
A General Framework for Searching in Distributed Data Repositories

Spiridon Bakiras� Panos Kalnis� Thanasis Loukopoulos� Wee Siong Ng�

�Department of Electrical & Electronic Engineering �School of Computing
The University of Hong Kong National University of Singapore
Pokfulam Road, Hong Kong 3 Science Drive 2, Singapore 117543

sbakiras@eee.hku.hk �kalnis, ngws�@comp.nus.edu.sg

� Department of Computer Science
Hong Kong University of Science and Technology

Clearwater Bay, Hong Kong
luke@cs.ust.hk

Abstract

This paper proposes a general framework for searching
large distributed repositories. Examples of such reposito-
ries include sites with music/video content, distributed dig-
ital libraries, distributed caching systems, etc. The frame-
work is based on the concept of neighborhood; each client
keeps a list of the most beneficial sites according to past ex-
perience, which are visited first when the client searches for
some particular content. Exploration methods continuously
update the neighborhoods in order to follow changes in ac-
cess patterns. Depending on the application, several vari-
ations of search and exploration processes are proposed.
Experimental evaluation demonstrates the benefits of the
framework in different scenarios.

1. Introduction

The tremendous growth of Internet has simplified the
process of publishing and sharing information. A variety
of data, ranging from simple text files to entire scientific
databases, and from still images to high quality sound and
video streams, exists on-line. Searching in the numerous
available data repositories is an essential function, which is
complicated due to the unstructured nature of the Web.

Many data repositories follow a centralized architecture.
Users pose their queries to the server, which searches its
index and returns links to the sites that contain the results.
Typical examples in this category are web search engines
(e.g., Google) and music distribution systems (e.g., Nap-

ster). Changes of the source data are reflected to the central
index either by periodically polling the source sites (e.g.,
web crawling [2]), or by allowing the sites to notify the
server whenever updates occur.

Centralized systems suffer from several drawbacks: (i)
they cannot follow high-frequency changes in the source
data, (ii) they require expensive dedicated infrastructure
(i.e., high-end server farms, fast network connections, etc.),
(iii) they exhibit a single point of failure, (iv) legal reasons
may prevent the accumulation of information at a central
location (e.g., the case of Napster). As an alternative, sev-
eral distributed systems have been proposed. In this case
there is no form of centralized catalogue; instead, queries
are propagated through the network and each node returns
to the initiator the parts of the result that it may contain.

Several forms of distributed data repositories are already
in use for a wide range of applications. An example is
the Squid system [8], for cooperative web proxies. When
a local miss occurs at some proxy, the proxy searches its
neighbors for the missing page in order to avoid the delay
of fetching the page from the corresponding server. An-
other case of distributed data repositories are music sharing
systems (e.g., Gnutella ). In this case the nodes of the repos-
itory are users’ computers and the content is mp3 files. A
request for a song is propagated through the network and a
list of nodes that can serve it is returned.

The above systems have several differences. For exam-
ple, in web caching a large proxy can serve requests from
various smaller ones without forwarding any requests to
them. In music sharing on the other hand, each neighbor
of a node � is both incoming (i.e., sending requests to �)

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



and outgoing (i.e., receiving requests from �). Furthermore,
the search process can be extensive (i.e., retrieving numer-
ous nodes containing the requested result) or limited (i.e.,
terminating when the first result is found). It can be guided
by the existence of local indexes representing the contents
of other nodes (e.g., cache digests), or random.

Despite the differences, all forms of distributed search
have some common characteristics. First the number of
neighbors for each node is restricted in order to avoid
the network and CPU overhead of processing an excessive
number of requests. Second, in all cases the quality of
content sharing is maximized by an appropriate choice of
neighbors, so that nodes with similar access patterns (e.g.,
in Squid and PeerOlap) or interests (e.g., in Gnutella) are
grouped together. Third, the neighborhood structure should
continuously update the best neighbors of a node.

Motivated by these observations we propose a general
framework for searching in distributed data repositories
without centralized coordinators. The framework is based
on the concept of dynamic reconfiguration, which adapts
the neighborhood structure according to the evolving query
patterns, and can capture all cases discussed above with ap-
propriate parameter tuning.

The rest of the paper is organized as follows: Section
2 overviews related work on distributed data repositories.
Section 3 describes the framework and the related search
algorithms. Section 4 presents the case study on music-
sharing scenario. Section 5 concludes the paper with a dis-
cussion on future directions.

2. Related Work

Searching in distributed data repositories is an impor-
tant issue in Peer-to-Peer1 (P2P) systems [9]. Such systems
allow the sharing of resources among autonomous peers
whose participation is ad-hoc and highly dynamic.

Here we are interested in P2P systems like Gnutella,
where search is distributed. When a new peer �� wishes
to join the network, it first obtains the address of an arbi-
trary peer. A peer � broadcasts a query to all its neighbors,
which propagate it recursively. If any of the visited peers
contains a result, it sends it back to � via the reverse route.
A peer can also broadcast exploration messages, when some
of its neighbors abandon it (i.e., go off-line).

Yang and Garcia-Molina [10] observed that the Gnutella
protocol could be modified in order to reduce the number of
nodes that receive a query, without compromising the qual-
ity of the results. They proposed three techniques: (i) It-

1The term “P2P” has been used in the database literature to identify
systems where each node may act both as a server and a client assuming
static configuration [4]. Such systems are generalizations of the traditional
client-server model and standard techniques can be applied. Here, “P2P”
refers to dynamic systems with ad-hoc participation.

erative Deeping2, where multiple search cycles are initiated
with successively larger depth, until either the query is satis-
fied or the maximum depth � is reached. (ii) Directed BFT,
where queries are propagated only to a beneficial subset of
the neighbors of each node. (iii) Local Indices, where each
node maintains an index over the data of all peers within �
hops of itself, allowing each search to terminate after �� �

hops. All three techniques are orthogonal to our methods
and can be employed in our framework in order to further
reduce the query cost.

The network configuration in the above-mentioned sys-
tems is static. This fact introduces two major drawbacks:
(i) peers with slow links become the bottleneck since nu-
merous queries are propagated through them, and (ii) the
relation between peers may become unbalanced, if a peer
only requires, but refuses to provide any content.

Most of the existing P2P systems aim at content sharing.
PeerOlap [3] is a P2P system for data warehousing applica-
tions. PeerOlap acts as a large distributed cache for OLAP
results by exploiting underutilized peers. When a query is
posed, the initiating peer decomposes it into chunks, and
broadcasts the request for the chunks in a similar fashion
as Gnutella. However, unlike Gnutella, PeerOlap employs a
set of heuristics in order to limit the number of peers that are
accessed. Missing chunks can be requested from the data
warehouse. Towards minimizing the query cost, PeerOlap
also supports adaptive network reconfiguration.

The previous discussion applies to ad-hoc dynamic P2P
networks without any guarantee on the availability of re-
sources. By allowing strong control over the topology of
the network and the contents of each peer (e.g., special case
where all peers belong to the same organization), queries
can be answered within a bounded number of hops, since
search is guided by a hash function. Chord [7], CAN [5]
and Pastry [6] belong to this category. Such configurations
are outside the scope of this paper.

3. Dynamic Reconfiguration

The general framework for dynamic neighbor reconfigu-
ration includes: i) search in order to satisfy user requests, ii)
exploration in order to identify new potential neighbors, iii)
neighbor update, which is the process of selecting a new set
of neighbors. In this section we illustrate each mechanism
after providing some necessary definitions.

3.1. Neighbor Relations

Consider � repositories, connected through a network.
We distinguish two kinds of neighboring relations between

2In [10] the term “frozen queries” is used to indicate queries that will
move one hop further at the next iteration of BFT. Throughout this paper,
we use the same term with different meaning.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



the repositories: symmetric and asymmetric. A relation is
symmetric if both ends can forward requests to each other;
otherwise, it is asymmetric. In the general case each repos-
itory �� maintains two neighbor lists, one with the outgoing
neighbors, to which it forwards its own requests (denoted by
��), and one with the incoming neighbors, from which it re-
ceives requests (denoted by � ��). The lists themselves contain
all, or a subset of the available repositories (presumably due
to limitations on the available bandwidth and processing ca-
pacity). The network is said to be consistent, if there does
not exist a pair of nodes ��, �� such that �� � �� � �� �� ���,
i.e., �� is an outgoing neighbor of ��, without �� being an
incoming neighbor of �� . Depending on the list contents,
three situations are of particular interest:

All to All lists: The list of outgoing (��) and incoming (� ��)
neighbors for each �� contain all � repositories. Such a case
happens, for instance, when the repositories are organized
in a single multicast group [11]. In order to avoid unneces-
sary resource consumption, this category is applicable only
for small values of � .

Asymmetric lists: When the lists �� and ��� contain dif-
ferent nodes, then the neighborhood relation is asymmet-
ric. A case of special interest, which we call pure asymmet-
ric, is when the capacity of the incoming list � �� is � (i.e.,
every node �� can be the outgoing neighbor of all reposi-
tories). Under the pure asymmetric assumption the neigh-
bor network is always consistent, regardless of independent
changes in the outgoing neighbor lists. This enables nodes
to select neighbors based solely on their own criteria. An
example of pure asymmetric lists can be found in the top-
most level proxies of the Squid caching hierarchy [1], which
are configured to accept requests from all low-level proxies
without the opposite being true.

Symmetric lists: �� and ��� contain the same reposito-
ries. The case leads to symmetric relations for ��, and is of
practical interest whenever neighboring relations must as-
sure that both ends benefit from cooperation. Notice that
in the symmetric case any neighbor’s (let �� ) addition in
�� or deletion from � ��, will make the network inconsistent,
unless being accompanied by the respective changes in � �

�

and �� . Therefore, neighbor configuration decisions can no
longer be taken individually, but they must be the result of
an “agreement” that involves a pair of repositories. As an
example of symmetric relations, consider the Gnutella file
sharing system, where each user (acting as a repository) is
configured to send and accept queries from a fixed number
of neighbors.

3.2. Search

A request arriving at a repository can either be satisfied
locally, or propagated through the neighbor network un-
til some node(s) return results, or a terminating condition

is reached. A generic search algorithm is shown in Algo.
1, assuming that propagation stops at nodes that can serve
the request. Notice, however, in some systems (e.g., music
sharing), a node may still forward the request even if it can
serve it, in order to maximize the number of the results.

On End-user Request Arrival
If the request can not be satisfied locally

Select one or more outgoing neighbors and
forward the request /*use summary info if available*/
Obtain results and update statistics

On Neighbor Request Arrival
Send Reply /*either results or NOT FOUND*/
If the request was not satisfied locally

If propagation terminating condition is not met
Select one or more outgoing neighbors

and forward the request

Algo. 1. Search algorithm.

The algorithm distinguishes the case when i) a request
arrives from an end-user, or ii) it arrives from another repos-
itory. The main parameters are the propagation terminating
criterion and the set of neighbors where the request should
be sent to. A common threshold in many distributed sys-
tems for the first parameter, is the maximum number of hops
that a request may perform. Obviously, a large number fa-
vors extensive search at the expense of network overload-
ing. The extent of the search process depends on whether
there exists a central/alternative repository that can satisfy
the request. For instance, in distributed web caching the
web servers play this role, while in music sharing systems
such alternatives are not available. As a result, most Squid
implementations define the number of hops to be 1, i.e.,
only the immediate neighbors are searched before the re-
quest is sent to the web server, whereas Gnutella allows up
to 7 hops, since there is no alternative redirection point.

The process of selecting the neighbors to forward a re-
quest can take various forms, from the simple �	
�� � ���
approach to random, or history based selection. The choice
of strategy depends on the general system goals. For in-
stance, if bandwidth consumption is of lesser importance
(due to the availability of a high capacity line) the �	
�� �
��� approach may be preferable.

3.3. Exploration

Whereas search concerns the retrieval of actual content,
the goal of exploration is to identify beneficial nodes that
may become neighbors. As an example, consider the web
caching environment where, as mentioned before, a proxy
sends directly to the web server a request that cannot be
served by the first degree neighbors. Unless the proxy ex-
plicitly initiates an exploration process, it cannot obtain
information about the contents of distant nodes. Another
type of exploration is performed in Gnutella by nodes that
seek new neighbors (possibly because a previous neighbor

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



logged-off). In particular, such nodes issue a dummy query
(called ���) and join the neighborhood of other nodes
(with free neighbor slots) that respond.

On Exploration Triggering Event
Select set of data items to query for
Select one or more outgoing neighbors and

forward the exploration query
Obtain results and update statistics

On Exploration Query Arrival
Return statistics and summarized information
If propagation terminating condition is not met

Select one or more outgoing neighbors and
forward the exploration query

Algo. 2. Exploration algorithm.

Algo.2 illustrates a general pseudo-code for exploration.
The process involves querying (w/o fetching) about collec-
tions of data. The neighbors that receive the query propa-
gate it until a terminating condition is reached. Having ob-
tained the results, the initiating node updates the statistics
according to which neighbor selection is performed.

Exploration is triggered when certain events occur. The
choice of events is very important since it significantly af-
fects performance. Ideally, there should be a correlation
between the exploration frequency and the frequency with
which repositories change their contents.

3.4. Neighbor Updates

Search and exploration mechanisms do not depend on
the kind of neighboring relations exhibited. Neighbor up-
dates, though, are different for the asymmetric and sym-
metric cases. The update algorithm, in its general form, is
based on the collection of statistics and the computation of
a benefit function for selecting new neighbors. In practice,
this requires maintaining information for both the neighbor-
ing and the non-neighboring nodes that were encountered
through search and exploration.

The benefit function should capture the general goals
and characteristics of the system. In distributed web proxy
caching for instance, the number of retrieved pages, com-
bined with the end-to-end latency, is a good candidate for
benefit, since page size plays little role. On the other hand,
in a multimedia sharing system, the file sizes must be con-
sidered, whereas in PeerOlap the dominating cost is the
query processing time. Clearly, the statistics depend on the
specific choice of the benefit function. Selecting appropri-
ate events to trigger neighbor updates is also very important,
since too frequent updates may be counterintuitive in some
environments, while in others they can be a prerequisite.
The events that trigger exploration are also applicable here.
Another possible event candidate is to update whenever the
statistics indicate that a non-neighboring node is more ben-
eficial than at least one of the current neighbors.

On Update Triggering Event
Sort current neighbors and nodes encountered by

exploration according to a benefit function
Select the most beneficial nodes and make them the

new outgoing neighbors
If the outgoing neighbor list is full

evict some existing neighbors
Update statistics

Algo. 3. Neighbor update (asymmetric case).

Algo.3 describes a generic algorithm for (pure) asym-
metric relations. The update process in this case is sim-
ple since once an update event has been triggered, the node
just adds the node(s) with the highest benefit in its outgoing
neighbor list ��, possibly evicting the least beneficial of the
existing neighbors.

The symmetric case, shown in Algo.4, differs from the
asymmetric one in the sense that neighbor reconfiguration
involves invitation and eviction messages (processing an
eviction message is omitted from the pseudo-code since it is
straightforward). Accepting a node as an incoming neigh-
bor involves the evaluation of a benefit function, unless the
incoming list is not full.

On Update Triggering Event
Sort current neighbors and nodes encountered by

exploration according to a benefit function
Do

Select next most beneficial node
If node was not in the previous outgoing list

Send invitation message
If positive reply

Add node in new outgoing list
If the outgoing neighbor list is full

evict some existing neighbors
While outgoing list not full && not all nodes considered
Update statistics

On Neighboring Invitation Arrival
If incoming neighbor list not full

Send positive reply to inviting node
Else If inviting node more beneficial than at least one

neighbor in the incoming list
Send positive reply to inviting node
Notify evicted node

Else Send negative reply to inviting node

Algo. 4. Neighbor update (symmetric case).

We distinguish two cases: i) a node �� that receives an in-
vitation from �� always accepts it, possibly by evicting the
least beneficial neighbor � �

� , according to the benefit func-
tion used for outgoing neighbors; ii) the invited node � � de-
cides based on the potential benefit of the inviting node. As-
sessing the potential benefit of �� , however, is not straight-
forward since �� may have no statistics about �� . Possi-
ble solutions to this situation are: a) the establishment of a
temporary relationship in order to start exchanging search
and exploration messages and gather statistics; the relation-
ship will either become permanent or will terminate after
a certain time threshold. b) the exchange of summarized
information, according to which � � can assess the potential

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



benefit. Notice, that we did not include this case in the al-
gorithms, since such information is not always available.

A neighborhood update in the symmetric case may trig-
ger other updates throughout the network. In the previous
example, if �� accepts the invitation of �� , it will evict its
least beneficial neighbor � �

� , which in turn may send an invi-
tation to another node and so on. In general, the frequency
of reorganizations should maximize the overall benefit of
sharing, while at the same time avoid overloading the net-
work with exploration and invitation/eviction messages.

4. Case Study: Adaptive Content-sharing Net-
work

In this section, we consider the case of music sharing
among end-users of Gnutella. Gnutella defines that when
a node logs in, it first contacts a specialized server and re-
trieves a number of addresses of other nodes that are cur-
rently online. The neighborhood list is then selected from
these nodes (typically each peer has 4 neighbors), and re-
mains static until a neighbor logs off the system. Both the
initial configuration and the changes are purely random, and
do not take into account the music preferences of individ-
ual users. We employ our framework to allow each node to
dynamically reconfigure its neighbors in order to minimize
the number of search hops of future requests.

4.1. Problem Parameters

Below we discuss various parameters of the general
framework for the dynamic variation of Gnutella:

Symmetric neighborhood relationships - The symmetric
relationship is imposed by the fact that each user tries in-
dependently to maximize his/her own potential for locating
interesting files. Asymmetric relations cannot achieve such
a balance; e.g., it is possible that a node with numerous
songs will be the outgoing neighbor of many other nodes
(that consume its resources), while it does not get any ben-
efit from sharing with them.

No directory information - Nodes have no information
about the contents of their neighbors’ libraries. Although it
would be possible to develop some form of summarized in-
formation (e.g., similar to routing indices), it would involve
major modifications in the Gnutella protocol.

Forced reconfiguration - Typically, Gnutella nodes re-
main active for a limited time period. This suggests that
neighbor slots become continuously available and the up-
date process must take this into account.

Infrequent Reconfiguration - Users’ preferences for
songs remain rather static. This suggests infrequent recon-
figuration once the first “beneficial” neighbors are found.

Combined search and exploration process - The absence
of a central repository and directory information enforces an

extensive search process and there is no need for a separate
exploration step. If a neighbor contains the query results, it
replies to the initiator without further propagating the query
(in order to limit the number of messages). All propagations
terminate after 5 hops.

Different importance of results - All search results are not
equally beneficial. A user will prefer to download a song
from a node with high bandwidth. Moreover, the search
process accumulates multiple results and presents them at
the initiating peer. The larger the results list, the lesser its
significance for the reconfiguration process.

Judging from the above observations, we implement
neighbor update as follows. i) Each obtained result accounts
for a benefit of ����� , where � is the bandwidth of the an-
swering link and ��� is the total number of results. Notice
that the Gnutella Ping-Pong protocol, which performs ex-
ploration, specifies that information concerning bandwidth
capacity is propagated together with the query reply. ii) Pe-
riodically, each node checks the cumulative benefit of all
nodes for which it keeps statistics, and includes in the new
neighborhood the most beneficial ones. iii) When a new
node needs to be added, an invitation message is sent. iv)
The invited node always accepts an invitation evicting the
least beneficial neighbor if necessary. v) Neighbor log-offs
trigger the update process.

Algo.5 illustrates the pseudo-code that describes the ba-
sic functionality of the system. Function Send Query cor-
responds to the combined search and exploration process as
discussed in Section 3. In particular, the initiator node �,
sends the query to its neighbors and waits for the results un-
til a time-out period is reached. The statistics from nodes
that respond are updated accordingly.

Function Process Query illustrates the actions taken by
a node �� that receives the query. First, �� checks whether it
has received the same query before (through another path),
in which case it discards it. In order to achieve this, each
node keeps a list of recent messages. If this is the first time
that �� receives the query, then (i) if �� contains the result,
it returns it to � and does not propagate the query; other-
wise (ii) if �� does not contain the result, it propagates the
query to all its neighbors, provided that the limit of hops
has not been reached. When reconfiguration occurs, the list
���� of most beneficial nodes is computed according to the
statistics. Invitation messages are sent to the ones that do
not belong to the current list of neighbors. Eviction mes-
sages are sent to the neighbors that are not in ����, and the
reconfiguration counter is reset.

When a node �� receives an invitation it always accepts
it. If �� has some empty slot it accommodates the inviting
node; otherwise, it evicts one of its current neighbors. Af-
ter the invitation is processed, �� resets its reconfiguration
counter in order to avoid updating the neighborhood in the
near future (which could trigger cascading updates).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



For the same reason, when a node �� is evicted (function
Process Eviction) it does not attempt to replace the evict-
ing neighbor (�) immediately. Node �� will obtain a new
neighbor if: (i) it receives an invitation from another node
or, (ii) reaches its reorganization threshold. Notice that � �s
statistical information is reset, so that �� will not attempt to
reconnect to � in the near future.

Algorithm Send Query
INPUT:(File: � �

for each neighbor ��
query (� ,�, ���

nlist=collect-query-result(� ,time-out)
update the statistics of each node in 	�

Algorithm Process Query
INPUT:(File: � ,Node:� (sending node), Node: ��(current node))

if the same message has been received before return
if � stored locally then reply to � and return
if limit of hops has been reached then return

for each neighbor �� of ��
query (�
 ��, ���

Algorithm Reconfigure
INPUT:(Node: ��

	���= list of (�� nodes in the old neighborhood
	��� = list of (�� most beneficial nodes
for each proxy ���� in 	��� but not in 	���

send eviction(�
 �����
reset reconfiguration counter(��

Algorithm Process Invitation
INPUT:(Node: � (originator), Node: �� (current-invited-node))

If (empty neighbor slot exists) accept invitation
Else

evict least beneficial neighbor �� according to statistics
send eviction(��
 �� �

reset reconfiguration counter(���

Algorithm Process Eviction
INPUT:(Node: � (originator), Node: �� (current-evicted-node))

reset �’s statistics

Algo. 5. Basic functionality of dynamic
Gnutella.

4.2. Simulation Settings

In the absence of any real data about the music libraries
of individual3 users, we created a synthetic dataset, which
attempts to capture the profile of the average user . We as-
sume that the search space consists of 200,000 distinct files
(songs). These songs are equally divided into � = 50 cate-
gories, which represent different music genders (e.g. pop,
jazz, rock, etc.). The popularity of the songs within each
category follows the Zipf’s law with parameter � = 0.9; the
most popular songs from each category will be shared by
many users, while the least popular ones will exist in the
libraries of only a few users.

The network consists of 2,000 users, and each user main-
tains a number of songs that follows a Gaussian distribution

3Note that the work of [9] does not apply to individual users, since it
models the aggregated statistics at the server side.

with mean 200 and standard deviation 50 (i.e. there is ap-
proximately a total of 400,000 songs in the whole network).
Each user has a favorite category (e.g., rock), and 50% of his
songs belong to this category. The other 50% of the songs
are selected from 5 other random categories (with a 10%
contribution from each category). The selection of the in-
dividual songs is based on the popularity of the song inside
its category (some popular songs are requested by most fans
in the corresponding categories - the majority of the songs
are requested by very few). The assignment of users into
categories is also performed according to Zipf’s law with
parameter � = 0.9.

Each user will stay on-line for a period of time, which
is exponentially distributed with mean 3 hours, and then go
off-line for a period of time, which is also exponentially
distributed with the same mean. Therefore, there will be on
average 1,000 users simultaneously on-line. When on-line,
each user will issue queries with the same frequency. The
category in which a query falls, matches the distribution of
the user’s preferences (i.e. with 50% probability the user
will ask for a song from his favorite category). We set the
number of songs that are requested by a query to one.

For more realistic simulations, we randomly split the
users into 3 categories, according to their connection band-
width; each user is equally likely to be connected through
a 56K modem, a cable modem or a LAN. The mean value
of the one-way delay between two users is governed by the
slowest user, and is equal to 300ms, 150ms and 70ms, re-
spectively. The standard deviation is set to 20ms for all
cases, and values are restricted in the interval �� ��.

4.3. Experimental Results

Next, we describe a set of experiments which illustrate
the performance gain of the dynamic version of Gnutella
under various settings. In all the experiments, the maximum
number of neighbors was set to 4. Unless otherwise speci-
fied, the reconfiguration threshold was set to 2 requests.

Figure 1(a) shows the total number of queries that were
satisfied during each one-hour interval for a simulated pe-
riod of 4 days. We present the results after the 12 � hour,
when the system has reached its steady-state. The maxi-
mum number of hops (terminating condition) is set to 2.
The dynamic approach clearly outperforms the static con-
figuration, and it is able to satisfy more queries. This is due
to the fact that, as the time evolves, new beneficial neigh-
bors are being discovered. These nodes can not be reached
in the static configuration, since the maximum number of
hops that a query may traverse is limited.

Figure 1(b) illustrates the corresponding overhead for
obtaining the above results. It shows the number of mes-
sages (i.e., queries) propagated in the network per hour. The
overhead of the static scheme is large because most of the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



1700

1800

1900

2000

2100

2200

2300

2400

2500

12 27 42 57 72 87
Hours

Hits

Gnutella

Dynam ic_Gnutella

(a) Number of queries satisfied.

120000

130000

140000

150000

160000

170000

180000

190000

200000

12 27 42 57 72 87
Hours

M essages

Gnutella

Dynam ic_Gnutella

(b) Query overhead.

Figure 1. The performance of the dynamic Gnutella (hops=2).

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

12 27 42 57 72 87
Hours

Hits

Gnutella

Dynam ic_Gnutella

(a) Number of queries satisfied.

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

12 27 42 57 72 87
Hours

M essages

Gnutella

Dynam ic_Gnutella

(b) Query overhead.

Figure 2. The performance of the dynamic Gnutella (hops=4).

nodes propagate the query further, since they are not able to
satisfy it. The dynamic approach, on the other hand, groups
nodes with similar content together. Thus, more queries are
satisfied in the first hop and the request is not propagated.
The performance gain, though, is limited since only up to
4�3 nodes are explored during each query.

The performance difference is significant if we allow the
queries to propagate for a larger number of hops. Figures
2(a) and 2(b) present the total number of hits and the over-
head exhibited by the systems, respectively, when the termi-
nating condition is set to 4 hops. Each query can now reach
up to � � �

�
� ��� nodes; therefore, a large number of ben-

eficial neighbors is more likely to be discovered. This fact
explains the sharp improvement in terms of query overhead.
In brief, the dynamic approach is able to produce more hits
compared to the static configuration, while at the same time
it reduces the message overhead by 50%.

The effect of neighborhood reconfiguration is illustrated
in Figure 3(a). This figure shows the average delay observed
from the moment a query is issued at a certain node, until

the first result arrives at that node. The numbers above each
column indicate the total number of results obtained. In
the static approach, the delay increases significantly when
searching is more extensive. This fact implies that most of
the results are retrieved from nodes that are far (i.e., hops)
from the originating node. Notice, however, that the to-
tal number of results also increases significantly. In the
dynamic scheme, though, most of the results come from
nearby nodes, and extensive searching is not necessary.
Therefore, dynamic neighborhood reconfiguration can pro-
vide more results compared to the static approach and, more
important, it can do that with a considerably lower delay.

In Figure 3(b), we evaluate the impact of the reconfigu-
ration threshold � on the performance of the system. When
� = 1, the total number of hits (i.e., for the whole 4-day pe-
riod) achieved by the dynamic system is similar to the static
one. This is due to the fact that any node that returns a result
will potentially become a neighbor, even if the two users do
not share the same interests. Therefore, the selected set of
neighbors may not be beneficial in the long term. Neverthe-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



300

400

500

600

700

800

900

1000

1100

1200

1300

1 2 3 4
Term inating Condition (hops)

Average Delay (ms)

Gnutella

Dynam ic_Gnutella

54392

173493

344726

517819

187394

399968

545681

(a) Average response time for first result.

320000

340000

360000

380000

400000

420000

440000

1 2 4 8 16
Reconfiguration Threshold (requests)

Total Hits

Gnutella

Dynamic_Gnutella

(b) Effect of reconfiguration period.

Figure 3. Neighborhood reconfiguration evaluation.

less, if we allow time for enough statistics to be collected,
the system can reach to a more advantageous state, increas-
ing considerably the number of hits, compared to the static
configuration. Observe that if the value of � is too large, the
system does not have the chance to perform enough recon-
figurations during the 3-hour period (on average) that a user
is on-line. Since only one neighbor is exchanged during
each reconfiguration, the entire set of beneficial neighbors
may not be identified. Therefore, the performance drops
again, converging asymptotically to the static case.

We should note, that the optimal value of �, indicated in
Figure 3(b), is based on the specific settings that were used
in our experiments. We expect that the optimal value of �

will become larger if we allow each user to stay on-line for
longer periods of time, or if we increase the frequency of
the requests for each user.

5. Conclusion

In this paper we proposed a unified framework to char-
acterize searching in distributed data repositories without
centralized indexes. We identified three distinct modules:
search, exploration and neighbor update, and provided gen-
eral algorithms which capture the functionality of diverse
systems. We applied our framework for many existing
systems, including content-sharing networks, distributed
caching and P2P DBMSs. Our study revealed that such sys-
tems can exhibit significant performance gain by incorpo-
rating dynamic network reconfiguration, in order to adapt
varying query patterns. We illustrated this idea by a case
study of an adaptive Gnutella-like content-sharing system.

Acknowledgements

The authors would like to thank Dimitris Papadias for his
contribution in various parts of this paper. Spiridon Baki-
ras is supported in part by the Areas of Excellence Scheme

established under the University Grants Committee of the
Hong Kong Special Administrative Region, China (Project
No. AoE/E-01/99). Wee Siong Ng is partially supported by
the NSTB/MOE research grant RP960668.

References

[1] National Lab of Applied Network Research, IR-
Cache project. Sanitized access logs, available at:
http://www.ircache.net/.

[2] C. Aggarwal, F. Al-Garawi, and P. Yu. Intelligent crawling
on the world wide web with arbitrary predicates. In 10th Int.
WWW Conf, 2001.

[3] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K. L. Tan.
An adaptive peer-to-peer network for distributed caching of
olap results. In ACM SIGMOD, pages 25–36, Madison ,
Wisconsin, USA, 2002.

[4] D. Kossmann. The state of the art in distributed query pro-
cessing. In ACM Computing Surveys 32(4), pages 422–469,
2000.

[5] S. Ratnasamy, R. Francis, M. Handley, R. Krap, J. Padye,
and S. Shenker. A scalable content-addressable network. In
ACM SIGCOMM, 2001.

[6] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In 18th IFIP/ACM ICDSP, 2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In ACM SIGCOMM, 2001.

[8] D. Wessels. Squid internet object cache. Available at:
http://www.squid-cache.org/.

[9] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-
peer systems. In VLDB, 2001.

[10] B. Yang and H. Garcia-Molina. Efficient search in peer-to-
peer networks. In ICDCS, 2002.

[11] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd,
and V. Jacobson. Adaptive web caching: Towards a new
global caching architecture. In 3rd Int. Web Caching Work-
shop, 1998.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


