O 0 J o U w N

B s D D D W W W W W W W W W W NNNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W RO WO Jd o W N P O WO doUs W N R O

Journal of Computer Security 0 (0) 1 1
IOS Press

Secure Biometric Verification in the Presence
of Malicious Adversaries

Kamela Al-Mannai #, Elmahdi Bentafat®, Spiridon Bakiras * and Jens Schneider ?

4 Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin
Khalifa University, Doha, Qatar

E-mails: kaalmannai@hbku.edu.qa, jeschneider @ hbku.edu.qa

b Information Systems Department, Ahmed Bin Mohammed College, Doha, Qatar

E-mail: mahdi@abmmc.edu.qa

¢ Infocomm Technology Cluster, Singapore Institute of Technology, Singapore

E-mail: spiridon.bakiras @singaporetech.edu.sg

Abstract. In a secure biometric verification system, users authenticate themselves by submitting their encrypted biometric data
(i.e., feature vectors) to the application server. Such systems must be able to defend against (i) malicious clients that try to gain
unauthorized access to the system; and (ii) malicious servers that aim to identify the users’ plaintext biometric data. To this end,
our work introduces an efficient biometric verification protocol that is provably secure against both a malicious client and a
malicious server. The protocol is based on a two-level homomorphic encryption scheme that is constructed over bilinear groups
of prime order. We formally prove the security of our scheme in the random oracle model and also present results from a proof-
of-concept implementation using Barreto-Naehrig elliptic curves. Our results demonstrate that the protocol is very efficient in
terms of both computation and communication costs.

Keywords: Biometric verification, Biometric data privacy, Secure computation, Pairing-based crypto

1. Introduction

Traditional password-based authentication systems have several drawbacks in terms of security. For
example, even if implemented correctly using protocols such as bcrypt [1] (which slow down brute-
force attacks significantly), most users tend to select rather weak passwords that are also similar across
different platforms, because they are easier to memorize. Furthermore, two-factor authentication (2FA)
methods using short OTP strings have also been shown to be vulnerable [2]. As a result, researchers have
been investigating alternative authentication methods that are more secure and easier to use on behalf of
the client.

Biometric verification is the process of authenticating users based on their biometric characteristics,
which are unique for every individual. As such, it is an excellent candidate to replace passwords either in
a standalone setting or as part of a 2FA protocol. Specifically, in a biometric verification system, clients
first enroll their biometric credentials (e.g., facial characteristics) to a remote server. Typically, biometric
data consist of a feature vector of length N that is obtained via a variety of Al tools, such as deep
learning. The feature vector stored at the server is referred to as the template. During the verification

*Corresponding author. E-mail: spiridon.bakiras @singaporetech.edu.sg.

0926-227X/$35.00 © 0 — IOS Press. All rights reserved.

O 0 J o U w N

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


mailto:kaalmannai@hbku.edu.qa
mailto:jeschneider@hbku.edu.qa
mailto:mahdi@abmmc.edu.qa
mailto:spiridon.bakiras@singaporetech.edu.sg
mailto:spiridon.bakiras@singaporetech.edu.sg

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

2 K. Al-Mannai et al. /

phase, the client prepares a fresh feature vector (called probe) that is sent to the remote server, along
with the client’s ID. The server then computes the similarity between the template and the probe (e.g.,
using the Euclidean distance) and, if the similarity is above a certain threshold, the client is successfully
authenticated.

However, to protect the privacy of the biometric data (template and probe), the computation of the
similarity score must be performed in a secure manner. Most existing protocols employ a public-key
homomorphic cryptosystem that allows the server to blindly compute the similarity score (typically, the
squared Euclidean distance) in the encrypted domain. In particular, the client first initializes a public-
key cryptosystem and generates the corresponding key pair. During enrollment, the client uses its public
key to encrypt every element of the user’s feature vector, and the resulting ciphertexts are sent to the
remote server. (The server does not possess the client’s secret key and is, thus, unable to decrypt the
stored template.) During the verification phase, the client and the server engage in a two-party protocol,
where the client’s input is the encrypted probe and the server’s input is the user’s encrypted template.
When the protocol terminates, the server outputs the plaintext similarity score between the two vectors
that reveals the result of the verification session. Note that, such protocols essentially implement a 2FA
functionality, based on (i) the user’s biometric data; and (ii) the user’s possession of a device that stores
the secret key(s).

Most existing protocols for secure biometric verification are designed for either honest-but-curious ad-
versaries [3, 4] or for the case of malicious clients [5, 6]. For example, a malicious client may attempt to
successfully authenticate as a legitimate user, by actively manipulating the exchanged messages. How-
ever, a malicious server also poses a significant threat to user privacy, because it may lead to an adversary
gaining access to a user’s plaintext biometric data. Besides being a violation of numerous privacy laws
around the world (e.g., the European GDPR legislation), plaintext biometric data can be used to gain
unauthorized access to other systems that the user is subscribed to.

To this end, there exist a few protocols in the literature that are secure against malicious adversaries
(both client and server). For example, Barni et al. [7] introduce a scheme based on secure multiparty
computation (MPC) protocols. While the online stage of their protocol is very efficient, their method
necessitates an expensive offline stage that must be executed periodically between every client and the
server. On the other hand, Bassit et al. [8] propose a protocol based on threshold homomorphic encryp-
tion that does not require any offline computations. Nevertheless, to achieve security against malicious
servers, the authors introduce a trusted third-party that is involved in the enrollment phase of their pro-
tocol, by digitally signing the users’ encrypted templates.

To address such limitations, we introduce a novel biometric verification protocol that is secure against
malicious adversaries. More importantly, our protocol is very efficient in terms of both computation
and communication costs, and does not depend on a trusted third-party. Specifically, our construction
leverages the two-level homomorphic encryption scheme by Attrapadung et al. [9] that allows the server
to blindly compute the squared Euclidean distance between two encrypted feature vectors. The protocol
is provably secure in the malicious setting, and we outline a formal security proof in the random oracle
model.

Furthermore, to illustrate the practicality of our scheme in a real-life application, we built a proof-of-
concept system that employs face recognition as the authentication factor. In particular, we utilized the
II-nets [10] platform at the client-side to perform the facial recognition operations, and implemented our
secure protocol as a client-server application. The implementation leverages the original pairing-based
crypto library developed by Attrapadung et al. [9], which employs computationally efficient pairings
over Barreto-Naehrig curves. Our experimental results demonstrate that a verification session incurs just

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

K. Al-Mannai et al. / 3

520ms (resp. 360ms) of compute time at the server (resp. client). Additionally, the overall communica-
tion cost between the client and server is just 99KB. To summarize, the contributions of our work are as
follows:

(1) We introduce a fast and efficient biometric verification protocol that is secure against malicious
adversaries (both client and server).

(2) We formally prove the security of our protocol in the random oracle model.

(3) We present experimental results from a proof-of-concept implementation of a secure face verifica-
tion system.

The remainder of the paper is organized as follows. Section 2 presents a literature review on secure
biometric verification protocols. Section 3 introduces some concepts and tools that we incorporated in
our system. Section 4 describes in detail the proposed biometric verification protocol and Section 5 out-
lines the security proof. Section 6 discusses the proof-of-concept implementation and Section 7 presents
the experimental results. Finally, Section 8 concludes our work.

2. Related Work

Previous work on secure biometric verification includes two-party protocols that are secure when ei-
ther (i) both parties are honest-but-curious (HBC); or (ii) the server is HBC but the client is malicious.
Specifically, under the HBC model, the adversary follows the protocol correctly, but is actively trying to
learn more information about the other party’s input by analyzing the received messages. On the other
hand, a malicious adversary may deviate from the protocol specification at any time, e.g., by manipulat-
ing the exchanged messages. Typically, secure two-party protocols employ application-specific solutions
based on homomorphic encryption or leverage generic protocols, such as garbled circuits [11].

In the HBC adversarial setting, Im et al. [3] modify Paillier’s cryptosystem [12] (which is an additive
homomorphic encryption scheme) into a multiplicative one, in order to support the computation of the
Euclidean distance. They detect the user’s palm print with a guided setting, using a smartphone cam-
era, and leverage a random projection technique for feature extraction [13]. The execution time of the
proposed protocol is 24.16s with an equal error rate (EER) of 15.20%.

On the other hand, Boddeti [4] proposes using a fully homomorphic encryption (FHE) scheme [14] to
support biometric privacy. His method also supports revocability of the biometric templates, by simply
changing the encryption-decryption keys. In general, FHE is a rather expensive cryptographic primitive,
so the author utilizes the more efficient Fan-Vercauteren scheme [15], which reduces the communication
cost from 48.7MB to 16.5MB and the template matching time from 12.5s to 0.6s. The facial features are
extracted with both the FaceNet [16] and SphereFace [17] neural networks. The author also proposes a
batching technique, based on the Chinese Remainder Theorem, which further reduces the computational
cost. With this optimization, the overall time for executing the protocol is under 10ms.

In the malicious client setting, Shahandashti et al. [5] develop a profile matching function over the
encrypted domain. The function decides whether a fresh feature value belongs to a distribution of pre-
registered values. As the function generates new feature-level scores, a weighted sum approach is used to
compute the final verification score. All features are encrypted with an additive homomorphic encryption
scheme, such as Paillier. The protocol is also designed to mitigate arbitrary input attacks, by requiring the
client to prove that the encryption of the fresh input is well formed. Furthermore, during the decryption
request at the client, the server injects additional fake ciphertexts of known values. If there are any
inconsistencies on the fake values returned by the client, the verification operation fails.

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

4 K. Al-Mannai et al. /

Sedénka et al. [6] modify Yao’s garbled circuit protocol to be secure against malicious clients. Then,
they implement two secure distance computation algorithms on the modified garbled circuit, namely
scaled Euclidean and scaled Manhattan. They also propose a protocol for HBC adversaries that is based
on additive homomorphic encryption. Their results for the malicious setting indicate that scaled Manhat-
tan outperforms scaled Euclidean (9s vs. 290s of CPU time, and 0.09MB vs. 1.66MB of communication
cost). On the other hand, the homomorphic encryption protocol needs only 36ms of CPU time, but incurs
a communication cost of 47MB.

Gunasinghe and Bertino [18] suggest to perform the enrollment phase with an identity provider once,
and then use the certified ID for authentication with all other service providers. Specifically, during
verification, the client proves to the server (in zero knowledge) that he is the owner of the identity, by
solving a challenge using the secret parameters. The protocol requires 120MB of resources on the mobile
device and is completed in 26s. The authors believe that the one-time enrollment should occur in person,
in order to prevent attackers from impersonating other users in this early stage. In the verification phase,
they also integrate a key-agreement protocol to prevent known attacks, such as man-in-the-middle and
hijacking attacks.

Cheon et al. [19] employ a somewhat homomorphic encryption scheme (SHE) with single-instruction
multiple-data (SIMD) operations [20] to optimize the distance computation. They also utilize a light-
weight message authentication code (MAC) and apply a ciphertext compression method to further re-
duce the cost. The optimization process shortens the matching algorithm execution time from 30s to
0.45s. When a Hamming distance algorithm is used, the overall execution time of the protocol is 0.6s.
The authors introduce two security measures to defend against (i) incorrect client computations via inte-
grating a MAC verification phase; and (ii) server chosen ciphertext attacks by sending back a randomized
plaintext that is still valid for computing the verification result.

Im et al. [21] employ the Catalano-Fiore technique [22] to transform a linear (additive) homomorphic
encryption scheme into a scheme that is able to evaluate quadratic functions. Then, they utilize this
cryptosystem to compute the squared Euclidean distance between two encrypted feature vectors. Feature
extraction is performed with ResNet, a deep neural network architecture [23]. The protocol is quite
efficient, with an execution time of 1.3s (on a mobile device) and an EER of 3.04%. Security against
malicious clients is achieved by randomizing the computed similarity score, in order to keep the plaintext
score hidden from a malicious client after the decryption process.

For sake of completeness, we should also mention that there exist several protocols in the literature
that introduce a third-party in the biometric verification process. This entity is typically a cloud server,
and the motivation is to improve the protocol’s execution time by outsourcing expensive operations
(running on client’s smartphone) to the cloud. To reduce the impact on security, researchers propose
different solutions to secure their system against a malicious cloud server [24-28]. However, we believe
that such protocols introduce an additional attack surface for adversaries, and are not essential for today’s
smartphones that are powerful enough to compute complex cryptographic operations.

Finally, in the malicious setting (both client and server), Barni et al. [7] employ the SPDZ MPC
protocol [29] to compute the verification result in a secure manner. The online phase of their protocol
is very efficient, however, it involves a very expensive offline phase where a large number of secret
values are jointly computed and stored at the two parties. More importantly, the client and the server
must invoke this offline phase periodically, i.e., when all the precomputed values have been used by the
online verification protocol. On the other hand, Bassit et al. [8] introduce an efficient protocol based
on threshold homomorphic encryption. Unfortunately, to defend against malicious servers, the protocol
necessitates a trusted third-party that is involved in the enrollment phase. In particular, the role of the

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

K. Al-Mannai et al. / 5

third-party is to digitally sign the users’ encrypted templates, so that the server cannot submit malicious
templates to an honest client.

3. Preliminaries

3.1. Two-level Homomorphic Cryptosystem

In our work, we leverage the two-level homomorphic encryption scheme of Attrapadung et al. [9]
that is based on bilinear groups of prime order. Such cryptosystems allow for the evaluation of a sin-
gle multiplication operation (and unlimited additions) directly on encrypted data. The cryptosystem is
constructed as follows:

ey

2

3)

Let (G1, G2, Gr) be an asymmetric pairing group, where a bilinear map ¢ : G; x Go — Gr
is defined. Also, let g; and g2 be generators of the groups G and Go, respectively, and let z =
e(g1, g2) be a generator of group Gr. All three groups are of prime order ¢g. The bilinear property
states that, givenu € G1,v € Go,and a,b € Z,,

e(u’, V) = e(u,v)®
Assume two messages m1 and my that are encrypted in the two groups via a lifted-ElGamal scheme:

[m], = (g5 g1 ™) = (&1t ki gr)

[ma], = (g2, 85%77%°) = (g5, hipgh?)

We use the notation H ; to represent encryption under group G;. In the equations above, 51, s2 € Z,
are the secret encryption keys in the two groups, respectively, and /1, hy are the corresponding
public keys. The encryption randomizers ry, r2 are uniformly random in Z;. Note that, the lifted-
ElGamal cryptosystem is additively homomorphic (within the same group) via a pairwise multipli-
cation of the underlying ciphertexts.

We can homomorphically multiply m; and my in the ciphertext domain, by constructing the fol-
lowing ciphertext [mlmg]T = (c1,c2,¢3,¢4) in Gy

m2+r252) mi—+ris1

.85 ). (8]

mi+ris1 m2+ras2
e(g] 8577

i), = (e(g?',85).e(s 8
Using the bilinear property, this can be written as:

[m1m2] = (ZVIVQ, 7' (m2+r2s2), Z(m1+r1s1)r2’ Z(m1+r151)(m2+r2x2)>

Note that, the encrypted ciphertexts in G are additively homomorphic via a pairwise multiplication
of the underlying ciphertexts. However, no additional multiplications are possible in Gr.



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

6 K. Al-Mannai et al. /

(4) Decryption in Gy is performed by computing 7”2 as

Zmlm2 — Ci152c2—51 CS_SQC4
and solving the discrete log problem to obtain mymsy. As such, for efficient decryption, the en-

crypted plaintexts must be of polynomial size.
3.2. Il-nets

To demonstrate the efficiency of our protocol in a real-world setting, we opted to build a proof-of-
concept biometric verification system. More specifically, we chose face recognition as the verification
factor, due to the overwhelming availability of high-resolution cameras in most laptops, monitors, and
mobile devices today. Our approach is to leverage an existing face recognition platform to compute the
facial feature vector, and then pass this vector to our cryptographic engine for authenticating the user to
a remote server.

To this end, we selected II-nets [10] as the underlying face recognition system. II-nets is a recent
family of neural networks based on polynomial neural networks where the output is a high-order poly-
nomial of the input. This can be used to perform both generative and discriminative tasks; the II-nets
architecture can be employed in different applications, including image generation, image and audio
classification, 3D Mesh representation learning, and face recognition and identification.

Specifically, II-nets maps face images to a compact Euclidean space of dimensionality 512. It was
trained on the publicly-available MS 1M-RetinaFace dataset [30, 31] which includes 5.1M images of 93K
identities. The architecture demonstrates its competitiveness over existing state-of-the-art face recogni-
tion methods, as it achieves an accuracy of 99.833% on the benchmark Labeled Faces in the Wild (LFW)
dataset [32] that contains 13,233 web-collected images from 5,749 different identities. It even outper-
forms the accuracy of models trained on larger private datasets, such as FaceNet [16].

Under II-nets, the feature vectors consist of 512 floating point values, and the similarity between two
vectors is measured by their squared Euclidean distance. Nevertheless, in our system, we have to make
several adjustments in the computed feature vectors and the similarity threshold, because most public
key homomorphic encryption schemes typically work with integer values (with few exceptions). We will
discuss all these issues, and how they affect the accuracy of II-nets, in Section 6.

4. Secure Biometric Verification Protocol

The protocol consists of two phases, namely, enrollment and verification. We discuss them in detail in
the following sections.

4.1. Client Enrollment

During system initialization, the server instantiates an asymmetric pairing group (G1, Ga,Gr), as
described in Section 3.1. When a new client enrolls into the biometric verification system, the server
shares the group parameters (G1, Go, Gr, e, g1, g2, ¢) with the client. The client then chooses its secret
(private) keys s1, so uniformly at random in Z;, for groups G and Go, respectively. It also computes
the underlying public keys 7y = gj' and hy = g3*>. The client’s input in this phase is a biometric
feature vector x = (x1, x2,...,xy), which must be encrypted before it is shared with the verification

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

K. Al-Mannai et al. / 7

Protocol 1: Client enrollment
Client Server
Input: x
(Gl» G2,Gr, e, 81,82 61)
S, <$ ZZ
o <% Zq
hy = gy
hy = gy
N
r <$ Zq
X=X-+r
N ~ N
ID, hy, hy, ([x,} 1 [xi]Q)izl
Delete x, x Store data
Fig. 1. Enrollment protocol
server. However, prior to encryption, the client chooses a randomization vector r = (ry, ro,. .., ry) that

is uniformly random in Z;V . Subsequently, it obfuscates the plaintext feature vector as follows
X = (x+r)modg

Then, for each element x;, i € {1,2,..., N}, in the obfuscated vector, the client computes its lifted-
ElGamal ciphertexts in groups G; and G2, denoted as [fc,} 1 and [fc,} 9 respectively. All the ciphertexts
are then sent to the server, along with the client’s /D and its public keys. Finally, the client securely
deletes x and x from its local memory. In other words, after enrollment, the client’s memory only stores
the two public keys (h; and hs9), the client’s secret decryption keys (s; and s2), and the randomization
vector r. The complete enrollment protocol is shown in Fig. 1

At the server-side, during the system’s initialization, the server computes z = e(g1, g2) and proceeds
to pre-compute all possible encodings z¢, where d is the squared Euclidean distance between any two
vectors. This is done in order to optimize the final computation of d (discrete log), via the use of a
look-up table.

4.2. Client Verification

During an verification session, the client first generates a fresh feature vector y and obfuscates it with
the randomization vector r stored on the user’s device:

¥ = (y+r) mod g

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

8 K. Al-Mannai et al. /

Then, it encrypts the values —y;, i € {1,2,..., N}, under groups G; and G2 and sends the ciphertexts
to the server, along with its /D. The server then accesses the user’s stored biometric feature vector and
proceeds to compute the ciphertexts of (x; — y;) under groups G; and G,. For instance, the ciphertext
under G is derived as

[xi*yih = [Xih@ [757"]1

where ® denotes the pairwise multiplication of the two lifted-ElGamal ciphertexts. Notice that the ran-
domizer r; is canceled out via the subtraction operation.

Now the server has all the information it needs to compute the squared Euclidean distance, which is
defined as

d=> (x—y)

i=1

To this end, the server first computes the ciphertexts (in Gr) of (x; — y,»)Q, using [xi — y,} 1 and [xi — yi] o

[(xi =] = e([xi = wi] . [xi = 9] )

Here, we use a boldface font for the pairing function e to denote the vector of four distinct pairings, as
described in Section 3.1. Recall that ciphertexts in Gr are still additively homomorphic, so the server
eventually computes the encrypted squared Euclidean distance d as follows:

= Ol -],

i=1

Let (c1, c2, ¢3, c4) denote ciphertext [d] - i.e., the four elements in Gr. At this point, the server has to
engage the client in the decryption process of d. As discussed in Section 3.1, decryption in G necessi-
tates three exponentiations (one for each of c¢1,c2, and c3) with three secret values that are stored on the
user’s device. Therefore, the server sends c1, co, and c3 to the client, in order for the client to compute
the following values:

=ty =yt =3
Note that it is infeasible for the client to retrieve the plaintext similarity score, because c4 is only known
to the server.

The client then sends back to the server (i) ¢, ¢b, and ¢%; and (ii) three non-interactive zero knowledge
proofs (NIZKPs) that prove to the server that the client knows the three secret exponents. Each proof is
essentially an instance of Schnorr’s protocol [33] with the Fiat-Shamir heuristic [34]. The server then
verifies the NIZKPs and computes the encoding of the squared Euclidean distance as

d N
Z 261626364

The final step involves a query at the stored look-up table to retrieve the actual value of d that determines
the verification output. In particular, if d < 7, where 7 is the upper bound of the squared Euclidean

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



K. Al-Mannai et al. /

distance that signifies a positive match, the client’s verification is considered successful.

verification protocol is depicted in Fig. 2.

The complete

Protocol 2: Client verification
Client Server
Input: y
X=y+r
- <1 \N
1D, ([ _yi]l’ [ ylb)z_l
[xi—yi], = [%],© -5 1<i<N
[xi—yi],=[8],© -5, 1<i<N
[(xl _y’)ﬂT = e([x, _yi}l’ [x, _y’]Q)’ I<sis
N
[d}T = (c1,¢2,¢3,¢4) = @ [(Xl - yl)2:|T
i=1
C1,C2,C3
Cll — 6,31'152
cy=cy"
¢y =c3"
Construct NIZKPs
/ / /
¢y, Cy, €3, NIZKPs
Verify all NIZKPs (abort if failure)
= cichchey
Output d from look-up table
if (d ¢ look-up table) {auth = invalid}
else if (d < 1) {auth = yes} else {auth = no}
auth
Output auth

Fig. 2. Verification protocol



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

10 K. Al-Mannai et al. /

Note that, if any of the NIZKP verifications fails, the server instantly aborts the protocol. Similarly, if
7% does not exist in the look-up table, the server labels the verification session as invalid (an indication
that the client has cheated somewhere in the previous steps). Indeed, the look-up table is constructed for
all possible outcomes of d, i.e., if the bit-length of the feature vector elements is k, the max value of d
stored in the look-up table is dj,qc = N - (28 — 1)2.

For completeness, we describe next the NIZKP protocol that we employ, which has been proven secure
in the random oracle model. The protocol assumes that the prover (the client, in our case) has knowledge
of a secret s, such that ¢’ = ¢*. (For example, in the case of ¢; and C/p the client’s secret is s152.) The
protocol is executed as follows:

(1) The prover selects 7 < Z; and generates a commitment a = .

(2) The prover computes v = H(a,c,c), using a cryptographically secure hash function H, such as
SHA-256.

(3) The prover computes b = (¢ + v - s) mod ¢ and sends to the verifier (a, b, v).

(4) The verifier (server) accepts the proof iff ¢® = ac’.

5. Security

In multiparty computation protocols, security is defined by comparing what an adversary can do when
the protocol is executed in the real world to what the adversary can do when the protocol is executed
in an ideal model that is secure by definition [35]. Specifically, during a protocol execution in the ideal
model, all parties send their inputs to a trusted third party who computes the output. On the other hand,
an execution in the real world involves an adversary who sends all messages on behalf of all corrupted
parties and may deviate arbitrarily from the protocol specification. Under this definition of the real and
ideal models, a protocol is considered secure if an adversary in the ideal model is able to simulate a real
world execution of the protocol. We should emphasize that, in two-party protocols, there is no honest
majority, so it is impossible to provide fairness or guaranteed output, i.e., the adversary may prevent the
honest party from receiving their output.

Recall that our protocol employs a secure NIZKP functionality during its execution. As such, in our
security proof, we will consider the hybrid model (instead of the real model), in which the two parties
interact with each other as usual, but also use a trusted party to compute the NIZKP functionality (i.e.,
similar to the ideal model). In other words, the real world protocol will run as normal, until an ideal call
is made to the trusted party to compute the NIZKP functionality. At this point, the two parties send their
inputs to the trusted party, which computes and sends back their respective outputs.

Let us now give a formal definition of the two functionalities that protocols myzxp and mayty (our
protocol) compute. First, protocol myzxp assumes that the two parties share the description of a certain
group Gr of prime order g and two elements ¢, ¢’ € Gr, such that ¢’ = ¢*. The client’s input is the secret

value s € Z, while the server does not have an input. The server’s output is a triplet (a,b,v), such that
¢’ = ac”. Element a € Gr, element b € Z,, and v is a random string. We use the following notation to

describe this functionality Fyzkp, Where A is the empty string:
(s,4) — (4, (a,b,v))

In protocol mayTH, the client’s input is an encrypted feature vector y (denoted as [y]) and secret keys
s1, s2, while the server’s input is an encrypted feature vector x. (We can ignore the randomizers as they

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W R O WO Jd o0 W N P O WO doUs W N R O

K. Al-Mannai et al. / 11

do not affect the protocol’s security proof. Also, the ciphertext notation captures the encryptions under
both groups.) The server’s output is the squared Euclidean norm of x and y, while the client’s output is
the verification result. Formally, functionality Fayty is denoted as follows:

(], 51, 52). [x]) = (auth, ||x — y]3)

For simplicity, let us denote as C and S the client’s and server’s input, respectively. Also, let A be a
non-uniform probabilistic polynomial-time (PPT) adversary, and let n be the security parameter. Then,
the ideal execution of Fayry, denoted as IDEAL £, ., (C, S, n), is defined as the output pair of the two
parties (the honest party and .4) from the execution in the ideal model involving a trusted party. Similarly,
the real execution of maytH in the hybrid model (where the NIZKP functionality is computed by a trusted
party), denoted as HYBRID,, ., (C, S, n), is the output pair of the honest party and .4 from the real
execution of mayTH.

Definition 1. Protocol nayty securely computes Fayty in the presence of malicious adversaries if, for
every non-uniform PPT adversary A in the hybrid model, there exists a non-uniform PPT adversary S
(the simulator) in the ideal model such that, for the case of either malicious party, it holds that

IDEAL ., (C,S,n) = HYBRID,,,.,(C, S, n)

In the above definition, symbol = denotes that the two distributions are computationally indistinguish-
able. What the definition essentially implies, is that the protocol is secure if an adversary S in the ideal
model is able to simulate a protocol execution in the hybrid model.

Theorem 1. Assume that nyzkp securely computes the NIZKP functionality in the presence of malicious
adversaries. Then, mayty securely computes Fayty in the presence of malicious adversaries.

Proof. We consider two separate cases in our proof, that is, the case where the client is malicious and
the case where the server is malicious.

Malicious client. In this case, the adversary A is controlling the client, and S has access to A’s input.
The simulation of the real protocol is performed as follows, where S is playing the role of the server
interacting with the adversary.

S sends A’s input to the trusted party and receives back its output auth. Because S does not have the
real server’s input [x], it constructs one from .A’s input [y] and the verification output auth. Specifically,
based on the value of auth, S constructs an encrypted feature vector [y + 6] (leveraging the homomorphic
properties of the lifted-ElGamal cryptosystem), such that

(1) |6 Hg < 7, if the verification is successful.
(2) 7 < ||6]|3 < dpax» if the verification is unsuccessful.
3) |6 Hg > d,nay if the verification is invalid.

Initially, S receives [y] from .4 and proceeds to compute [d]|7 according to the protocol specification. It
then sends ¢, ¢z, and c3 to A, and receives back ¢/, ¢4, ¢4. Finally, S decrypts d and sends back to A
the verification result auth, concluding the simulation.

O 0 J o U w N

BB BB R DR W WWWWwWw W W NDNDNDNDNDDNDNDNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O vV oY UWw D RO VW Yy W NP O



18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

12 K. Al-Mannai et al. /

Let us now look at the outputs from the real and ideal executions. First, for the adversary A, the output
auth is identical in both executions, because S constructed its input according to the verification result
from the ideal execution. For the server, the distribution of the output d follows the distribution from
real executions, assuming S knows that distribution from multiple protocol executions and chooses §
accordingly.

Malicious server. In this case, the adversary is controlling the server, and S has access to .A’s input.
The simulation of the real protocol is performed as follows, where S is playing the role of the client
interacting with the adversary.

S sends A’s input to the trusted party and receives back its output d. Note that S does not have the
client’s real input [y], so it has to construct one from .A’s input [x] and output d. Similar to the case of
the corrupted client, S constructs an encrypted feature vector [x + 6], such that ||§ ||§ =d. (Ifd > dyaxs
i.e., z¢ does not exist in the look-up table, S selects a large random value instead.) S then sends [x + 6]
to the adversary 4. A computes [d]r and sends to the simulator the first three elliptic curve points, i.e.,
c1, ¢2, and c3. It is important to note that S also has knowledge of ¢4, because it has access to .A’s input
vector.

Next, S selects two random elements in Gr, namely ¢} and ¢%, and computes another element ¢4, such
that

SNV _.d
C1C2C3C4—Z

ie., cf = z9(ch)7(ch)"t(ca)7 . S sends all three elements back to .A. Finally, for each element ¢/,
i € {1,2,3}, S does the following:

(1) Chooses two random elements v;, b; € Z,.
(2) Sets a; = ci(c)) 7.

(3) Enters (a;,v;) in the random oracle’s History.
(4) Sends (a,', b,’, V,') to A.

Finally, A verifies the NIZKP’s (with the help of the random oracle), decrypts d, and sends the verifica-
tion result to S. Note that, each NIZKP is verified successfully, because of the way that g; is computed
in Step 2 above.

Clearly, A’s output is identical in the ideal and hybrid executions (because of how vector ¢ is se-
lected), which implies that the client’s output is also identical. Therefore, we have shown that, under any
malicious party, it holds that

IDEAL 7, (C,S,n) = HYBRID,,,,,(C,S,n)
which concludes our proof. [
5.1. Discussion

We now discuss the types of attacks that a malicious party can launch in real-life, and how our protocol
is able to defend against them.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W R O WO Jd o0 W N P O WO doUs W N R O

K. Al-Mannai et al. / 13

Malicious client.  First, the adversary may launch an attack without having access to the client’s device,
i.e., without knowledge of the randomization vector r and the two secret keys s and s5. In this case, the
adversary chooses these values randomly, and will fail the verification process (via an invalid outcome)
with an overwhelming probability. Specifically, given that each value is an element of Z,, the probability
that the adversary succeeds in guessing all of them correctly is 2-9(N+2),

On the other hand, an adversary who has compromised the user’s device (and has access to all its
secret values) may launch two types of attacks. The simplest one is a brute-force attack on the feature
vector, i.e., generating and trying different input vectors y, until it succeeds. In this case, the probability
of success (for each attempt) is equal to the false positive rate of the underlying biometric recognition
protocol. Nevertheless, such attacks are mitigated by (i) limiting the number of successive unsuccessful
verification attempts by a client; and (ii) utilizing more accurate biometric recognition protocols, such
as face recognition with depth cameras.

The adversary may also attempt to manipulate one of the partially decrypted ciphertexts ¢/, ¢}, or cf,
in order to lower the value of the underlying squared Euclidean norm. More specifically, this attack is
performed by having the adversary replace one of the client’s secret keys with a value w, such that the
computed squared norm at the server becomes lower than the threshold 7. Assume, for example, that
c1 = 7", where r is a random value unknown to the adversary (because of the randomizers used in the
encryptions of the stored feature vector x). The adversary’s objective is to compute a value w € Z,, such
that

¢l =cf =2t
which essentially decreases the computed squared norm at the server by a value of 6. Substituting ¢y
with z” and solving for w, we get

7V = erlszig => W= 5159 — or1

Given that 7~! is a random element in Z,, the adversary will succeed with probability 277 in guessing a
valid candidate key w.

Malicious server. A malicious server will attempt to decrypt the client’s stored (or submitted) feature
vector and retrieve the plaintext biometric data. (For example, by decrypting one vector element during
each client verification session.) Notice, however, that the adversary in our protocol can only decrypt
ciphertexts in Gr so, to recover an element x;, the adversary has to produce [x;]7. But this is infeasible to
do in our case, due to the presence of the randomizers in the encryptions of vectors x and y. Indeed, the
best an adversary can do is compute [x; + r;|7, which is infeasible to decrypt under a discrete log based
cryptosystem.

6. System Implementation

We implemented our system on a client/server architecture with two separate processes, one emulating
the verification server and the other emulating the client device. We ran the experiments on a single
Ubuntu laptop with Intel Core i17-6500U CPU 2.50GHz x4 and 16 GB of RAM (it is also equipped with
a camera) and an SSD 860 EVO 1TB.

O 0 J o U w N

BB BB R DR W WWWWwWw W W NDNDNDNDNDDNDNDNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O vV oY UWw D RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

14 K. Al-Mannai et al. /

The face recognition operation employs the implementation of II-nets'. The original implementation
is built on Python version 3 and requires the mxnet and opencv libraries. The pre-trained model is also
provided by the authors. On our hardware configuration, the face recognition and normalization process
takes approximately 600ms for a 640 x480 image resolution. We implemented the cryptographic layer in
C, using the mc1 library? which is a portable and fast pairing-based cryptographic library. Specifically,
our results are obtained with mc1’s Barreto-Naehrig curve type BN254. We also used SWIG to connect C
with Python (version 4.0.1). Each result is computed by running the experiment four times and reporting
the average time. Finally, our implementation leverages the parallel computing abilities of the multi-core
machine, especially at the server-side.

Before applying any cryptographic operations on the feature vectors generated by II-nets, we needed
to convert the floating point representations of elements in vectors X and y into integers. Specifically,
for any element x; in a feature vector, we employed the following transformation, based on an empir-
ical evaluation: |x; x 600 + 128], where x; € Q : —0.213 < x; < 0.213. This operation maps II-nets’s
floating point values into integers in the range [0,256). The aforementioned transformation invokes a
negligible loss in recognition accuracy, as quantified in Table 1.

The table illustrates the accuracy of the modified II-nets system (using normalized feature vectors)
when compared to the original II-nets implementation and other state-of-the-art face recognition models.
The comparison was done on the Labeled Faces in the Wild (LFW) benchmark [36], which is one of the
largest publicly-available datasets on the web. The best threshold value for the II-nets system is 1.359,
which translates into 7 = 486000 after being normalized and squared to fit our protocol specifications.
In other words, any (squared) Euclidean distance less than the threshold value 7 indicates a positive
match between two feature vectors. At this specific threshold value, the false positive rate (FPR) of the
system is only 0.0668%. F PR represents the percentage of false positives against positive predictions

and is calculated as FPR = FPS—iPTN’ where F P is the number of false positives and TN is the number of
true negatives.
Table 1
Accuracy Results on the LFW Benchmark [37]
Model Accuracy
Human-Individual 97.27%
Human-Fusion 99.85%
Center Loss [38] 98.75%
SphereFace [17] 99.27%
VGGFace?2 [39] 99.43%
ArcFace [37] 99.82%
II-nets 99.833% =+ 0.211
II-nets, normalized 99.83% + 0.194

7. Experimental Results

In this section, we experimentally evaluate the overhead of our secure biometric verification system
in terms of computation and communication/storage costs. First, Table 2 depicts the CPU time required

1https:// github.com/grigorisg9gr/polynomial_nets
2https://github.com/herumi/mcl

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O


https://github.com/grigorisg9gr/polynomial_nets
https://github.com/herumi/mcl

O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W R O WO Jd o0 W N P O WO doUs W N R O

K. Al-Mannai et al. / 15

at both the server and the client, for the two protocol phases: enrollment and verification. During enroll-
ment, the client begins by extracting the feature vector from the image. This is the most time consuming
operation, but it is not related to our cryptographic protocol.

(The cost of the operation is between 0.6s and 1.3s, depending on the quality of the image/frame.) The
client then obfuscates and encrypts the feature vector, a process that incurs a cost of 298ms. The cost
at the server does not involve any cryptographic operations related to our protocol, so we do not report
any results. Indeed, the server’s only task in the enrollment phase is to receive and store the encrypted
feature vector and the client’s information.

During the verification phase, the CPU cost at the client consists of (i) extracting the feature vector
y from the image; (ii) obfuscating and encrypting the feature vector; and (iii) partially decrypting the
server’s similarity score and constructing the necessary NIZKPs. The CPU time for the cryptographic
steps (ii) and (iii) is approximately 360ms. At the server, the CPU time is dominated by the computation
of the encrypted similarity score [d] ; (around 356ms and involving numerous pairing operations), while
the final decryption step (including the verification of the client’s NIZKPs) is very fast.

Table 2
Computation Time for Cryptographic Operations
Phase ‘ Server time (ms) ‘ Client time (ms)
Enrollment — 298
Verification 520 360

In Table 3, we compare the performance of our system against other secure biometric verification
techniques that are resilient against malicious adversaries. Note that the SEMBA [7] protocol uses a fu-
sion approach that combines two modalities: iris and face. While the EERs of the modalities are 2.08%
and 17.37%, respectively, the resulting fusion EER is 1.15%. The similarity metrics used by this tech-
nique are the weighted Hamming distance (HD) and the squared Euclidean distance (ED), respectively.
The second approach listed in our table is HELR [8] which, similar to our protocol, employs only face
recognition. As we can observe from this table, our method outperforms HELR in terms of computation
time. SEMBA is significantly faster but, as we emphasized earlier, it necessitates a very expensive offline
phase that must be invoked periodically. Furthermore, our system enjoys a better EER, due to the usage
of the state-of-the-art II-nets face verification protocol.

Table 3
Computation Time Comparison With Other SOTA Methods
Proposed Biometric Dataset Number of | EER (%) | Classification Cryptographic Computation
method modal Features technique technique time (ms)
SEMBA [7] | Iris + face | IIT Delhi Iris[40] + ORL[41] | (6400,2) 1.15 HD + ED SPDZ [42] 120
HELR [8] Face PUT [43], FRGC [44] 49,94 0.27,0.25 LLR ELGamal[45] & ZK-prooofs 2500, 1220
Our work Face LFW[32] 512 0.17 II-nets (ED) Attrapadung et al.[9] & NIZKPs 880

Regarding the communication cost (shown in Table 4), the enrollment phase consists of the client
sending its ID, public keys, and encrypted feature vector to the server, which incurs a cost of approxi-
mately 96KB of data. On the other hand, the verification phase involves 3 communication rounds. First,
the client sends its ID and encrypted feature vector to the server (96KB). Then, the server sends back
to the client 3 ciphertexts (1.12KB) that are part of the encrypted similarity score. In the last step, the

O 0 J o U w N

BB BB R DR W WWWWwWw W W NDNDNDNDNDDNDNDNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O vV oY UWw D RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

16 K. Al-Mannai et al. /

Table 4
Communication Cost
Phase | Cost (KB)

Enrollment 96.11
Verification 99.58

client sends to the server the modified ciphertexts and the corresponding NIZKPs (2.43KB). As such,
the overall communication cost is approximately 99KB.

In terms of storage requirements, both parties need to store some information that is necessary for a
successful verification session. As depicted in Table 5, the client needs around 4KB of storage space,
which includes its ID, its public and secret (private) keys, the group descriptions, and the randomization
vector r. Similarly, the server needs to store the enrollment data of each client (96KB), which includes
the client’s ID, its public keys, and its encrypted feature vector X. Additionally, the server maintains a
very large look-up table that is essential for efficient ciphertext decryption in Gr. The size of that table
in our specific implementation is 3.19GB.

Table 5
Storage Requirements
Party ‘ Cost
Client 16.26 KB
Server (per client) 96.11 KB

Server (look-up table) | 3.19 GB

It is worth mentioning that our proposed approach is independent of the underlying face recognition
algorithm, as long as the similarity score is measured with the squared Euclidean distance. However,
the computation times are affected by the dimensionality of the feature vectors that are generated by the
chosen face recognition technique (which typically ranges between 128 and 1024). To this end, Fig. 3
depicts the protocol’s overhead, as a function of the feature vector dimensionality. Clearly, our protocol
is very efficient, incurring a very low overhead even at large dimensionalities.

’g 1000 F ] 200 F .,
g [ 1 = e
v r ] < 100 R E
= [ ] e ‘ ]
= ] r 1
S 500 BUSTE S - B 3
g L T | 2 255 =TT
2 350 X g S P o
o r -~ 1 I 10 - - -
o e = = P - I
& o0l 7 | g - Communication 1
g -(.’ Server 1 8 4% Client storage — X—
z 180 ‘ Client —x— 7 i Server storage per client - @--
128 512 1024 128 512 1024
Dimensionality (N ) Dimensionality (N)
(a) Computation time (b) Communication/Storage

Fig. 3. Verification cost vs. feature vector dimensionality

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



0 < o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

K. Al-Mannai et al. / 17

8. Conclusions

We have proposed a fast and efficient biometric verification protocol that is secure in the malicious
setting, i.e., when either the server or the client are potentially malicious. The protocol employs an
elaborate two-level homomorphic encryption scheme that allows us to compute the squared Euclidean
norm between two encrypted vectors in a secure manner. We outlined a formal security proof of our
protocol in the random oracle model, and implemented a proof-of-concept system for a secure face
verification protocol. Our results show that the protocol incurs a low computational cost at the client and
server, while maintaining a communication cost of just 9KB. In our future work, we plan to extend
our implementation to mobile devices, and also improve its security by employing more accurate face
recognition models that leverage depth cameras.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(9]

(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

N. Provos and D. Mazieres, Berypt algorithm, in: USENIX, 1999.

Z. Lei, Y. Nan, Y. Fratantonio and A. Bianchi, On the Insecurity of SMS One-Time Password Messages against Local
Attackers in Modern Mobile Devices, in: Proc. Annual Network and Distributed System Security Symposium (NDSS),
2021.

J.-H. Im, J. Choi, D. Nyang and M.-K. Lee, Privacy-preserving palm print authentication using homomorphic encryption,
in: Proc. International Conference on Big Data Intelligence and Computing (DataCom), 2016, pp. 878-881.

V.N. Boddeti, Secure face matching using fully homomorphic encryption, in: Proc. IEEE International Conference on
Biometrics Theory, Applications and Systems (BTAS), 2018, pp. 1-10.

S.F. Shahandashti, R. Safavi-Naini and N.A. Safa, Reconciling user privacy and implicit authentication for mobile devices,
Computers & Security 53 (2015), 215-233.

J. Sedénka, S. Govindarajan, P. Gasti and K.S. Balagani, Secure outsourced biometric authentication with performance
evaluation on smartphones, /EEE Transactions on Information Forensics and Security 10(2) (2014), 384-396.

M. Barni, G. Droandi, R. Lazzeretti and T. Pignata, SEMBA: secure multi-biometric authentication, IET Biometrics 8(6)
(2019), 411-421.

A. Bassit, F. Hahn, J. Peeters, T. Kevenaar, R. Veldhuis and A. Peter, Fast and accurate likelihood ratio-based biometric
verification secure against malicious adversaries, IEEE transactions on information forensics and security 16 (2021),
5045-5060.

N. Attrapadung, G. Hanaoka, S. Mitsunari, Y. Sakai, K. Shimizu and T. Teruya, Efficient Two-level Homomorphic Encryp-
tion in Prime-order Bilinear Groups and a Fast Implementation in WebAssembly, in: Proc. Asia Conference on Computer
and Communications Security (AsiaCCS), 2018, pp. 685-697.

G.G. Chrysos, S. Moschoglou, G. Bouritsas, Y. Panagakis, J. Deng and S. Zafeiriou, P-nets: Deep polynomial neural
networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7325—
7335.

A.C.-C. Yao, How to Generate and Exchange Secrets, in: Proc. IEEE Annual Symposium on Foundations of Computer
Science (FOCS), 1986, pp. 162-167.

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Proc. International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1999, pp. 223-238.

E. Bingham and H. Mannila, Random projection in dimensionality reduction: applications to image and text data, in:
Proc. ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2001, pp. 245-250.

C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proc. ACM Symposium on Theory of Computing (STOC),
2009, pp. 169-178.

J. Fan and F. Vercauteren, Somewhat practical fully homomorphic encryption, IJACR Cryptology ePrint Archive 2012
(2012), 144.

F. Schroff, D. Kalenichenko and J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815-823.

W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj and L. Song, SphereFace: Deep Hypersphere Embedding for Face Recognition, in:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6738-6746.

H. Gunasinghe and E. Bertino, PrivBioMTAuth: privacy preserving biometrics-based and user centric protocol for user
authentication from mobile phones, IEEE Transactions on Information Forensics and Security 13(4) (2017), 1042-1057.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

18

[19]

[20]
(21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]

[30]

(31]
(32]

[33]
(34]

[35]
[36]
[37]

(38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

K. Al-Mannai et al. /

J.H. Cheon, H. Chung, M. Kim and K.-W. Lee, Ghostshell: Secure Biometric Authentication using Integrity-based Ho-
momorphic Evaluations, JACR Cryptology ePrint Archive 2016 (2016), 484.

N.P. Smart and F. Vercauteren, Fully Homomorphic SIMD Operations, JACR Cryptology ePrint Archive (2011), 133.
J.-H. Im, S.-Y. Jeon and M.-K. Lee, Practical Privacy-Preserving Face Authentication for Smartphones Secure Against
Malicious Clients, IEEE Transactions on Information Forensics and Security 15 (2020), 2386-2401.

D. Catalano and D. Fiore, Boosting Linearly-Homomorphic Encryption to Evaluate Degree-2 Functions on Encrypted
Data, IJACR Cryptology ePrint Archive (2014), 813.

K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.

D. Lin, N. Hilbert, C. Storer, W. Jiang and J. Fan, UFace: Your universal password that no one can see, Computers &
Security 77 (2018), 627-641.

P. Gasti, J. Sedénka, Q. Yang, G. Zhou and K.S. Balagani, Secure, fast, and energy-efficient outsourced authentication for
smartphones, IEEE Transactions on Information Forensics and Security 11(11) (2016), 2556-2571.

A. Abidin, On privacy-preserving biometric authentication, in: Proc. International Conference on Information Security
and Cryptology, Springer, 2016, pp. 169-186.

M. Salem, S. Taheri and J.-S. Yuan, Utilizing transfer learning and homomorphic encryption in a privacy preserving and
secure biometric recognition system, Computers 8(1) (2019), 3.

H. Higo, T. Isshiki, K. Mori and S. Obana, Privacy-preserving fingerprint authentication resistant to hill-climbing attacks,
in: Proc. International Conference on Selected Areas in Cryptography, 2015, pp. 44-64.

I. Damgard, V. Pastro, N. Smart and S. Zakarias, Multiparty Computation from Somewhat Homomorphic Encryption, in:
Proc. Advances in Cryptology (CRYPTO), R. Safavi-Naini and R. Canetti, eds, 2012, pp. 643-662.

Y. Guo, L. Zhang, Y. Hu, X. He and J. Gao, Ms-celeb-1m: A dataset and benchmark for large-scale face recognition, in:
Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part I1I 14, Springer, 2016, pp. 87-102.

J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu and S. Shi, Lightweight face recognition challenge, in: Proceedings of the
IEEFE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0-0.

G.B. Huang, M. Ramesh, T. Berg and E. Learned-Miller, Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments, Technical Report, 07-49, University of Massachusetts, Amherst, 2007.

C.P. Schnorr, Efficient identification and signatures for smart cards, Journal of Cryptology (1991), 161-174.

A. Fiat and A. Shamir, How to Prove Yourself: Practical Solutions to Identification and Signature Problems, in: Proc.
Advances in Cryptology (CRYPTO), 1986, pp. 186—-194.

Y. Lindell, How to Simulate It - A Tutorial on the Simulation Proof Technique, in: Tutorials on the Foundations of
Cryptography, Springer International Publishing, 2017, pp. 277-346.

G.B. Huang and E. Learned-Miller, Labeled Faces in the Wild: Updates and New Reporting Procedures, Technical Report,
UM-CS-2014-003, University of Massachusetts, Amherst, 2014.

J. Deng, J. Guo, N. Xue and S. Zafeiriou, Arcface: Additive angular margin loss for deep face recognition, in: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 4690-4699.

Y. Wen, K. Zhang, Z. Li and Y. Qiao, A discriminative feature learning approach for deep face recognition, in: Computer
Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
VII 14, Springer, 2016, pp. 499-515.

Q. Cao, L. Shen, W. Xie, O.M. Parkhi and A. Zisserman, Vggface2: A dataset for recognising faces across pose and age,
in: 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018), IEEE, 2018, pp. 67-74.
A. Kumar and A. Passi, Comparison and combination of iris matchers for reliable personal authentication, Pattern recog-
nition 43(3) (2010), 1016-1026.

E.S. Samaria and A.C. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of
1994 IEEE workshop on applications of computer vision, IEEE, 1994, pp. 138-142.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl and N.P. Smart, Practical covertly secure MPC for dishonest
majority—or: breaking the SPDZ limits, in: Computer Security—ESORICS 2013: 18th European Symposium on Research
in Computer Security, Egham, UK, September 9-13, 2013. Proceedings 18, Springer, 2013, pp. 1-18.

A. Kasinski, A. Florek and A. Schmidt, The PUT face database, Image Processing and Communications 13(3—4) (2008),
59-64.

P.J. Phillips, PJ. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min and W. Worek, Overview
of the face recognition grand challenge, in: 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), Vol. 1, IEEE, 2005, pp. 947-954.

R. Cramer, R. Gennaro and B. Schoenmakers, A secure and optimally efficient multi-authority election scheme, European
transactions on Telecommunications 8(5) (1997), 481-490.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46



	Introduction
	Related Work
	Preliminaries
	Two-level Homomorphic Cryptosystem
	-nets

	Secure Biometric Verification Protocol
	Client Enrollment
	Client Verification

	Security
	Discussion

	System Implementation
	Experimental Results
	Conclusions
	References

