due to false misses or false hits) is
marginal. In particular, [FCA+98] concludes that updated
digests should be propagated to neighbors only after 1-10%
of the cache contents change. Dykes and Robbins [DRO1]
suggest that updates should happen on a daily basis when
the network traffic is low (e.g., during the night). Due to
the apparent benefits of summaries, we include them in our
design.

In terms of concept, the work reported in [ZMN+97] is
perhaps the closest work to ours. The authors propose a hy-
brid architecture, with proxies participating in a hierarchy
of overlapping multicast groups. Such a scheme introduces
the problem of determining when a proxy should enter or
leave a group. The paper motivates the need for a dynamic
method, but does not provide any concrete algorithms or
performance evaluation. Furthermore, the neighbor selection
problem as defined in our paper differs in certain ways, i.e.,
we (i) consider a fully distributed architecture, (ii) employ
cache digests, (iii) distinguish between unidirectional and
bidirectional caching, and (iv) do not assume multicast ca-

1486 S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496

pabilities. The scope of our approach is also different. While
[ZMN+97] proposed a novel (at that time) architecture, we
aim at exploring whether there is room for performance im-
provement in current distributed caching systems by moving
from a static neighborhood grouping to a dynamic one, and
illustrate methods to exploit the potential.

3. Unidirectional caching

In this section we describe the proposed algorithms for
neighbor selection under the unidirectional model (i.e.,
asymmetric neighborhood relations). The goal is to allow
each node to dynamically update its neighborhood list in
order to maximize the number of hits from other proxies.
Neighboring nodes exchange their cache digests so that
when a miss occurs, the missing page may be obtained
directly. Since the most useful neighbors vary continuously
with the access patterns, the system should include a mech-
anism to replace the least beneficial neighbors with new
ones that may provide more hits.

Subsequently we propose two techniques: the first one is
an adaptation of the Least Recently Used (LRU) strategy,
while the second one extends the Least Frequently Used
(LFU) paradigm by taking into account the special charac-
teristics of the problem.

3.1. Unidirectional LRU

Assume that a node v has k neighbors vy, ..., vi. When a
miss occurs, v sends the request to one of vy, . .., v that has
cached the page (according to the cache digests). If multiple
neighbors can serve the request, the one (denoted by v;) that
is closer (in terms of latency) is chosen. When v; returns the
page it becomes the most recent neighbor. In case of a false
hit/positive the process is repeated for all neighbors whose
digest contains the page.

If none of the neighbors can provide the page, v sends the
request to the server and at the same time initiates an explo-
ration process. The goal of the process is to identify other
nearby proxies that have the page, since such proxies may
be beneficial for subsequent requests. The pseudo-code for
the algorithm is illustrated in Fig. 4. The pseudo-code dis-
tinguishes two cases: serve_request, which corresponds to
the situation that a page W is requested by a client, and pro-
cess_query where a query is received from another proxy.
This query can be (i) a request for a page, or (ii) an explo-
ration query.

The exploration process deserves further elaboration.
When node v receives a client request for a page W not
cached locally or in its neighbors, it sends an exploration
query to all the neighbors v; with probability a < 1. A node
v; that receives an exploration query first checks its own
cache and, if it contains W, it replies directly to v. Other-
wise, v; forwards the query to all neighbors whose digest
contains W, and to the remaining ones with probability a.

Algorithm Serve_Request (Page: W)
. if Wis cached locally then serve request and return
. I=list of neighbors whose digests contain W sorted by network latency
. while / is not empty

remove the closest neighbor v; from /

If hir then send W to client, update recency of v; and return
. end //while

1
2.
3
4
5. query (get_page, W, v, v;)
6
7
8. forward the request to the web server // all neighbors produced a miss
9

. for each neighbor v; query(explore, W, v, v;) with probability a
10./=collect-exploration-result(W,time-out) // I, is a list of proxies that have cached W
11.let vy, be the closest node in I,
12.if latency(v,.,)<latency(server) then
13, get cache digest of v,

14. v, becomes the most recent neighbor (possibly by evicting the least recent one)

end Serve_Request

Algorithm Process_Query (String: op_code, Page: W, Node: v (originator), Node: v; (current node))
1. CASE (op_code)
2. get_page:

if W in cache then send W to v and signal hit = true

else (W not in cache) signal hit = false

. explore:

. if limit of hops has been reached then return

3
4
5
6. if Win cache then notify v and return
7
8. for each neighbor v; of v;

9

if v/’s digest contains W then guery(explore, W, v, v;)
10. else // v;’s digest does not contain W
11. query (explore, W, v, vj) with probability a

end Process_Query

Fig. 4. Pseudo-code for LRU.

The forwarding process continues until a maximum num-
ber of hops 4 is reached. Like parameter a, the value of &
adjusts the trade-off between the extent of exploration and
traffic overhead. The original node v accumulates responses
from proxies caching W, until a time-out period is exceeded.
Then it makes as its most recent neighbor, the proxy vpew
that contains W and has the lowest network latency. If the
list of neighbors is full, the least recent neighbor is evicted.
Note that due to false misses, vpew may already be a neigh-
bor of v, in which case vpey s digest is updated (no neighbor
is evicted). If no response arrives before the time-out inter-
val the recency status remains unchanged.

There is no forwarding of actual page requests since they
are satisfied either at: (i) the proxy v where they arrived,
(ii) a first degree neighbor of v, (iii) the web server. If v
determines that no neighbor proxy contains W, it sends di-
rectly the request to the appropriate server without wait-
ing for the results of the exploration process. This is done
in order to minimize the delay experienced by end-users.
Further delay occurs only in the case of consecutive false
hits/positives, since our policy forwards the request sequen-
tially to all the neighbors before sending it to the server.
Nevertheless, with a reasonable size of cache digests this
situation is highly unlikely (see Section 2). Furthermore, the
latency for satisfying the request from the server is expected
to be much higher than that of issuing queries to nearby
neighbors.

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496 1487

A final remark concerns some implementation issues. For
querying, the http get method provides the functionality of
the get _page op_code. We can implement explore in ICP,
by adding a new op_code in one of the unused slots. The
payload of the new op_code should include, apart from the
URL, the number of hops that the query has traveled so far
and the id of the proxy where it originated, so that the re-
ceiver can answer directly to it. The algorithm also requires
the proximity (latency) computation between proxies, in or-
der to choose the fastest neighbor (in case of multiple avail-
able choices). For existing neighbors, the proximity can be
calculated by taking a weighted average of the past experi-
enced latency [GEC+99]. For proxies accessed (by explo-
ration) for the first time, the latency can be estimated by
measuring the RTT using the ping utility. In our simulations
we assume that knowledge of the closest neighbor is always
available.

3.2. Unidirectional LFU

A potential problem with LRU is that it imposes network
overhead due to the frequent reconfiguration of the neigh-
bors and exchanges of digests. In addition, LRU may quickly
replace some “good” neighbors that do not provide hits for
a short period of time, although they are beneficial in the
long run. The second strategy, unidirectional LFU, aims at
overcoming these problems by collecting statistics and per-
forming reconfiguration if certain conditions hold.

The pseudo-code for LFU is very similar to that of Fig.
4 and thus is not included here. The algorithm keeps a few
hit counters at each proxy, which maintain the positive re-
sponses (page retrievals or exploration hits) from other prox-
ies. Each page retrieval or exploration hit received by node
v increases at most one hit counter (of the fastest node) in
v, even though multiple proxies may respond. Thus, closer
neighbors are favored and the network latency is implic-
itly included in the number of hits. Moreover, since a proxy
needs to obtain only one copy of a page (ideally the clos-
est available) the existence of other copies yields no local
benefit. This “implicit-latency” approach is followed by all
algorithms.

When reconfiguration is performed, the new neighbor-
hood of a proxy v is defined as the set of k nodes that pro-
vided the largest number of positive responses to v. Some of
these nodes may be already in the neighborhood of v, and
no special action is required. For the rest of the nodes, v re-
quests and maintains locally their cache digests by evicting
the digests of aborted neighbors. The exchange of digests
implies that digests are usually up to date. In some situations,
however, it is possible that a proxy v; will remain a neighbor
of v for a long period of time. Special care must be taken
in order to update its digest because the methods available
for Squid are now inapplicable. Recall that in Squid all the
neighbors of v; obtain (simultaneously) the same version of
v;’s digest. Thus, v; can decide locally when the digest is

outdated and broadcast the new version to all its neighbors.
On the other hand, in our methods this decision is taken
asynchronously at each receiving node (since nodes have
different versions of the digest depending on when they con-
figured v; as a neighbor); a proxy will ask for a new digest
from a neighbor, if the percentage of false misses from this
neighbor (discovered through exploration) exceeds a thresh-
old.

An interesting issue regards the appropriate conditions for
reconfiguration. At one extreme, if reconfiguration occurs
after every positive response, the strategy will transform to
LRU. At the other extreme, if reconfiguration is very infre-
quent, LFU will behave like a static scheme. In order for the
statistics to be meaningful, reconfiguration is initiated after
a number [of positive responses has been collected. Lo-
cal hits, or queries that do not yield any exploration results,
do not provide any information about the contents of other
proxies; only page hits from neighbors or exploration hits
are useful for the computation of neighbors. When [(good
values of [are determined experimentally) is exceeded, a
non-neighbor v;, will replace a neighbor proxy v;, if the
value of the counter for v; is above 7% of the corresponding
value for v;. If, for instance, r = 100, v; will replace v;, if
it provides more positive answers. In practice, since neigh-
bors are favored because they are requested first, the value
of r should be lower.

Notice that since we aim at maximizing the hit ratio from
other proxies, we only take into account the number of hits
and not the page sizes. Intentionally, we tried to keep the
neighbor replacement policy as simple as possible by adopt-
ing the well-known LRU and LFU paradigms, because our
goal is to demonstrate the advantages of adaptive caching in
general, and not of the individual policies. We also exper-
imented with alternative caching strategies (e.g., based on
the Greedy-Dual algorithm [CI97]) that consider additional
parameters such as detailed benefit and latency measures,
but found that the additional gains (if any) are negligible.

4. Bidirectional caching

In unidirectional caching, although a proxy may send its
request to a set of k neighbors at any given time, it may serve
requests from an arbitrary number of proxies. As an example
consider one large cache v surrounded by numerous small
ones. It is possible (and verified by our experiments) that
most of the small proxies will attach to v, possibly overload-
ing it with requests. The assumption that v will accept to
serve all these proxies may be too strong in practice, espe-
cially if the proxies to be served belong to different organi-
zations. In this section, we propose bidirectional extensions
of LRU and LFU that permit only symmetric neighborhood
relations.

Bidirectional LRU (B-LRU for short) is similar to its uni-
directional counterpart. The difference is that when node v;
(that provides an exploration hit to node v) receives an in-

1488 S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496

vitation to become a neighbor of v, it evicts one of its exist-
ing neighbors (let v;) to make space for v. Proxies v and v;
exchange digests and each becomes the most recent neigh-
bor of the other. The evicted proxy v; should also evict v;,
since the neighborhood relation is now symmetric. In order
to do this, v; inserts v; in a “replacement” list, until it finds
a substitute. The digests of proxies in this list are only used
for exploration, but not for actual page requests. The rea-
son that v; cannot evict v; immediately is explained with
the following example. Assume that v; has a small number
of neighbors, all of which decide to remove v; from their
neighborhood within a (short) time interval in which v; did
not receive any requests (and, therefore, did not perform ex-
ploration). If the neighbors were evicted right away, then v;
would have no digests (or neighbors) to initiate exploration
and would remain isolated from the rest of the proxies.

B-LRU is more adaptive than unidirectional LRU in the
sense that once v “discovers” v; and configures it as a neigh-
bor, v; may also start immediately benefiting from the collab-
oration (without having to wait until it discovers v through
its own exploration process). On the other hand, if v is not
beneficial to v;, it may decrease v;’s hit ratio by evicting
some other, potentially more advantageous, neighbor of v;.
Furthermore, B-LRU is expected to increase the number of
neighbor updates and the overhead of digest exchanges be-
cause of the “propagation” effect, e.g., the change of neigh-
borhood in v, causes a change in v;, which in turn causes a
change in the neighborhood of v;. In order to alleviate this
overhead we also develop a bidirectional version of LFU.

According to B-LFU each proxy v collects statistics for
a number / of positive responses. After this period it deter-
mines the set of k best proxies v;(i = 1, ..., k), which will
become its new neighbors in the same way as unidirectional
LFU. Some of these proxies may be already neighbors, in
which case no special action is required. The rest will ex-
change digests with v. As in the case of B-LRU, proxies
will have to evict some previous neighbors to accommodate
new ones. The pseudo-code of Fig. 5 illustrates the actions
performed by the original proxy (v), the new neighbors of
v (e.g., v;), and the evicted proxies.

In case of an invitation, the invited proxy v; resets its
statistics, meaning that it will attempt to perform reconfig-
uration only after it gathers / new positive responses (pro-
vided of course that v; does not receive an invitation before).
In case of an eviction, the evicted proxy v; sets the num-
ber of hits from the evicting node (v) to zero, but does not
restart the counter of positive responses (i.e., reconfiguration
of v; will not be delayed). The statistics of v are reset in
order to avoid the situation in which v; reconfigures v as a
neighbor, which could possibly incur a new eviction for v;.
To prevent the propagation effect, v; does not immediately
substitute v with a new neighbor, but waits until the end of
reconfiguration period.

Notice that bidirectional caching is a constrained version
of the corresponding unidirectional problem. As a result,
bidirectional methods are not competitors of unidirectional

Algorithm Reconfigure (Node: v)

1. 1,y = list of (k) proxies in the old neighborhood
2. Iy = list of (k) most beneficial proxies

3. for each proxy v, in I, but not in I,

4, remove voq's digest

5. send eviction(v,v,,)

6. for each proxy v; in ., but not in /,;;

7. send invitation(v,v;)

8. send digest(v,v;)

end Reconfigure

Algorithm Process_Invitation (Node: v (originator), Node: v; (current-invited-node))
1. remove digest of the least beneficial neighbor v; according to current statistics
2. send eviction(v;v;)
3. store digest of v
4. send digest(v;,v)
5. reset statistics

end Process_ Invitation

Algorithm Process_Eviction (Node: v (originator), Node: v; (current-evicted-node))
1. insert v’s digest in replacement list
2. reset v's statistics

end Process_Eviction

Fig. 5. Proxy actions for B-LFU.

techniques, but alternatives applicable to symmetric neigh-
borhood relations. We expect that real life situations are
somewhere in the middle, i.e., a large proxy would serve re-
quests from an arbitrary number of other proxies in the same
organization, but only a limited number of external proxies.
Such a configuration would require a hybrid of unidirec-
tional (for proxies in the organization) and bidirectional (for
external proxies) caching, which can be easily implemented
using the proposed techniques.

5. Experiments

We evaluate the proposed algorithms as follows. Section
5.1 describes the traces used in all experiments. Section 5.2
compares unidirectional LRU with (unidirectional) Squid
variants, in order to confirm the viability of adaptive caching.
Section 5.3 measures the performance of LFU against LRU.
Section 5.4 evaluates the alternative bidirectional schemes,
and Section 5.5 provides some insight on the behavior of
different strategies. Finally, Section 5.6 summarizes the re-
sults.

Although the traces used originated from real proxies, we
did not have any information about the network topology.
Therefore, we assume a fully connected network where the
inter-proxy (one-way) latency follows a Gaussian distribu-
tion with mean 70 ms and standard deviation 20 ms. Values
below 10ms and greater than 130 ms were cut off. These
numbers correspond to proxies that are within a small geo-
graphical area (e.g., one city). For instance, one may con-

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496 1489

Table 1
Statistics of NLANR traces

startap bo2 bol pa sV sd uc pb rtp
Tot. Size (GB) 1.63 2.16 3.03 3.06 6.93 6.97 7.76 20.38 33.53
Reqgs (Millions) 0.46 0.35 0.42 0.76 2.35 1.29 0.79 3.09 6.29
Dist. Pages (Mil.) 0.22 0.24 0.28 0.35 0.80 0.73 0.51 1.58 2.98
Avg. Pg. Size (KB) 7 9 10 9 9 10 15 13 11

sider that two proxies with a small inter-proxy latency (i.e.,
around 10-50 ms) belong on the same LAN, while others re-
side on distant LANs. The (one-way) latency between prox-
ies and web servers is fixed to 1s in order to simulate the
situation where fetching pages from proxies is much faster
than doing so from the servers. This assumption is valid,
since (i) requests for “local” servers do not yield any ICP
queries, and (ii) the ICP_OP_SECHO opcode may be used
to identify whether the server is closer than the neighbors. As
a measure of performance we employ the number of neigh-
bor hits, i.e., local misses served by the (Ist degree) neigh-
bors, because it is less sensitive than other measures (e.g.,
average response time) to the (artificial) network latencies.

For the implementation of the Squid simulations we fol-
lowed the guidelines of [RW98]. Each proxy broadcasts a
new digest version to its neighbors whenever the cached
contents change by 1%. On the other hand, our methods
exchange digests when the percentage of (identified) false
misses exceeds 1%. In all simulations, the cache for each
proxy is equal to 10% of the total size of the locally re-
quested objects (this is common practice in related work,
e.g., [FCA+98]). The (local) page replacement strategy for
all proxies is LRU.

5.1. Datasets

Real data: We collected traces from the 10 available prox-
ies of the National Laboratory for Applied Network Research
(NLANR [WWW?2]). These proxies are based on the Squid
software and are located throughout the United States. Their
aim is to provide hierarchical caching services to organi-
zations and individuals. The traces depict all requests be-
tween 15/11/01 and 18/11/01. We decided to exclude the sj
proxy from our experiments, since it accounts for very light
and dissimilar workload compared to the rest. Moreover,
only HTTP requests with the GET method are considered,
since only this type of requests may trigger an ICP query.
URLS containing “cgi-bin”, “.asp” and “?”” substrings are ex-
cluded as un-cacheable objects. The same is true for requests
with a result code TCP_CLIENT_REFRESH_ MISS, since
they account for a no-cache pragma, control command. Fi-
nally, we deleted requests for partial content (status 206)
and requests that resulted in O byte transfers. This method-
ology has been suggested in previous related work [DRJO1].
The statistics for the remaining pages are summarized in
Table 1.

Although traces from institutional proxies could be more
appropriate in our study, we were unable to collect a suffi-
cient number of them. Nevertheless, we believe that recre-
ating the behavior of the topmost proxies in the NLANR
hierarchy, is still sufficient for illustrating the main merits
of the proposed strategies and providing useful insight. It is
reasonable to expect similar or higher performance gains for
institutional proxies where the sharing potential is higher.

Synthetic data: In order to test how the parameters of
the algorithms and the network size affect performance, we
created two synthetic datasets representing requests for 45
proxies. In the first set (SYNTH I), each of the 9 initial
NLANR traces was split into 5 equal parts/proxies. Every
request was sequentially assigned to one of the 5 proxies
in a round-robin way (a similar method was followed in
[WO02]). Thus, the proportional size differences of the initial
NLANR traces were also preserved in SYNTH 1. The sec-
ond dataset (SYNTH II) was created again using the round-
robin method, but the larger proxies were split in more parts
in order to minimize the size differences of the resulting 45
proxies. Experiments with SYNTH I aim at evaluating per-
formance and scalability in an “expanded” NLANR hierar-
chy. SYNTH II approximates better the case of institutional
level proxies where cache size is not expected to vary sig-
nificantly. Whenever the results are similar, we only present
SYNTH 1. We were unable to follow the most intuitive ap-
proach of splitting the requests of the initial trace according
to the origin IP address, since the anonymizer used by Squid
(i.e., the process that modifies the IP address before updat-
ing the log file) does not produce consistent IP addresses
across multiple days.

5.2. Unidirectional LRU vs. static methods

In this section, we compare unidirectional LRU with static
alternatives. We start with NLANR (9 proxies) and continue
with the synthetic datasets. The parameters of LRU are set
as follows: probability to send an exploration query to a
neighbor ¢ = 0.5, maximum number of hops for explo-
ration & = 2, number of (outgoing) neighbors k = 3. We
measure performance in terms of neighbor hits against two
unidirectional Squid configurations obtained as follows: (i)
we executed 30 experiments using random static configu-
rations where each proxy has 3 outgoing neighbors and an
arbitrary number of incoming ones; (ii) for each execution
we counted the total number of neighbor hits; (iii) the con-

1490 S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496

—— ALL_to_ALL —+— SQUID_Best
—B— SQUID_Avg

25K 7 —— IRU

Neighbor Hits

Hours

Fig. 6. The number of pages obtained from neighbors.

2000 1
— ALL_to_ALL —}— SQUID_best
1600 1 LRU
2 1200
A 800
400 1
0 4

Fig. 7. The number of digests exchanged.

figuration that provided the mean of the total hits (i.e., the
15th best configuration) is Squid_average; (iv) the best (of
30) configuration is Squid_best. We also include the max-
imum number of neighbor hits that can be obtained if all
proxies are connected (All_to_all). Fig. 6 shows the sum of
hits of all proxies per hour (traces of 4 days—96h).

LRU achieves a significant increase in the neighbor hit
ratio compared to both static schemes with the same number
of neighbors. This is expected since it dynamically modifies
the initial configuration according to the access patterns.
Its difference from the optimal hit ratio (All_to_all) is not
large considering the limited numbers of neighbors (3) and
exploration hops (2).

The second experiment (Fig. 7), illustrates the number of
digests exchanged per hour. We only include Squid_best,
because all static configurations result in more or less the
same frequency of exchanges. Since in the first few hours
there exist a lot of exchanges until the caches get full, we
only show the results after the 4th hour.

The optimal (All_to_all) method is very expensive, since
each proxy sends its updated digest to all the other eight
proxies. Rather surprisingly, the overhead of LRU is similar
to that of Squid. In LRU, a digest is sent from v; to v; when
(i) v; becomes a neighbor of v; or (ii) v; discovers a false

500K

LRU

) w ~
(=] S S
(=] (=] (=]
~ ~ ~

1 1 1

Exploration Messages

100K A

K T T T T T T I T T T T T A T T T T I T T I A e e I e
1 16 31 46 61 76 91
Hours

Fig. 8. The number of exploration messages.

miss in an existing neighbor v;. In practice, the second case
may be ignored since it is very infrequent. Therefore, essen-
tially Fig. 7 implies that the number digests exchanged due
to neighbor changes (in LRU) is more or less the same as
the number of broadcasts in Squid (when the update thresh-
old is 1%). We will explore this point further and study the
effect of the network size in subsequent experiments with
synthetic datasets.

In addition to digest exchanges, LRU (and all our meth-
ods) impose the overhead of exploration messages. Fig. 8
shows the total number of these messages per hour. Notice
that the trend of the line is closely related to the number of
neighbor hits (with peaks around the 16th and 40th hours),
indicating increased exploration activity when the access
patterns change substantially. Furthermore, given that the
size of each message is several orders of magnitude smaller
than that of a digest, the bandwidth overhead of digest trans-
fers dominates that of exploration messages. In particular,
the typical size of an exploration message is around 100—
200 bytes (40 bytes for the TCP/IP headers, a few bytes for
the protocol specific information, plus the size of the request
string, i.e., 1 byte per character) and is independent of the
proxy’s cache size. On the other hand, the size of a digest
may grow to large values, depending on the cache size of the
proxy. For instance, if a proxy stores 100 thousand pages,
the size of the digest would be 100 KB (assuming 8 bits per
entry, which is used in Squid). For 1 million pages, how-
ever, the size of the digest becomes 1 MB, which is already
four orders of magnitude larger than the exploration mes-
sage (without measuring the TCP/IP overhead). With disk
space becoming extremely cheap these days, it is safe to as-
sume that the size of the digests will grow several orders of
magnitude larger than a single exploration message.

Next, we use the dataset SYNTH I (45 proxies) to test the
generality of the first observations. Notice that by splitting
the contents of a proxy in smaller parts (i.e., the process that
we followed to create the synthetic datasets) the total number
of neighbor hits will increase since some local hits (i.e., at
the same proxy) will now become neighbor hits. However, it
is practically impossible to determine the actual number of
neighbor hits since the size of the network is prohibitive for

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496 1491

30K 7
25K 1
— LRU

4 20K 4 —+— SQUID_best
S
8
e
=
=y
5}
Z

Hours

Fig. 9. The number of pages obtained from neighbors (SYNTH I).

applying the All_to_all method. Instead, we compare LRU
(using the same values for parameters a, k and) with the
best Squid alternative obtained after executing 30 random
configurations. Fig. 9 shows the results.

The improvement of LRU in this case is impressive. The
small number of neighbors with respect to the total number
of proxies restricts the benefit of static schemes, which can
only search in their proximity. On the other hand, LRU,
even with a limited number of exploration hops (2), can
gradually relate nodes that are several hops apart through
the intermediate proxies in their path.

Similar to Fig. 7, Fig. 10 compares the overhead of LRU
and Squid_best in terms of the number of digest transfers.
Since the network now contains 45 proxies (as opposed to
9 in the first experiment), the overhead of Squid_best is
about 5 times higher. LRU is less sensitive to network size
since the frequency of digest exchanges also depends on
the quality of the neighbors. Another subtle point refers to
the utilization of digests. According to Squid, a proxy will
broadcast the new version of its digest to all its neighbors
even if it is not useful to them. On the other hand, all our
policies update digests on-demand; that is, new versions are
only requested by neighbors that actually use them. If the
proxy administrators need to further reduce the overhead,
our methods can provide this option by keeping less updated
versions of the cache digests. For instance, when a node v;
drops one of its current neighbors v;, it can still keep its
digest. Later on, if v; becomes again a neighbor of v;, v;
will not request an updated version of the digest unless the
false hit ratio exceeds a certain threshold. Squid can also
reduce the number of exchanges by increasing the update
threshold from 1% to a higher percentage.

Finally, we tested the effect of the various parameters (a,
k and h) on the performance of LRU. The results were ex-
pected and omitted here. In particular, the neighbor hits, and
the rate of digest transfers increase with the number of neigh-
bors (k) and the exploration probability (a). On the other
hand, although the exploration messages increase exponen-

4000 1
3500 A
3000 1
2500 1
2000 1
1500 1
1000 A
500 1
0-

—— LRU
—+— SQUID_best

igests

D

1 16 31 46 61 76 91

Hours

Fig. 10. The number of digests exchanged (SYNTH I).

tially with the maximum number of hops (%), the page hits
and digest exchanges are not influenced considerably. This
implies that if a page can be found in the network, it prob-
ably lies in the neighborhood of the requesting proxy and
extensive exploration is not usually beneficial. We also re-
placed SYNTH I with SYNTH II and observed almost iden-
tical results to the ones in Figs. 9 and 10, suggesting that the
performance of LRU depends on the total number of poten-
tial neighbor hits rather than the structure or configuration of
individual proxies. In summary, LRU increases significantly
the number of neighbor hits, especially for large networks.
An obvious improvement over LRU concerns the reduction
of digest transfers. Towards this direction, we evaluate the
performance of LFU.

5.3. Unidirectional LFU vs. LRU

Here, we compare LRU and LFU. The same parameter
values are used for both methods (¢ = 0.5,k =3 and h =
2). Furthermore, [(number of positive responses required
for reorganization) for LFU is set to 100, whereas r (weight
factor for neighbor responses) is set to 0.5.

The first experiment in Fig. 11 shows the relative benefit
of LFU for NLANR, SYNTH I and SYNTH II. The benefit
is measured as #LFU hits—#LRU hits and can be positive or
negative, depending on whether the number of hits increases
or decreases. LRU is better for NLANR (and to a lesser
extent for SYNTH I), while LFU is better for SYNTH II.
The reason behind this trend is that both synthetic datasets
are generated by randomly splitting the 9 original traces.
The effect of this splitting is the disruption of the spatial
locality of the traces. In other words, a page that should have
been requested at a certain proxy due to the spatial locality
of web requests is instead requested at some other proxy.
The intuition behind LRU is to exploit this spatial locality.
LFU, on the other hand, identifies proxies that are beneficial
in the long run, regardless of the extent of spatial locality.
Therefore, the performance of LRU degrades for SYNTH
I, and is even worse for SYNTH II since the requests are
distributed equally (and randomly) among all the proxies.

1492 S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496

#LFU hits - #LRU hits

—o— NLANR
——SYNTHI
—— SYNTH II

-5K- Hours

Fig. 11. The benefit of LFU in terms of neighbor hits.

—o— NLANR
—— SYNTHI
—— SYNTHII

#LRU tranfers - #LFU trasnfers

Fig. 12. The benefit of LFU in terms of digest exchanges.

Next we measure the benefit of LFU in terms of digest
transfers. Fig. 12 illustrates #LRU transfers—#LFU transfers
for NLANR, SYNTH I and SYNTH II. The advantage of
LFU is clear since it reduces considerably the network over-
head in all cases. The difference is higher for the larger net-
works, indicating better scalability. A comparison with the
absolute values of LRU for NLANR (Fig. 7) and SYNTH I
(Fig. 10) suggests savings up to 70-80%.

The effects of the common parameters (a, k and h) are
similar to LRU and not included. We only investigate the
impact of the reorganization threshold (for / = 10, 100
and 1000) on SYNTH I. The number of hits (Fig. 13) is
optimized for / = 100. If I = 10, LFU does not have enough
statistics to select “good” neighbors, whereas if [= 1000,
LFU cannot follow closely the changing request patterns.
The network overhead caused by digest exchanges (Fig. 14)
is inversely proportional to the value of . In general, the
proper tuning of / is crucial for achieving good performance,
while maintaining low overhead. An optimal value of / is
difficult to compute, since in addition to the traces, it depends
on the proxy configuration and the values of the other LFU
parameters.

In summary, LFU with appropriate parameter tuning is
the best unidirectional method since it achieves a similar
number of neighbor hits with LRU, with a significantly lower
overhead.

25K 7

reorganization threshold

20K —— [=10
. — =100
T 15K 44
5
)
)
2 10K
Z

5K 1

K4
1 16 31 46 61 76 91
Hours

Fig. 13. The number of neighbor hits for various reorganization thresholds.

2500

reorganization threshold

——1[=10
» 1500+
7 —[=100
éﬂ —x— [=1000

Fig. 14. The number of digests exchanged for various reorganization
thresholds.

5.4. Bidirectional strategies

The existence of symmetric relationships has some im-
plications on the performance of the caching strategies as
discussed in Section 4. One such effect is that the number
of neighbor changes, and consequently of digest transfers,
is expected to increase significantly due to the propagation
of updates. In this section we compare the bidirectional al-
ternatives using SYNTH I, where the number of neighbors
for each proxy is uniformly distributed in the range 2—6. All
neighborhood relations are symmetric.

Fig. 15 illustrates the number of neighbor hits obtained by
B-LRU, B-LFU and Squid (Squid is also restricted to sym-
metric configurations). Although B-LRU is the best tech-
nique, as shown in Fig. 16, it incurs the highest overhead.
B-LFU, on the other hand, is best in terms of digest trans-
fers, while its performance is far superior to the static con-
figuration.

In the next section we test B-LRU and B-LFU against
their unidirectional counterparts in order to identify the dif-
ferences in their behavior, and get an insight on the nature
of content sharing that they achieve.

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496 1493

35000 -
—8— B-LRU
30000 -
— B-LFU
, 250001 —+— B-SQUID
E 20000 -
=
5 15000
i)
Z
10000
5000 -
0 .
1 16 31 46 61 76 91
Hours

Fig. 15. The number of neighbor hits for bidirectional methods.

18000 -
16000
140001 |
12000 -
10000 -
8000
6000
4000 -
2000 1

04

—8— B-LRU
—— B-LFU
—+— B-SQUID

Digest Messages

Hours

Fig. 16. The number of digest exchanges for bidirectional methods.

5.5. Sharing behavior

The first experiment compares uni- and bidirectional ver-
sions of LRU and LFU using the NLANR proxies in a
configuration where each node has exactly four neighbors.
As shown in Figs. 17 and 18, the two versions have very
similar neighbor hits, for both LRU and LFU. This can be
explained since, due to the large number of neighbors with
respect to the network size, a node can easily locate its neigh-
bors. Unidirectional schemes are slightly better due to the
un-constrained selection.

The main difference, though, refers to the overhead in
terms of digest transfers as shown in Figs. 19 and 20. B-
LRU incurs between one and two orders of magnitude more
transfers than LRU. On the other hand, the bidirectional
version of LFU behaves relatively better since, as discussed
in Section 5, it limits the propagation effect.

Finally, we explore the content sharing patterns imposed
by the various alternatives. In particular, we choose one of
the proxies (bo2) and illustrate in Fig. 21 the number of
pages sent to or received from other proxies depending on
the caching policy. Notice that the proxies on the x-axis are
sorted according to their cache size (which is set to 10%
of the total size of the locally requested objects). bo2 is the
second smallest proxy after startap.

Neighbor Hits

1 11 21 31 41 51 61 71 81 91
Time (hours)

Fig. 17. The number of neighbor hits for LRU and B-LRU.

20000

15000
=
5

£ 10000
=
20
5}
Z

5000 -

z

0_

1 21 31 41 51 61 71 81 91
Time
Fig. 18. The number of neighbor hits for LFU and B-LFU.
10000
1000 - —HB— B-LRU
2 LRU

5
20
A

100—/\’rj\V'\/“\’*//\\f’AA\jJJ‘\\,/\/V\//qﬁwa/J’

10 T T T I T T I I T
1 11 21 31 41 51 61 71 81 91
Time

Fig. 19. The number of digest exchanges for LRU and B-LRU.

700

600

Time

Fig. 20. The number of digest exchanges for LFU and B-LFU.

1494 S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496

Unidirectional
Number of Pages
20000 1
[RECEIVED
15000 -
=)
m 4
| 10000
5000
0 T . T T T

STARTAP BO1 PA SV SD ucC PB RTP

[RECEIVED
[SENT

Number of Pages
30000 1

25000
20000 -

E 15000 A
—

10000 -
04—== | | -

STARTAP BO 1 PA

Bidirectional
Number of Pages [l RECEIVED
12000 - [SENT
10000 -

8000
6000 A
4000 A
SV SD ucC PB RTP

STARTAP BO1 PA

Number of Pages [l RECEIVED
8000 A [SENT

7000 A

6000 -

5000 A

4000

3000 A

2000

1000 A H H !
o+

STARTAP BO1 PA

Fig. 21. Sharing patterns for b02.

With unidirectional LRU (upper left diagram) bo2 only
receives pages without servicing any requests. Moreover,
most of these pages come from large proxies. This actu-
ally is a common pattern for all small proxies: they attach
themselves to some large cache and remain there most of
the time. In this case, the neighbors of bo?2 are: bol (which
as will see has very similar contents with »02) and the four
largest proxies in the network. This situation is not desirable
since it may lead to over-congestion of the popular nodes.

LFU (lower left diagram) on the other hand, achieves
some kind of load balancing since bo2 exchanges pages
with all proxies. The explanation is that when bo2 joins the
neighborhood of another proxy, it will remain there until
the next reorganization phase. During this period it serves
requests from the other proxy, thus the number of pages sent
to other nodes is increased with respect to LRU.

The load balancing effect is even stronger for bidirectional
LRU, since as soon as bo2 configures a neighbor, this proxy
is enforced to query bo2. Although this approach may not
be beneficial to some proxies (as suggested by the frequent
neighbor changes observed in the previous experiments), it
may help identify nodes with similar access patterns, which
otherwise would be missed. A clear example of this situation
is the level of content sharing between bol and bo2, which is
very high given their small sizes. Similar observations hold
for B-LFU.

5.6. Summary

The overall conclusion is that unidirectional strategies
achieve the best performance in terms of both neighbor

hits and traffic overhead. Specifically, unidirectional LRU
is able to closely follow the changes in access patterns,
by frequently changing the neighborhood list. It achieves a
near-optimal hit ratio with a significantly smaller number of
neighbors (i.e., lower cost). LFU, on the other hand, changes
the neighborhood list periodically, based on the collection
of statistics during the reconfiguration period. The result is a
considerably lower amount of overhead traffic, and savings
up to 80% (compared to LRU) were observed. Furthermore,
LFU performs slightly better in terms of neighbor hits, when
the selection of “good” neighbors is not very clear.

Bidirectional strategies enforce a symmetric relationship
between neighbors. Therefore, they tend to limit the perfor-
mance in terms of neighbor hits, since a proxy may not have
an unlimited number of incoming neighbors. The benefit,
though, is a load balancing effect, which is due to the sym-
metric relationships. Moreover, with bidirectional strategies
the traffic overhead is increased significantly, because of the
propagation effect of neighbor updates. While the amount
of overhead is prohibitive for implementing a B-LRU
strategy, the bidirectional version of LFU achieves a good
balance between neighbor hits, traffic overhead, and load
balancing.

6. Conclusions

In this paper we addressed two questions: Is it possible to
improve the performance of current distributed web caching
schemes using adaptive neighbor reconfiguration? If so, can

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 14831496 1495

we tackle the resulting problem as a second level caching?
Evidence from the simulation results provides a definitive
yes to both the questions. LRU and LFU achieve higher hit
ratios compared to their static counterparts in all experimen-
tal datasets. Even in small network instances, where an all-
to-all neighbor configuration is feasible, adaptive caching
techniques are useful as they achieve comparable perfor-
mance at only a fraction of the bandwidth overhead.

Furthermore, the second level caching formulation pro-
vides a simple framework that permits the application of
previous results to this problem. A straightforward exten-
sion of this work is to exploit other caching strategies that
integrate latency, recency, frequency of requests, etc. Such
techniques could be used to minimize measures like average
response time or byte hit ratio.

An interesting alternative worth investigating is a central-
ized approach according to which a server keeps the digests
of all participating proxies. Instead of issuing exploration
queries, proxies would contact this server in order to locate
potential neighbors. Although this method would probably
decrease the exploration overhead, it suffers from the usual
drawbacks of centralized techniques: (i) single point of fail-
ure, (ii) limited scalability, and (iii) performance bottleneck.

References

[B70] B. Bloom, Space/time trade-offs in hash coding with
allowable errors, Commun. ACM 13 (7) (1970) 422-426.

[BCZ98] B. Bhattacharjee, K. Calvert, E. Zegura, Self-organizing wide
area network caches, IEEE INFOCOM 1998.

[CI97] P. Cao, S. Irani, Cost-aware WWW proxy caching algorithms,
USENIX Symposium on Internet Technology and Systems,
1997.

[CDN+96] A. Chankhunthod, P. Danzig, C. Neerdals, M. Schwartz,
K. Worell, A hierarchical internet object cache, USENIX
Technical Conference, San Diego, CA, 1996.

[DRO1] S. Dykes, K. Robbins, A viability analysis of cooperative
proxy caching, IEEE INFOCOM 2001.

[DRJOI1] S. Dykes, K. Robbins, C. Jeffery, Uncacheable documents and
cold starts in web proxy cache simulations: how two wrongs
appear right, Technical Report CS-2001-01, University of
Texas at San Antonio, Division of Computer Science, San
Antonio, TX 78249-0664, January 2001.

[FCA+98] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache:
a scalable wide-area web cache sharing protocol, ACM
SIGCOMM 1998.

[GEC+99] M. Gullickson, C. Eiccholz, A. Chervenak, E. Zegura,
Using experience to guide web server selection, Multimedia
Computing and Networking, January 1999.

[KS98] P. Krishnan, B. Sugla, Utility of co-operating web proxy
caches, Comput. Networks ISDN Systems 30 (1-7) (1998)
195-203.

[RCGI8] M. Rabinovich, J. Chase, S. Gadde, Not all hits are created
equal: cooperative proxy caching over a wide-area network,
Third International Web Caching Workshop, 1998.

[R92] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321,
April 1992.

[RSB99] P. Rodriguez, C. Spanner, E. Biersack, Web caching
architectures: hierarchical and distributed caching, Fourth
International Web Caching Workshop, 1999.

[RW98] A. Rousskov, D. Wessels, Cache digest, Comput. Networks
ISDN Systems 30 (22-23) (1998) 2155-2168.

[TDV+99] R. Tewari, M. Dahlin, H. Vin, J. Kay, Beyond hierarchies:
design considerations for distributed caching on the internet,
19th International Conference on Distributed Computing
Systems (ICDCS’99), June 1999.

[VRO8] V. Valloppillil, K. Ross, Cache array routing protocol
v1.0. IETF Internet Draft, February 1998, available at:
http://www.globecom.net/ietf/draft/draft-vinod-carp-v1-03.html.

[W97] Z. Wang, Cachemesh: a distributed cache system for World
Wide Web, Second International Web Caching Workshop,
1997.

[WC97] D. Wessels, K. Clafty, Internet cache protocol (ICP) version
2. RFC2186, September 1997.

[WO02] C. Williamson, On filter effects in web caching hierarchies,
ACM Trans. Internet Technol. 2 (1) (2002) 47-77.

[WVS+99] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin,
H. Levy, On the scale and performance of cooperative web
proxy caching, 17th ACM Symposium on Operating System
Principles (SOSP’99), 1999.

[WWWI1] D. Wessels, Squid internet object cache, available at:
http://www.squid-cache.org/.

[WWW?2] National Lab of Applied Network Research, IRCache Project,
Sanitized access logs, available at: http://www.ircache.net/.

[ZMN+97] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S.
Floyd, V. Jacobson, Adaptive web caching: towards a new
global caching architecture, Third International Web Caching
Workshop, 1998.

Spiridon Bakiras received his B.S. degree
(1993) in Electrical and Computer Engineer-
ing from the National Technical University
of Athens, his M.S. degree (1994) in Telem-
atics from the University of Surrey, and his
Ph.D. degree (2000) in Electrical Engineer-
ing from the University of Southern Califor-
nia. Currently, he is a Postdoctoral Fellow
in the Department of Computer Science at
the Hong Kong University of Science and
Technology. His research interests include
high-speed networks, peer-to-peer systems,
mobile computing, and spatial databases. He is a member of the ACM
and the IEEE.

Dr. Thanasis Loukopoulos received his
Diploma in Computer Engineering and In-
formatics from the University of Patras,
Greece, in 1997. He was awarded a Ph.D.
degree in Computer Science by the Hong
Kong University of Science and Technol-
ogy (HKUST) in 2002. After receiving his
Ph.D. he worked as a Visiting Scholar in
HKUST. Currently, he is a Visiting Lecturer
at the Department of Computer & Com-
munication Engineering of the University
of Thessaly, Greece. His research interests
include: Data management in Content Dis-
tribution Networks, Video Servers, P2P and
Ad-Hoc Networks.

Dimitris Papadias is an associate professor
at the Computer Science Department, Hong
Kong University of Science and Technology.
Before joining HKUST in 1997, he worked
and studied at the German National Re-
search Center for Information Technology
(GMD), the National Center for Geographic
Information and Analysis (NCGIA, Maine),
the University of California at San Diego,
the Technical University of Vienna, the
National Technical University of Athens,
Queen’s University (Canada), and University
of Patras (Greece). He has published extensively and been involved in
the program committees of all major Database Conferences, including
SIGMOD, VLDB and ICDE.

http://www.globecom.net/ietf/draft/draft-vinod-carp-v1-03.html
http://www.squid-cache.org/
http://www.ircache.net/

1496

S. Bakiras et al. / J. Parallel Distrib. Comput. 65 (2005) 1483 — 1496

Ishfaqg Ahmad received a B.Sc. degree in
Electrical Engineering from the University
of Engineering and Technology, Lahore,
Pakistan, in 1985, and a MS degree in
Computer Engineering and a Ph.D. degree
in Computer Science from Syracuse Univer-
sity, New York, U.S.A., in 1987 and 1992,
respectively. His recent research focus has
been on developing parallel programming
tools, scheduling and mapping algorithms
for scalable architectures, heterogeneous
computing systems, distributed multimedia

systems, video compression techniques, and web management. His re-
search work in these areas is published in over 150 technical papers in
refereed journals and conferences.

He is currently a full professor of computer science and engineering
in the CSE Department of the University of Texas at Arlington. AT UTA,
he leads IRIS (Institute for Research In Security), a multi-disciplinary
research center engaged in safety and security related technologies. He
is an associate editor of Cluster Computing, Journal of Parallel and Dis-
tributed Computing, IEEE Transactions on Circuits and Systems for Video
Technology, IEEE Concurrency, and IEEE Distributed Systems Online.

