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Abstract

Caching and replication have emerged as the two pri-
mary techniques for reducing the delay experienced by
end users when downloading web pages. Even though
these techniques may benefit from each other, previous
research work tends to focus on either one of them sep-
arately. In this paper we investigate the potential perfor-
mance gains by using a CDN server both as a replica-
tor and as a proxy server. We assume a common stor-
age space for both techniques, and develop an analyti-
cal model that characterizes caching performance under
various system parameters. Based on the models predic-
tions, we can reason whether it is beneficial to reduce the
caching space in order to allocate extra replicas. The re-
sulting problem of finding which object replicas should be
created where, given that any free space will be used for
caching, is NP-complete. Therefore, we propose a hybrid
heuristic algorithm (based on the greedy paradigm), in
order to solve the combined replica placement and stor-
age allocation problem. Our simulation results indicate
that a simple LRU caching scheme can considerably im-
prove the response time of HTTP requests, when utilized
over a replication-based infrastructure.

1. Introduction

The explosive growth of the World Wide Web and
the increasing availability of fast Internet access to the
end-user, have turned centralized web servers into a
performance bottleneck. Popular web sites (e.g., news
sites) receive millions of HTTP requests per day, which
may easily overload a state-of-the-art web server and
increase significantly the delay perceived by end-users.

Proxy caching was the first step towards reducing
the latency of HTTP requests. It is realized by plac-
ing in front of the clients, proxy servers storing the
most frequently accessed documents. User requests are
forwarded to the proxy server which responds with
the document if present, while cache misses result in
requests being redirected to the origin server. Proxy
caching, however, has certain disadvantages that limit
its potential benefit: (i) the hit ratio reported in the
literature is typically below 50% [16], and (ii) cache
misses usually incur large redirection delay.

While caching tries to minimize the latency of down-
loading the most popular documents, the underlying
principle of replication is to move the web content
as close to the end-user as possible. Content distrib-
ution networks (CDNs), for example, accomplish that
by replicating popular web sites across a number of ge-
ographically distributed servers. The key objective of a
CDN is to increase the availability of the hosted sites
while minimizing the response time of HTTP requests.

Even though caching and replication may benefit
from each other, research work so far tends to focus
on either one of them separately. In particular, re-
search on CDNs focuses primarily on replica placement
schemes, while caching was studied in the context of
proxy servers (see related work). One reason for this
(among others), is that a generic caching scheme of-
fers no guarantees on content availability. While this is
of no concern for proxies, it is less than acceptable for a
CDN that wants to provide QoS guarantees to its sub-
scribers.

Performance wise, implementing a caching scheme
as part of a CDN architecture that already employs
replication, can have a positive effect. For example, the
study in [22] shows that the file popularity of a busy
web server tends to follow a Zipf-like distribution with a
parameter θ that is much higher than the one observed
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in proxy server traces. Consequently, higher hit ratios
may be achieved when caching is performed within a
CDN system. In this paper we investigate the poten-
tial performance gain by using a CDN server both as
a replicator and as a proxy server. To the best of our
knowledge this possibility was overlooked in the past.
We develop an analytical model to quantify the ben-
efits of each technique, under various system parame-
ters, and propose a hybrid greedy algorithm to solve the
combined caching and replica placement problem. Our
simulation results indicate that a simple LRU caching
scheme can improve significantly the response time of
HTTP requests, when utilized over a replication-based
infrastructure. Moreover, due to its simplicity, this hy-
brid approach does not affect the administrative over-
head of the CDN architecture.

The remainder of the paper is organized as follows.
In Section 2 we discuss the motivation behind our work
and also give a brief overview of previous research
work on replica placement algorithms. In Section 3 we
present the system model and state the assumptions
regarding the CDN architecture. The proposed hybrid
replica placement algorithm is introduced in Section
4, while the simulation results are illustrated in Sec-
tion 5. Finally, Section 6 concludes our work.

2. Motivation and Previous Work

2.1. Motivation

A generic replication scheme works as follows: (i)
the “objects” to be replicated are defined, (ii) sta-
tistics are collected, (iii) based on some optimiza-
tion criteria and constraints, replica placement is de-
cided, and (iv) a redirection method is provided that
sends client requests to the best replicator that can
satisfy them. Regardless of the location where redi-
rection happens (DNS [26], or server level [10]), and
the criteria with which a suitable replicator is se-
lected [10, 9], for each object an entry of the form
<object id,list of replicators> must be kept. Selecting
objects to be single web pages will cause scalability
problems, since updates need to be made whenever a
new page is created, deleted or relocated. Therefore,
the silent consensus in the papers dealing with replica
placement is that objects are large, representing whole
sites or large parts of them, e.g., whole directories. This
is also indicated by the number of objects considered in
the experiments, which is usually in the order of hun-
dreds e.g., [28] or thousands, e.g., [12, 13, 23]. Here,
we consider per site replication, meaning that either
the whole content of a site is replicated, or none of it.

However, our work is also applicable in the intermedi-
ate cases where objects represent groups of pages.

Although creating site replicas helps on bringing the
content closer to the clients, it does suffer from two
drawbacks. First, the placement decisions should re-
main fairly static for a considerable time period. This
is due to the fact that replica creation and migra-
tion incurs a high transfer cost. Second and foremost,
the storage space is not used optimally. Ideally, we
would require that the replicas of a page be propor-
tional to their popularity (assuming the network para-
meters being otherwise equal). However, what we can
only achieve is that pages are assigned replicas pro-
portionally to the popularity of the site they belong.
This is not efficient, since it is recorded that a rela-
tively small set of pages within a site accounts for the
largest number of requests [22].

In order to alleviate the above problems we de-
cided to deploy caching in conjunction with replica-
tion. Caching operates on a per page level and is inher-
ently dynamic. The intuition behind, is that by split-
ting the available storage space at each CDN server
between replica placement and caching, we will end
up with a network that stores sufficient site replicas,
while keeping the most popular pages of all sites at the
caches of the available servers. Deciding the percent-
age of storage space to devote in caching should not
be an ad-hoc process. Therefore, we developed an an-
alytical model that predicts the hit ratio of the LRU
cache replacement scheme, given site access frequen-
cies and the available storage capacity.

A recent study [6] addressed this problem from a
different point of view. Motivated by the same obser-
vations, the authors proposed a few clustering tech-
niques to efficiently group web pages into clusters.
They also provided some heuristic algorithms for the
cluster-based replica placement problem, and showed
that clustering can improve considerably the perfor-
mance, compared to coarse-grain (i.e., per site) replica-
tion. Their work, however, is orthogonal to ours, since
it essentially deals with the problem of constructing
clusters for efficient replication.

Our primary contributions in this paper include the
following: (i) we develop an analytical model to char-
acterize the LRU cache replacement policy, which can
be used independently and (ii) we show that the hy-
brid distribution policy outperforms both stand-alone
replica placement and pure caching.

2.2. Previous Work

The implementation of a CDN service essentially in-
volves three major design considerations: (i) replica
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placement, i.e., where and which documents to repli-
cate, (ii) where to redirect a client request (i.e., which
server), and (iii) who makes the redirection decision,
e.g., client, server, DNS. In this paper we mainly fo-
cus on replica placement algorithms, but the reader
may refer to [20] for a more complete survey on Inter-
net data replication.

Models for replica placement date back to early 70s
under the context of the file allocation problem (FAP)
[7] and received attention from diverse research areas,
e.g., distributed databases [1], video servers [4], etc.
[14] provides a thorough categorization of replica place-
ment papers and the assumptions they use. An old sur-
vey of FAP formulations can be found in [8]. The ba-
sic form of the FAP is the following: given a network
with N servers and M files exhibiting various read fre-
quencies from each server, allocate replicas in order to
optimize a performance parameter, subject to certain
constraints. Usually, the resulting problem is (0,1) in-
teger programming, NP-complete, and requires heuris-
tics to solve.

In the context of CDNs, FAP-like formulations were
used in [2, 12, 13, 19, 24, 27, 28], to name a few.
The target functions considered in these papers include
client-replica distance [12], read access cost [13, 24],
read and update cost [2, 19, 28], and replica availabil-
ity [27]. Depending on the formulation various con-
straints were considered, e.g., server storage capacity
[2, 13, 19], processing capacity [24], bandwidth [12],
etc. Another distinguishing factor for the above papers
is whether they tackle the dynamic version of the prob-
lem. [2, 24, 28] are works towards this direction. Given
an input stream of requests, they alter replica distrib-
ution so as to minimize the total answering cost (po-
tentially after each request). [24] also aims at balanc-
ing the load between the replicators. Load balancing is
also the target of [11] with the assumption that the net-
work has a tree structure, while it is also considered in
[29], where the problem is replicating the contents of a
single site.

Another option to formulate replica placement is by
using the k-median problem [21], which can be briefly
described as follows: given a graph with weights on the
nodes representing number of requests, and lengths on
the edges, place k servers on the nodes, in order to min-
imize the total network cost. The difference between k-
median and FAP formulations, is that k-median decides
about the replicas of a single object and, therefore, con-
secutive calls must be executed in order to distribute all
objects. [12, 17, 23, 25] are papers based on k-median
formulations. In [17] the authors solve the problem
to optimality for a tree network, using dynamic pro-
gramming. [23] proposes a greedy heuristic that out-

performs dynamic programming in non-tree networks,
while [12] compares various heuristics and concludes
that a greedy one that performs back tracking offers the
better results. Finally, [25] provides heuristics specifi-
cally tailored for the Internet topology.

Here, we take advantage of past research on replica
placement, in order to build the model of Section 3.
More specifically, we use a FAP-like formulation with
the target function representing read costs. Since our
scope is large CDN providers, we also included storage
capacity constraints. Our goal is not to propose a new
replica placement scheme, but rather provide evidence
that such schemes when coupled with caching, perform
considerably better. Therefore, this work is complimen-
tary with the above described efforts.

To conclude, in a recent study [15], the authors in-
vestigate how replica placement algorithms perform
compared to pure caching. Using extensive simulation
experiments, they compare the majority of the replica
placement algorithms from the literature, and conclude
that a simple delayed-LRU caching scheme can perform
close to the best replica placement algorithms. How-
ever, they acknowledge that replica placement is essen-
tial for reasons such as reliability and availability. Their
findings are supportive for our research, since they il-
lustrate the need for a hybrid approach.

3. System Model

Consider a generic CDN infrastructure consisting of
N geographically distributed servers. Let S(i), s(i) be
the name and the total storage capacity (in bytes) of
server i, where 1 ≤ i ≤ N . The N servers of the sys-
tem are interconnected through a communication net-
work, and the communication cost between two servers
S(i) and S(j), denoted by C(i, j), is the cumulative cost
of the shortest path between the two nodes (e.g., the
total number of hops). We assume that the values of
C(i, j) are known a priori, and that C(i, j) = C(j, i).

Let there be M different web sites, named
{O1, O2, . . . , OM}, that have subscribed to the CDN
provider’s hosting service. The size of site Oj , denoted
by oj , is also measured in bytes. Each site j consists of
Lj distinct objects, named {Oj1, Oj2, . . . , OjLj

}, and
the popularity of these objects follows the Zipf-like dis-
tribution with parameter θj .

The replication policy assumes the existence of one
primary copy for each site in the network. Let SPj

be the site which holds the primary copy of Oj , i.e.,
the only copy in the network that cannot be deallo-
cated, hence referred to as primary site of Oj . Each
primary site SPj contains information about the whole
replication scheme of Oj . This can be done by main-
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taining a list of the servers that the jth site is repli-
cated at, called from now on the replicators of Oj .
Moreover, every server S(i) stores a two-field record
for each site. The first field is the primary site SPj of
it, and the second the nearest server SN

(i)
j of server i,

which holds a replica of Oj . In other words, SN
(i)
j is

the server for which the requests from S(i) for Oj , if
served there, would incur the minimum possible com-
munication cost. It is possible that SN

(i)
j = S(i), if

S(i) is a replicator of Oj . Another possibility is that
SN

(i)
j = SPj , if the primary site is the closest one hold-

ing a replica of Oj .
Finally, we assume that the storage capacity at each

server can be used for both replication and caching.
Consequently, the overall functionality of the CDN sys-
tem may be summarized as follows. Whenever a client
issues an HTTP request for one of the M hosted sites,
the DNS resolver at the client side will reply with the
IP address of the nearest, in terms of network distance,
server. We will call this server a first hop server. The
first hop server will act essentially as a proxy server,
and if the requested document is neither replicated nor
cached locally, it will redirect the client request to the
appropriate server (i.e., the corresponding SN

(i)
j ). The

HTTP reply will be sent back to the CDN server, which
in turn will forward it to the client, and also keep a copy
in its local cache.

3.1. Problem Formulation

Let r
(i)
j be the number of requests for Oj , initiated

from the client population behind S(i) during a cer-
tain time period. Our objective is to minimize the to-
tal cost, due to object transfer. Let R

(i)
j denote the to-

tal cost due to S(i)’s requests for site Oj , addressed to
the nearest server SN

(i)
j . This cost is given by the fol-

lowing equation

R
(i)
j = [r(i)

j − l
(i)
j ]C(i, SN

(i)
j )

where l
(i)
j is the number of requests that are satisfied lo-

cally by S(i). Notice, that if SN
(i)
j = S(i) (i.e., S(i) is

a replicator of Oj), r
(i)
j = l

(i)
j and R

(i)
j = 0. Otherwise,

l
(i)
j will represent the total number of requests served
by the local cache. Therefore, the cumulative cost, de-
noted by D, is given by

D =
N∑

i=1

M∑

j=1

R
(i)
j

Let us define an N × M replication matrix, named
X, with boolean elements. An element Xij of this ma-

trix will be equal to 1 if Oj is replicated at S(i), and
0 otherwise. Then, the replica placement problem may
be formulated as follows

1. Find the assignment of 0,1 values at the X matrix
that minimizes D.

2. Subject to the storage capacity constraints

M∑

j=1

Xijok ≤ s(i), ∀i = 1, 2, . . . , N

3.2. Cache Hit Ratio

In order to quantify the benefit of caching as part
of a generic CDN architecture, we need an analytical
model that can predict the achievable hit ratio under
various system parameters. Assuming a simple LRU
cache replacement policy, we derive, in the following
paragraphs, an approximation for the cache hit ratio
that can be achieved at a single CDN server for a spe-
cific web site.

Let us consider the general case of server S(i) and
site Oj . The LRU cache may be modeled as a buffer
that can store a finite number of objects B (Figure 1).
Since the object size for web documents is variable, B
is approximated by c(i)/oi, where c(i) is the amount of
storage space allocated for caching, and oi is the aver-
age request size. When an object Ojk is first stored in
the cache, it occupies the rear part of the buffer (i.e., it
becomes the most recent one). If this object is not re-
quested again for a long period of time, it moves grad-
ually towards the front part of the buffer, and is even-
tually evicted from the cache after K ≥ B subsequent
object requests. If, on the other hand, Ojk is requested
before its eviction, it moves back to the rear of the
buffer.

1 2 i B

Most recent Least recent

Figure 1. The LRU buffer.

Assuming that each object is requested indepen-
dently of the others, we calculate the steady-state prob-
ability that a specific object Ojk is present in the cache
of server S(i). In steady-state, this object spends on
average h̄ time slots (i.e., request instants) inside the
cache, followed by m̄ time slots during which it is not
present in the cache. These two time intervals may be
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calculated as follows

h̄ =
K∑

i=1

(i + h̄)pi−1(1 − p) +
∞∑

i=K+1

Kpi−1(1 − p)

=
p−K − 1

1 − p

m̄ =
∞∑

i=1

ipi−1(1 − p) =
1

1 − p

where p is the probability that Ojk is not requested.
Then, the steady-state probability h

(i)
jk that Ojk is

present in the LRU cache of sever S(i) is equal to

h
(i)
jk =

h̄

h̄ + m̄
= 1 − pK

which is essentially the probability that this object is
requested at least once within K consecutive time slots.
Therefore, the hit ratio for the whole site Oj is equal
to

h
(i)
j =

Lj∑

k=1

[1 − (1 − p
(i)
j

αj

kθj
)K ] · αj

kθj
(1)

where p
(i)
j = r

(i)
j /

∑M
k=1 r

(i)
k is the popularity of Oj at

S(i), and αj is the normalization factor for the Zipf-like
distribution.

The only unknown variable in the above formula is
K, i.e., the expected number of time slots that an ob-
ject may spend in the cache before it is evicted, given
that it is never requested. Consider the general case,
where an object enters the cache at position 1, gradu-
ally moves towards the front of the buffer, and finally
arrives at position B without ever being requested. Let
us first determine what happens when the object is in
a random place inside the buffer (e.g., position i in Fig-
ure 1). During each time slot, it either stays at posi-
tion i with probability pi or moves to position i+1 with
probability 1− pi, where pi is the cumulative probabil-
ity that one of the objects in positions 1 through i− 1
is requested (i.e., the objects in the shaded part of the
buffer in Figure 1). Therefore, the expected number of
time slots spent at each position i is equal to

ti =
∞∑

j=1

jpj−1
i (1 − pi) =

1
1 − pi

In order to approximate K, we make the following
simplifying assumption. We assume that when the ob-
ject in question has been pushed to the front of the
buffer (i.e., at position B), all the previous positions are
occupied by the B−1 most popular objects. Let pB de-
note the cumulative probability that any one of these

objects is requested at a given time slot. This proba-
bility may easily be calculated by sorting all the indi-
vidual objects according to their popularity, and then
selecting the top B − 1 among them. Moreover, we as-
sume that, while this object is pushed from position 1
towards position B, the popularity of every newly in-
serted object will be equal to pB/(B − 1) (i.e., all the
new objects will have identical popularity). Thus, K
may be approximated as follows

K =
B∑

i=1

ti =
B∑

i=1

1
1 − (i − 1) pB

B−1

(2)

3.3. Cache Consistency and Uncacheable
Documents

Before we continue, we should briefly discuss two
issues that may affect the performance of a caching
scheme. The first one is cache consistency, which tack-
les the problem of staleness in cached objects. Depend-
ing on the level of staleness allowed, consistency mech-
anisms fall in two categories: strong consistency (ac-
cessed copies are always up to date) and weak consis-
tency (accessed copies might be stale). There has been
an extensive amount of literature work on cache con-
sistency mechanisms, so we do not address this prob-
lem in our present work. We assume that an appropri-
ate consistency mechanism is implemented inside the
CDN architecture, according to the specific policy of
the CDN provider. However, we should point out two
facts which are relevant to our work: (i) the stability
of the CDN architecture (i.e., fixed number of servers
and web sites) makes it easier to enforce strong con-
sistency (e.g., through server-based invalidation [18]),
and (ii) the study in [22] showed that the duration be-
tween successive modifications of an object is relatively
large (between one and 24 hours), hence the probabil-
ity of requesting a stale object is very small.

The second issue is related to HTTP requests, which
return uncacheable objects. URLs containing “cgi-bin”
or “?” substrings, for instance, are considered as un-
cacheable at proxy servers. Furthermore, the content
provider might explicitly prohibit certain pages, such
as advertisement banners, from being cached. If these
types of requests are frequent, they will affect the per-
formance of the caching mechanism, since the value of
h

(i)
j in Equation (1) will become an overestimation of

the actual hit ratio. To overcome this problem, we as-
sume that each web site Oj provides an estimation of
the fraction λj of requests that return uncacheable doc-
uments. The values of λj can be calculated by analyzing
the log files at the CDN servers. Then, the hit ratio h

(i)
j
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may be adjusted by multiplying it with (1−λj), i.e., the
probability that the requested document is cacheable.

4. The Hybrid Algorithm

The stand-alone replica placement problem with
storage capacity constraints has been shown to be NP-
complete (e.g., in [13, 19]) and thus can not be solved
to optimality. Various heuristics have been proposed
in the literature, as discussed in Section 2.2. Notice
that from an algorithmic perspective, the only real
difference between the stand-alone replica placement
problem and the hybrid case is in the computation
of the cost function D (which, in the later case, in-
cludes the cache hit ratio). Therefore, it is easy to see
that most heuristics for the replica placement prob-
lem can be suitably modified to account for the hy-
brid case. Clearly, applying such modifications to all
the main heuristics proposed in the literature exceeds
the scope of the paper, which rests in demonstrating
that combining replication and caching yields consid-
erable performance gains compared to stand-alone ap-
proaches. Thus, we chose as our evaluation basis the
greedy-global heuristic [13, 15, 23] which, as shown
in [14], achieves very good solution quality. Greedy-
global performs in iterations; during each iteration, all
the server-object pairs are compared, and the one that
produces the largest benefit value is selected for repli-
cation. The heuristic terminates when all the servers
reach their storage capacity, or the remaining possi-
ble replica creations result in negative benefit.

The hybrid case begins with a CDN network that
only stores the primary replicas, meaning that all stor-
age space is given to caching. During each iteration, all
possible replica creations are evaluated, and the best
one is selected. The evaluation consists of calculating
the benefit due to the new replica, and comparing it
to the cost increase due to restricting the cache size
(i.e., decreasing the cache hit ratio). If it is larger, the
replica becomes a candidate. At the end of the itera-
tion, the best replica candidate is selected and created.
The detailed pseudo-code is illustrated in Figure 2.

Lines 1–4 constitute the initialization part of the al-
gorithm. It is assumed that all the storage capacity
is allocated to caching, and the initial per site hit ra-
tios, as well as the total initial cost, are calculated. The
“for” loop in lines 7–17 is the main part of the algo-
rithm, whereby the benefit value bij for every server
S(i) and site Oj is calculated. Specifically, line 9 is the
local benefit for server S(i), while lines 14–17 take into
consideration the relative benefit for any server S(k) for
which S(i) is closer than the current SN

(k)
j . Further-

more, the benefit value is properly adjusted in lines 10–

replicaPlacement (Input: C(i, j), r
(i)
j , s(i))

(1) D ← 0;

(2) for (all pairs S(i) and Oj)

(3) SN
(i)
j = SPj ;

(4) calculate h
(i)
j ;

(5) D ← D + (1 − h
(i)
j )r

(i)
j C(i, SPj);

(6) while (true)

(7) for (all pairs S(i) and Oj)

(8) if ((Xij = 0) and (s(i) − oj ≥ 0))

(9) bij ← (1 − h
(i)
j )r

(i)
j C(i, SN

(i)
j );

(10) for (all Ok)

(11) calculate h
(i)
k,new;

(12) ∆h ← h
(i)
k − h

(i)
k,new;

(13) bij ← bij − ∆hr
(i)
k C(i, SN

(i)
k );

(14) for (all S(k) �= S(i) with Xkj = 0)

(15) ∆c ← C(S(k), SN
(k)
j ) − C(S(k), S(i));

(16) if (∆c > 0)

(17) bij ← bij + ∆c(1 − h
(k)
j )r

(k)
j ;

(18) select pair (S(i), Oj) with max benefit bij ;
(19) D ← D − bij ;
(20) Xij ← 1;

(21) s(i) ← s(i) − oj ;
(22) for (all Ok)

(23) h
(i)
k ← h

(i)
k,new;

(24) for (all S(k) �= S(i) with Xkj = 0)

(25) update SN
(k)
j ;

(26) return X, D;

Figure 2. The hybrid algorithm.

13, since the new replica will effectively reduce the hit
ratios of all the non-replicated sites at S(i) (the LRU
buffer size B will decrease). Finally, lines 19–25 per-
form some book-keeping operations to account for the
new replica.

The complexity of this greedy algorithm is
O(RMN2 + RM2N), where R is the total num-
ber of replicas created. For comparison reasons,
the complexity of the typical greedy global algo-
rithm (with no caching) is O(RMN2). Notice, how-
ever, that we make the implicit assumption that the
complexity of evaluating the hit ratio h

(i)
k,new in line

11, is O(1). In the following paragraphs we intro-
duce some implementation details to justify the above
assumption.

First, consider the approximation of K in Equation
(2), which essentially involves the sorting of L elements
for the estimation of pB . L is the total number of ob-
jects available for caching, i.e., all the objects for which
the corresponding sites are not replicated. In the sim-
ulation experiments, though, we observed that calcu-
lating K during each iteration, produced the same re-
sult as in the case where K was only calculated once at
the initialization step of the algorithm (line 4 in Fig-
ure 2). The intuitive explanation is that whenever the
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objects of a site Oj are removed from the sorted list,
the popularity of the rest of the objects is increased
accordingly, thus keeping the value of pB at approxi-
mately the same level.

Having made this simplification, estimating the hit
ratio from Equation (1) is trivial. Notice, that h

(i)
j de-

pends only on the site popularity p
(i)
j and the value of

K. Then, the obvious solution to achieving the O(1)
complexity, is to pre-compute (off-line) the hit ratio of
each site Oj under different values of p

(i)
j and K. In the

simulation experiments, the granularity of p
(i)
j for the

pre-computed values was set to 10−5, while the granu-
larity of K was set to 500 time slots.

5. Simulation Experiments

5.1. Simulation Setup

Network topology : We consider a CDN infrastruc-
ture consisting of N = 50 servers, which is required
to provide hosting service to M = 200 web sites. Us-
ing the GT-ITM topology generator [5], we generated a
random transit-stub graph with a total of 1560 nodes,
and then placed each server and primary site inside
a randomly selected stub domain. Using Dijkstra’s al-
gorithm, we calculated the shortest path (in terms of
number of hops) from each server S(i) towards every
other server S(k) and primary site SPj . Since the per-
formance metric is the response time of HTTP re-
quests, we set the propagation, queueing and process-
ing delay inside the core network to be equal to 20
ms/hop. Finally, we consider the case of homogeneous
servers, i.e., all the servers have the same storage ca-
pacity s (given as a percentage of the cumulative size
of all the web sites).

Datasets : Although many web proxy traces are avail-
able for analysis, to the best of our knowledge no CDN
log files exist in the public domain. Using proxy traces
in the experiments would be inappropriate, since they
account for the requests towards one server. Therefore,
we decided to use the SURGE model [3] in order to
generate a separate synthetic workload for each of the
200 web sites in our simulation. For simplicity, we used
the same parameters θj and Lj for all the web sites,
but we varied the total number of requests for each
site in order to make the trace more realistic. Specifi-
cally, we generated 50 sites of low popularity, 100 sites
of medium popularity and 50 sites of high popularity.
Furthermore, the popularity of each site Oj at server
S(i) followed a normal distribution with mean µ = 1/N
and standard deviation σ = 1/4N . However, we lim-
ited the possible values in the interval µ ± 3σ.

5.2. Simulation Results

In this section we compare the performance, in terms
of user-perceived latency, of the following three content
delivery mechanisms.

1. Replication: This is the stand-alone replica place-
ment algorithm, using the greedy global approach
[13].

2. Caching : All the storage capacity at the servers
is allocated to caching. It is included in the ex-
periments for comparison reasons only, since pure
caching has its own administrative shortcomings.

3. Hybrid : This is the combined caching and replica
placement algorithm introduced in Figure 2.

For reasons of fairness, we allowed an appropriate
warm-up period before measuring the performance of
the different alternatives, in order for the caches to
reach their steady-state.

In the first experiment, we consider the case where
all the requested objects are allowed to be cached at
the CDN servers (i.e., λ = 0). These results will give
us an indication of the “upper-bound” on the perfor-
mance of the pure caching scheme. Figure 3 illustrates
the relative performance of the various mechanisms for
two different server capacities. Specifically, these fig-
ures depict the cumulative distribution function (CDF)
of the response time, i.e., the percentage of requests
that are satisfied within a certain time period. From
these graphs we can get a clear picture of the poten-
tials and limitations of each technique. First, the re-
sult of pure replication is a very normal distribution of
the user-perceived latency. The majority of client re-
quests experience the average response time and only a
small percentage of the requests receive better or worse
service. Caching, on the other hand, produces a more
“heavy-tailed” distribution for the response time. In
particular, a large fraction of the requests are satis-
fied locally at the CDN servers (the 20 ms value cor-
responds to requests being satisfied at the first hop
servers), while a significant amount of client requests
experience relatively large delays. Finally, the hybrid
approach is able to offer the best performance overall.
It has a high hit ratio at the first-hop servers, but also
avoids excessive delays, by placing the right amount of
replicas at the CDN servers. Consequently, the CDF
curve of the hybrid scheme is a combination of the pre-
vious two: it initially follows the curve of the caching
scheme for small delays, and later coincides with the
curve of the replication scheme for larger delays. Over-
all, the hybrid approach outperformed the pure repli-
cation policy by approximately 40% on average, and
the pure caching by 15% roughly.
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Figure 3. Performance comparison of different
content delivery mechanisms (λ = 0).

The second experiment investigates the performance
difference between the hybrid policy and simple repli-
cation, under a scenario that does not favor caching.
Specifically, we consider the case where 10% of the re-
quests involve objects that have expired, and assume
that the CDN imposes strong consistency. This means
that site replicas are always consistent, while cached
pages must be refreshed (accounting for additional de-
lay). The detailed results are illustrated in Figure 4
and may be summarized as follows. The hybrid ap-
proach still outperforms both the caching and replica-
tion counterparts. As expected, the performance gain
against pure replication is decreased, but it is still in
the order of 30% (on average). However, the perfor-
mance gain against caching is increased, now reach-
ing 20%. The same trends identified in Figure 3 also
hold true in Figure 4. In general, the hybrid algorithm
predicts accurately the relative benefit of caching and
replication, and is thus able to make the correct replica
placement decisions, in order to maximize the overall
performance.

In our next experiment we compare the performance
of the hybrid algorithm against ad-hoc approaches. In
particular, we try to answer the following question:
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Figure 4. Performance comparison of different
content delivery mechanisms (λ = 0.1).

“what if we allocate a fixed percentage of the stor-
age space to caching and run the greedy global repli-
cation algorithm for the remaining part of the stor-
age space?”. We tested two different cases, one rep-
resenting a favoring-replication ad-hoc approach and
one a favoring-caching, fixing the cache sizes to 20%
and 80%, respectively. The corresponding CDF plots
for 0% and 10% staleness are shown in Figure 5. The
main conclusion that can be drawn, is that ad-hoc ap-
proaches are not very effective. The hybrid algorithm
constantly outperforms both alternatives. Further ex-
periments with 40% and 60% cache sizes (not shown
here) confirm this. Moreover, ad-hoc approaches are
sensitive to changes in the Zipf parameter θ (fixed to
1.0 in all our experiments). The hybrid algorithm, how-
ever, takes the Zipf parameter as input and defines a
cache size that leads to higher performance, compared
to both pure replication and pure caching.

Finally, Figure 6 illustrates the accuracy of the an-
alytical model for the hit ratio of the LRU cache (Sec-
tion 3.2). It shows the predicted cost (in number of
hops) per request that is returned by the greedy algo-
rithm vs. the actual cost obtained by the trace-driven
simulation. The results are very promising, and indi-
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Figure 5. Greedy algorithm vs. ad-hoc schemes.

cate that the proposed model can provide a very accu-
rate approximation of the achievable hit ratio at differ-
ent CDN servers. It tends to slightly overestimate the
total cost, especially for large buffer sizes, but the over-
all error is less than 7%.

5.3. Discussion

The overall conclusion is that combining caching and
replica placement mechanisms yields significantly bet-
ter performance compared to the stand-alone versions.
This performance improvement is due to the follow-
ing two facts: (i) a sufficient number of replicas are
stored in the network so that the maximum delay is
bounded, and (ii) the most popular pages from all the
available sites are stored locally at each server so that
a large percentage of requests do not need to be redi-
rected. Another advantage of the hybrid approach is
the low administrative overhead for the CDN system.
Specifically, the caching part operates locally in a com-
pletely decentralized manner, while the per site repli-
cation approach is very scalable and easy to maintain
in terms of the redirection mechanisms.

We have shown that against a per-site replication
scheme, the client-perceived latency can be reduced
considerably (30%-40%). Judging from the fact that
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Figure 6. Accuracy of the LRU hit ratio approxi-
mation.

the hybrid scheme also outperforms pure caching (15%-
20%), we expect that against a per-cluster replication
scheme hybrid will again be the winner with the la-
tency reduction varying in between the per-site replica-
tion and the caching case (depending on how the clus-
ters are constructed [6]). Proving the validity of the
above claim is left for future work.

6. Conclusions

In this paper we investigated the potential perfor-
mance improvements by combining replica placement
and caching techniques in CDN architectures. In order
to avoid ad-hoc solutions, we introduced an analyti-
cal model to predict the relative benefits of each tech-
nique. The model itself estimates, within a very small
error margin, the expected hit ratio of an LRU caching
mechanism, and can be used as stand-alone mechanism
whenever such estimations are required. We proposed
a hybrid algorithm, based on the greedy approach, in
order to solve the combined caching and replica place-
ment problem. Simulation results indicate that there
is indeed much room for performance improvement,
compared to stand-alone replication or caching mech-
anisms. More specifically, savings up to 40% in user-
perceived latency were observed, under various system
parameters. These findings illustrate clearly that the
hybrid algorithm successfully inherits the merits from
both replica placement (bounding the maximum client-
object distance) and caching (allocating the most pop-
ular objects in first-hop servers). Towards the ques-
tion of whether to use caching or replication in a
CDN infrastructure and more generally in distributed
Web servers, the paper provides evidence that the best
choice is to use both.
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