
Smart Home Security: A Distributed Identity-based
Security Protocol for Authentication and Key

Exchange
M. Mazhar Rathore, Elmahdi Bentafat, and Spiridon Bakiras

Division of Information and Computing Technology
College of Science and Engineering, Hamad Bin Khalifa University

Email: {mrathore, ebentafat, sbakiras}@hbku.edu.qa

Abstract—Smart home technology is gaining popularity among
end-users, as it allows them to remotely control a variety of
devices in their homes. Such systems have obvious benefits in
terms of automation, but at the same time pose significant
threats to home owners if the underlying communications are
not secure. To this end, we introduce a novel security protocol
that simplifies the pairwise authentication and key exchange
among smart home devices. The protocol leverages identity-based
cryptography (IBC), thus relaxing the requirement for storing
and managing public key certificates. Furthermore, to mitigate
the risks associated with centralized key generation in IBC, we
opt to generate the private keys in a distributed manner, involving
all smart devices. We implemented our protocol on Raspberry
Pi 3 devices and demonstrate its efficiency in terms of both
computational and communication cost.

I. INTRODUCTION

The Internet of Things (IoT) era has had a major im-
pact on home automation. As a result, today’s smart homes
are equipped with numerous IoT devices, including security
cameras, smart locks, smart thermostats, etc. Some devices
are sensors that measure a variety of physical phenomena,
while others are controlled actuators that react to changing
environments. All these devices are interconnected via a home
area network (HAN) and interact with the owner through a
smartphone application. For example, the owner may receive
an alert when there is motion in front of a security camera or
remotely set the desired room temperature on the thermostat.
Nevertheless, the benefits of smart home systems may be
outweighed by the potential risks to home owners, if the
underlying communications are not secure. Indeed, without
proper authentication and end-to-end encryption protocols, an
intruder could easily eavesdrop on the exchanged messages
and analyze the owner’s daily routine or, even worse, replay
messages to manipulate certain IoT devices (e.g., unlock the
front door).

To this end, transport layer security (TLS) is the de facto
protocol for secure communications that is based on the
existing public key infrastructure (PKI). In a smart home
environment, TLS would necessitate that every IoT device
stores the public key certificate of every other device in the
HAN. These certificates are issued and signed by a trusted
certification authority (CA) and serve as a proof-of-identity for
the underlying devices. However, PKI has certain limitations

in the context of IoT devices. First, IoT devices have limited
storage and computational capabilities, so storing and verify-
ing the certificates may incur a considerable overhead. Second,
with potentially tens of billions of IoT devices on the market,
the communication and computational cost at the CA level
will increase significantly [1]. Finally, the vast number of IoT
device certificates will complicate the certificate revocation
process.

A promising alternative to PKI is identity-based cryptogra-
phy (IBC) [2]. Under IBC, there is no certificate associated
with a networked device. Instead, the device’s unique ID,
such as its name or MAC address, serves as the public key
that can be used by other devices to communicate with it in
a secure manner. More specifically, IBC requires a trusted
key generation center (KGC) that generates and distributes
a common public key to all devices. In addition, the KGC
generates a unique private key for each device in the network,
which is computed with the device’s unique ID as an input.
When Alice wants to send a secure message to Bob, she
uses Bob’s ID to encrypt the message, which can only be
decrypted by Bob’s private key. In a smart home environment,
the KGC would typically be the home owner’s device (e.g.,
smartphone) that would generate a private key for any new
IoT device that is installed. Furthermore, to avoid expensive
IBC operations for every transmitted message, the devices
could leverage IBC to securely establish short-term session
keys through a Diffie-Hellman key exchange protocol. Several
IBC-based protocols for IoT networks have been proposed in
the literature, including Ref. [3], [4], [5], [6], [7].

Nevertheless, the main drawback of IBC is its reliance on
a trusted KGC. If compromised, the KGC would disclose all
the devices’ private keys, thus giving the adversary full control
over the smart home appliances. This places an enormous
burden on the security of the KGC device. On one hand, we
cannot rely on the average user to enforce stringent security
controls on their smartphones, as they may lack the technical
knowledge to do so. On the other hand, placing the KGC at the
smart home service provider’s servers (e.g., Nest) would create
a single point of failure and a clear target for cyber attacks.
To this end, we propose a smart home security solution based
on a distributed implementation of Boneh and Franklin’s [8]
protocol that utilizes pairing-based cryptography. In particular,



our method removes the KGC requirement, by computing the
private keys in a distributed manner with the participation of
all IoT devices. As a result, even if one or more devices are
compromised, the adversary can not derive any information
regarding the private keys of the uncorrupted devices.

Furthermore, we propose a novel method for authenticated
key exchange that leverages the properties of pairing-based
cryptography to (i) authenticate any pair of devices on the
network, and (ii) establish a Diffie-Hellman session key. The
key exchange protocol is very efficient, requiring just two
multiplications and one broadcast message per device. After
that, a session key between two nodes is computed with a
single pairing computation. We implemented our protocols
on Raspberry Pi 3 devices and illustrate their scalability and
practicality in a smart home environment. To summarize, the
main contributions of our work are as follows:
• We introduce a distributed identity-based security proto-

col for smart homes that mitigates the risks associated
with a trusted KGC. The protocol maintains the security
of the honest devices’ private keys, even when the admin
device is compromised.

• We propose a novel authenticated key exchange protocol
that greatly simplifies the establishment of short-term
session keys between any pair of smart home devices.
The simplicity and efficiency of the protocol facilitate
frequent key updates for enhanced security.

• We implemented all protocols on Raspberry Pi 3 devices
and test their performance with a large number of devices
on a WiFi-based HAN.

The rest of the paper is organized as follows. Section II
presents the related work and Section III describes the ba-
sic cryptographic primitives utilized in our methods, namely
bilinear maps and identity-based cryptography. Section IV
introduces our smart home security protocol and Section V
analyzes its security. Section VI discusses our implementation
details and also presents the results of our experimental
evaluation. Finally, Section VII concludes our work.

II. RELATED WORK

Shamir was the first to introduce the notion of identity-
based cryptography in 1984 [2]. The application scenario
was an email system that doesn’t rely on public key cer-
tificates. However, the first practical construction of identity-
based encryption (IBE) was due to Boneh and Franklin in
2001 [9]. Several IBE constructions have been reported in
the literature, with most of them employing pairing-based
cryptography over elliptic curves [8], [10], [11]. On the other
hand, Cocks’ IBE protocol [12] is based on quadratic residues.
Advances in lattice-based cryptography have also led to the
first lattice-based IBE scheme by Ducas et al. [13] in 2014.
This protocol was later implemented by McCarthy et al. [14]
as a fully functional C library. Nevertheless, lattice-based
cryptography is very costly in terms of communication and
storage requirements and is, thus, not practical for IoT devices.

Instead, the application of identity-based protocols in IoT
and sensor network environments have mostly considered

compact elliptic curve constructions. For example, IBAKA
[3] leverages the Boneh and Frankin scheme [8] to perform
Diffie-Hellman key exchanges [15] in IoT networks. Their
method necessitates two pairing operations and three point-
scalar multiplications, which are both costly in terms of
computational cost. Tiny IBE [4] is a lightweight authenticated
key distribution protocol for heterogeneous sensor networks
that (i) avoids expensive pairing computations and (ii) requires
just two messages to establish a session key between two
nodes. Similarly, Yao et al. [16] also avoid the use of pairing
operations, by leveraging an attribute-based encryption scheme
for IoT environments. Finally, Mao et al. [5] introduce an IBE-
based protocol for the secure communication of IoT nodes that
employs fuzzy logic.

In the context of smart homes, Nicanfar et al. [6] propose
an IBC-based scheme for key management. In particular, they
introduce an efficient private key refreshment method, while
also providing multicast keys that are sometimes necessary for
HANs. In a subsequent work, the same authors improve their
solution [17] by reducing the number of exchanged packets
and the number of protocol steps. Jacobsen et al. [7] focus
on optimizing the bootstrapping phase of wireless devices
in HANs, by leveraging IBC to establish session keys. In
a different study [18], Gao introduces new techniques for
incorporating biometrics in the authentication phase of smart
grids. The author proposes the use of fingerprints to improve
the users’ privacy in smart grid communications.

Our work is also related to threshold cryptosystems that
are based on Shamir’s secret sharing scheme [19]. Threshold
cryptosystems distribute private keys among several parties,
and require multiple devices in the network to participate in the
encryption or signing of messages. For instance, Gennaro et al.
[20] propose a protocol where the key is divided into n secrets,
and key reconstruction necessitates the combination of any
t+ 1 out of n secrets. On the other hand, producing a digital
signature requires the cooperation of 2t+1 parties, but there is
no need to reconstruct the key. A more efficient scheme is due
to Gennaro et al. [21] that targets digital signatures in bitcoin
wallets. Their construction is based on the elliptic curve digital
signature algorithm, and does not require an honest majority of
devices. Threshold cryptosystems have also been proposed for
the RSA protocol [22]. Nevertheless, threshold cryptosystems
are expensive and, thus, not suitable for resource constrained
IoT environments.

III. PRELIMINARIES

Identity-based cryptography is based on bilinear maps on
prime order groups over elliptic curves. Specifically, given two
groups G, GT of the same prime order q, a bilinear map e :
G×G→ GT satisfies the following properties1:

1) It is computable, i.e., given U, V ∈ G, there is a poly-
nomial time algorithm for computing e(U, V ) ∈ GT .

2) It is bilinear, i.e., for any U, V ∈ G and a, b ∈ Zq ,
e(aU, bV ) = e(U, V )ab.

1Throughout the paper, we use uppercase characters to represent elliptic
curve points, and lowercase characters to represent scalars.



3) It is non-degenerate, i.e., if P is a generator of G then
e(P, P ) is a generator of GT .

Under the Boneh-Franklin cryptosystem [8], the KGC first
selects a random private master key Ks = s ∈ Z∗q , and sets
the public key Kp = sP , where P is a generator of group G.
Then, every user in the network is assigned a public key, which
is a string representing the user’s ID (e.g., email address).
Given an ID ∈ {0, 1}∗, the KGC computes QID = H(ID)
and assigns a private key DID = sQID to that particular
user. H(·) is a hash function that maps an arbitrary string to a
point of the group G on the elliptic curve. The Boneh-Franklin
scheme further defines functions for public key encryption and
decryption, where (Kp, QID) and DID are used for encryption
and decryption, respectively.

Nevertheless, in a smart home environment, identity-based
encryption is not sufficient, because both parties have to
authenticate each other during message exchange. As such,
a message from device i to device j would necessitate (i)
an identity-based encryption with j’s public key and (ii) an
identity-based signature [23] with i’s private key. This would
incur a significant computational cost at both parties and is,
thus, impractical for smart homes. Instead, in this work, we
leverage the devices’ private keys to compute pairwise shared
secrets that are used to perform authenticated Diffie-Hellman
key exchanges of short-term session keys. In particular, for de-
vices i, j with public/private key pairs (Qi, Di) and (Qj , Dj),
respectively, the shared secret is

e(Di, Qj) = e(Qi, Dj) = e(Qi, Qj)
s

Note that e(Qi, Qj)
s can only be computed by devices i and

j that own the corresponding private keys.
Finally, since our protocols target smart home devices with

limited computational capabilities, it is worth mentioning the
complexity of the various elliptic curve operations involved.
As we will show in Section VI, the most time consuming func-
tion is map-to-point (H), followed by the pairing operation
e and the point-scalar multiplication. Our proposed protocols
aim to minimize the number of these operations.

IV. SMART HOME SECURITY

This section presents the details of our smart home se-
curity solution. We begin by describing the overall system
architecture, followed by a series of protocols for new device
registration, distributed key generation, and authenticated key
exchange.

A. Smart Home Architecture

A smart home consists of a series of sensors and actuators,
connected through a communications infrastructure (Fig. 1).
Sensors sense the environment, whereas actuators react based
on the current conditions. For example, temperature sensors
measure the temperature at different locations inside the home,
while the AC may adjust itself according to the current tem-
perature. The home owner interacts with all devices through
an admin device, which is typically an app running on the
owner’s smartphone. To simplify the deployment and operation

Fig. 1. Smart home architecture

of the HAN, we assume that all communications are done
through a wireless technology, such as Bluetooth or WiFi.

With few exceptions, most smart devices do not need to
exchange messages with a device other than the admin. On
the other hand, the admin device should always be able to
send/receive messages (such as alerts or commands), even
when it is not located inside the smart home. Therefore, we
assume that an external server with a known IP (i.e., the smart
home service provider) acts as a proxy to transfer messages
between the devices when they are outside the HAN. In
particular, all home devices establish TLS connections to the
remote server, which then receives and forwards each message
to the corresponding destination. Nest’s Smart Home Hub2,
developed by Nest Lab and now purchased by Google, also
works in a similar fashion.

The goal of this work is to secure the communications
among all smart devices. Specifically, we want to guarantee
(i) message confidentiality and (ii) pairwise authentication for
the sender and recipient of each message. Both properties are
vital for the privacy and security (cyber and physical) of the
home owner. For instance, unencrypted messages may reveal
the owner’s daily routine (at least to the smart home service
provider), while insufficient authentication mechanisms may
allow an adversary to open the front door by simply replaying
a previously recorded message.

B. Threat Model

We consider two types of adversaries in our work:
• Eavesdropper: This type of adversary has access to all

exchanged messages, and may perform a ciphertext-only

2https://nest.com/



attack to retrieve the underlying decryption keys. For
example, the adversary may be an intruder that gained
unauthorized access to the WiFi network, or the smart
home service provider that forwards messages on behalf
of the smart devices.

• Malicious: A malicious adversary has access to all com-
munications, but may also launch a number of active
attacks. For instance, the adversary may try to imper-
sonate an IoT device, divert from the specified protocols,
replay old messages, or attempt to launch man-in-the-
middle (MITM) and denial-of-service (DoS) attacks.

We consider all IoT devices as eavesdroppers, while any
device that is compromised by the adversary is assumed to
be malicious. Finally, we assume that all adversaries run
in polynomial time and are, thus, not able to break the
cryptographic protocols.

C. New Device Registration

We assume that every device i in the HAN has a unique
identifier IDi (e.g., SmartTV-LivingRoom) that is assigned to
it by the home owner through the admin device. As explained
in Section III, Qi = H(IDi) is a point on an elliptic curve
that serves as the public key of that device. We also assume
that there is a way for the new device to select a temporary
password p that is shared with the admin device. As an
example, the device could have a small screen to generate
and display the password on-demand, or the password could
be hardcoded by the manufacturer and written on the device’s
documentation.

Fig. 2 illustrates the detailed protocol for new device
registration. We assume that there are currently n−1 registered
IoT devices, where ID1 is the admin’s ID and IDn is the ID
assigned to the new device. The protocol is a straightforward
implementation of the encrypted key exchange (EKE) protocol
by Bellovin and Merritt [24], using Diffie-Hellman. Initially,
the admin device uses the shared password p to encrypt (i) the
public parameters of the elliptic curve groups and (ii) its share
of the Diffie-Hellman key exchange, X1. Next, the new device
generates its own share of the Diffie-Hellman exchange, Xn,
and computes the session key k = xnX1 = xnx1P . Finally, it
encrypts Xn with p and also encrypts a random t-bit number
rn with k, and sends both values to the admin device. The
admin device then computes the session key k, generates a
random t-bit number r1, and sends Enck(r1, rn) back to the
new device. Once device n replies with Enck(r1), the two
devices are certain about the correctness of the session key.
At that point, the admin device sends the encrypted list of all
IDs/public keys (including the newly assigned ones for device
n) that are currently registered in the smart home’s network.

The registration protocol is clearly very efficient, and
requires just two point-scalar multiplications from the IoT
device. (We are not concerned with the computational cost
at the admin device, because today’s smartphones are much
more powerful compared to the cheaper IoT devices.) Also, the
admin device will compute Qn on behalf of the new device,
in order to relieve it from performing the costly map-to-point

Protocol 1: New device registration
Admin New device

x1 ←$Z∗q
X1 ← x1P

Encp(G,GT , e, q, P,X1)

xn ←$Z∗q
Xn ← xnP

k← xnX1

rn ← {0, 1}t

Encp(Xn),Enck(rn)

k← x1Xn

r1 ← {0, 1}t

Enck(r1, rn)

Enck(r1)

Enck((IDi, Qi),∀i)

Fig. 2. New device registration

operation. Nevertheless, the new device may opt to re-compute
all public keys locally, in order to verify their correctness
and/or identify a potentially malicious admin device.

D. Distributed Key Generation

At the heart of our smart home security solution is a protocol
for computing the devices’ identity-based private keys in a
distributed manner, in order to relax the requirement for a
centralized and trusted KGC. Recall that, under IBC, the
private key Di for device i is equal to sQi, where s is the
private master key of the KGC. In our approach, we employ
a secret sharing scheme, where each device i chooses a secret
share si uniformly at random from Z∗q . The master key is then
set implicitly (but never computed) as

s =
∑
∀i

si mod q

Next, to compute Dj , it suffices to collect its shares siQj ,∀i
from all devices and aggregate them as follows:

Dj =
∑
∀i

siQj = sQj

This simple protocol is depicted in Fig. 3, where 2 ≤ k < n,
i.e., k represents all devices other than the admin and the
new device n. The protocol is invoked right after a device
registration operation, in order for the new device to get its
IBC secret key and for the old devices to update their keys as
well. We assume that every device k (except for n at this point)
shares a short-term session key k1k with the admin device,
through the authenticated key exchange mechanism described



Protocol 2: IBC key generation
New device Admin Other devices

Enck1k (New, IDn, Qn)

sn ←$Z∗q s1 ←$Z∗q sk ←$Z∗q
Compute snQi,∀i Compute s1Qi,∀i Compute skQi, ∀i

Enck(snQi,∀i 6= n) Enck1k (skQi,∀i 6= k)

Wait for all devices

D̂j ←
∑
∀i 6=j

siQj , ∀j

Enck(D̂n) Enck1k (D̂k)

Dn ← D̂n + snQn D1 ← D̂1 + s1Q1 Dk ← D̂k + skQk

Fig. 3. IBC key generation

in the following section. All communications involved in this
protocol are encrypted with the most recent session keys. Note
that, unlike other devices, n interacts with the admin device
through the temporary key k constructed in the previous phase.

The first step is for the admin device to individually inform
every existing device that a new round of distributed key
generation is taking place. In addition, it shares with them
the ID and public key of the new device n. After that,
every device j computes the private key shares sjQi for all
devices i 6= j, and sends them to the admin device. It also
computes its own private key share sjQj , which is kept secret
from other devices. Once the admin device gathers all the
necessary information, it constructs the partial private keys
D̂j =

∑
∀i 6=j siQj ,∀j and sends them to the corresponding

devices. Finally, each device j adds its own secret share sjQj

to the partial key and computes the value of its IBC private
key Dj .

The security of this algorithm stems from the fact that
the private share of each device’s IBC key is never revealed
to any party. As such, even with the knowledge of partial
key D̂i, it is impossible for the admin device to derive any
information regarding Di, or otherwise manipulate its value, if
si is properly chosen from a uniform distribution. Furthermore,
any attempt on behalf of the admin device to modify the
values of the partial keys would result in failed key exchanges
between the IoT devices (next section), because each device
would have a different view of the master key s.

The computational cost of the protocol is linear to the
number of IoT devices n, because it necessitates just n
point-scalar multiplications per device (point additions have
negligible cost). As such, it enables the home owner to
invoke the protocol relatively frequently (e.g., once a week), in
order to deter cryptanalytic attacks. Furthermore, the protocol
can run for multiple new devices, assuming that they have

all established a Diffie-Hellman key with the admin device
beforehand. Finally, we should note that, the reason for
aggregating the partial keys at the admin device is to avoid
the exchange of pairwise session keys among devices that
do not need to communicate with each other during normal
operations. In a real-life scenario, only the admin device would
typically communicate with all smart devices for the purpose
of receiving alerts or interacting with the device.

E. Authenticated Key Exchange

Following the distributed key generation phase, the IoT
devices must establish short-term session keys with (i) the
admin device and (ii) any other smart device that they need to
communicate with, in accordance with the underlying smart
home configuration. The detailed protocol for two devices i
and j is shown in Fig. 4. Initially, every device i chooses a
secret key xi uniformly at random from Z∗q , and broadcasts
(in plaintext) the corresponding public key Xi = xiQi to all
devices. After that, the session key kij can be computed by
each device as

kij = e(xiDi, Xj) = e(Xi, xjDj) = e(Qi, Qj)
sxixj

The last three message exchanges verify that the two devices
have a consistent view of the new session key.

Protocol 3 is secure, because only devices i and j are
capable of computing the correct value of the session key.
Indeed, kij is the product of a pairing operation, where one
of the inputs is the private IBC key of the corresponding
device. Therefore, even with public knowledge of Xi and
Xj , an adversary has no advantage in guessing the key
value. Essentially, Protocol 3 is a Diffie-Hellman key exchange
protocol, where the base element is e(Qi, Qj)

s, i.e., the shared
secret between i and j. As a result, a successful completion
of the protocol implies that devices i and j are authenticated.



Protocol 3: Authenticated key exchange
Device i Device j

xi ←$Z∗q xj ←$Z∗q
Xi ← xiQi Xj ← xjQj

Bcast: Xi

Bcast: Xj

kij ← e(xiDi, Xj) kij ← e(Xi, xjDj)

ri ← {0, 1}t rj ← {0, 1}t

Enckij (ri)

Enckij (ri, rj)

Enckij (rj)

Fig. 4. Authenticated key exchange

A nice feature of the protocol is its computational efficiency
that facilitates very frequent key updates. Specifically, every
device must perform two point-scalar multiplications, regard-
less of the total number of devices n, and then one pairing
operation per key exchange. As mentioned previously, though,
we do not expect an IoT device to share session keys with
more than a handful of other devices.

V. SECURITY ANALYSIS

In this section we analyze the security of our proposed
protocols, for two different types of adversaries.

A. Eavesdropper

An eavesdropper with access to all communication tran-
scripts has no advantage in gaining any information regarding
the underlying messages. This is due to the secure symmet-
ric encryption protocols that are employed at all times. As
evident in Section IV, the only plaintext messages appear in
the authenticated key exchange protocol, where the devices
broadcast their public keys. Nevertheless, this information
does not reveal anything to the adversary, because he can
not compute the corresponding private keys. The weakest key
utilized in our protocols is the temporary key p that appears
in Protocol 1 (new device registration). The reason is that the
key should only consist of printable characters in order for the
home owner to type it easily into the admin device. As such, p
would not be as strong as a random 256-bit key, but this is not a
major concern. For security, we simply want p to remain secret
for a few milliseconds, just enough for the Diffie-Hellman key
exchange to complete. Even if p is compromised at a later
time, the only information that an adversary can retrieve is
the description of the elliptic curve groups, which is usually
public knowledge.

B. Malicious Adversary

Under a malicious adversary, a number of different active
attacks are possible. We discuss the most standard ones below:

• Man-in-the-middle: MITM attacks take place during key
exchange protocols, where the adversary tries to inject
itself into the communication channel between two nodes,
in order to gain the ability to decrypt and/or modify all
messages. For a successful MITM attack, an adversary
would have to defeat the underlying authentication mech-
anisms which, in our protocols, are the shared secrets p
(Protocol 1) and e(Qi, Qj)

s (Protocol 3). As such, our
protocols are secure against MITM attacks, because it
is computationally hard for an adversary to guess these
values.

• Replay: Replay attacks are very common and their pur-
pose is to capture and replay old messages, in order to
force a device to repeat some actions (e.g., open the
front door). Our protocols defend against such attacks
by frequently changing the pairwise session keys. Fur-
thermore, a straightforward defense against replay attacks
that may be easily incorporated in our methods, is the use
of timestamps in all encrypted messages.

• Node impersonation: To successfully impersonate a
device, an adversary would have to compromise its pri-
vate IBC key. Therefore, unless a device is physically
compromised (i.e., all its secret keys are disclosed), such
attacks are not feasible. A compromised admin device
is very dangerous, because it can communicate with all
other devices. However, even in this case, our distributed
key generation algorithm protects the secrecy of all the
remaining private keys. Finally, an additional security
layer to protect against a potential admin impersonator, is
to employ two-factor authentication techniques for critical
applications.

• Sybil: A compromised admin device (impersonator) can
launch a Sybil attack by registering fake devices in the
smart home network. However, this is not a weakness of
our protocols, since the admin device has the permission
to install new devices. Enforcing two-factor authentica-
tion during new device registration can mitigate such
attacks.

• Denial-of-service: DoS attacks are very hard to defend
against, so our protocols simply include the mechanisms
to detect them. In our case, a DoS attacker would try to
interfere with the protocol execution in order to prevent
the establishment of the session keys or the registration
of new devices. For example, the adversary may send
fake key shares to other nodes (through an impersonation
attack) that lead to failed key exchange protocols, thus
disrupting the network operation. Nevertheless, all our
key exchange protocols employ key verification methods
(by exchanging encrypted random values), so this type of
attacks can be identified and reported to the home owner.



VI. IMPLEMENTATION AND EVALUATION

To test the feasibility of our solution in a smart home
environment, we implemented all protocols on 10 Raspberry
Pi 3 model B devices, with a 1.2 GHz CPU capable of
running one thread per core. To emulate the more powerful
admin device, we utilized a Linux desktop machine with a
3.0 GHz CPU capable of running two threads per core. The
devices were connected over a WiFi network that carried
other background traffic as well. All implementations were
written in C, using Ben Lynn’s PBC library3 for the elliptic
curve operations, the GMP library4 for arbitrary precision
arithmetic operations, and the OpenSSL library5 for symmetric
encryption. For security, we chose elliptic curve groups of
order q, where q is a 256-bit prime. The symmetric cipher of
choice was AES in GCM mode, using 256-bit keys.

Before executing the full protocols, we measured the CPU
cost of the basic cryptographic operations on the two types
of devices. The results are summarized in Table I. The first
observation is that the Raspberry Pi 3 devices are significantly
slower, up to one order of magnitude in some cases. Never-
theless, none of the operations takes more than 129 ms to
complete. For real IoT devices, we expect these costs to be
slightly larger, but still within reasonable values. The second
observation regards the cost of the elliptic curve operations.
Point additions are extremely fast on both machines, while the
map-to-point function is by far the most expensive one. Recall,
however, that the map-to-point operations (for generating the
IBC public keys) are performed exclusively at the admin
device. The majority of the elliptic curve operations invoked
by the IoT devices are point-scalar multiplications, which
require 40 ms of computation time. On the other hand, pairing
operations are rarer, but they are significantly slower (82 ms).
Finally, symmetric encryption, which is the most frequently
used operation, is very efficient and takes just 0.012 ms on
the Raspberry Pi devices.

TABLE I
CPU TIME (MS) FOR BASIC OPERATIONS

Operations Desktop Raspberry Pi 3
Point addition 0.001 0.002
Point-scalar multiplication 6.041 39.694
Pairing 8.595 81.625
Map-to-point 18.568 128.194
Symmetric encryption (256 B) 0.001 0.013
Symmetric decryption (256 B) 0.002 0.012

Next, we invoked all three protocols and measured their
execution times, while varying the number of participating
devices n. We started with Protocol 1 that enables the instal-
lation of new IoT devices by the home owner, and the results
are depicted in Fig. 5. For a single IoT device (solid line), the
time is constant (around 150 ms) and independent of n, since
it only interacts with the admin device. On the other hand, the

3https://crypto.stanford.edu/pbc/
4https://gmplib.org/
5https://www.openssl.org/

response time at the admin device is linear in n, as indicated
by the dotted line. When registering 10 devices in a row, the
running time of the protocol is less than 1.5 sec.

Fig. 5. Response time for new device registration

Fig. 6 illustrates the response time of our main protocol that
generates the private IBC keys in a distributed manner. The
cost grows slightly slower than linear, due to the offloading
of computations from the slower IoT devices to the admin
device (as explained in Section IV-D). In addition, the desktop
machine can perform some parallel computations through
threading. For one device, the response time is about 120 ms,
while for 10 devices the cost remains below 900 ms. These
are very promising results, as they support the idea of frequent
key updates for enhanced security.

Fig. 6. Response time for distributed IBC key generation

Next, we tested the scalability of the authenticated key
exchange protocol, and the results are shown in Fig. 7. The
solid line corresponds to the response time at the admin device
for exchanging session keys with n IoT devices. The almost



Fig. 7. Response time for authenticated key exchange

constant cost stems from the large performance gap in the
pairing computations for the two types of devices (9 ms vs.
82 ms). As such, the admin device is able to compute all
session keys in approximately the same time it takes all other
devices to compute one key. On the other hand, the dotted
line illustrates the same cost for the case of an IoT device.
Naturally, the response time grows linearly with the network
size, due to the homogeneity of the devices. Note that, the
response time remains under 1 sec, even for authenticated
key exchanges between 6 devices. This is a very nice result
that encourages frequent key updates. Furthermore, as we
discussed previously, we do not expect a smart home device
to establish short-term session keys with a large number of
other devices.

Finally, Fig. 8 illustrates the communication cost for a
single IoT device that invokes all three protocols in succession
with the admin device (these are the only two devices in
the network). It shows the cost from the moment the device
starts the registration process, until it establishes a session
key with the admin device. There is a total of 14 messages
exchanged, whose sizes are represented with vertical bars
(the solid line indicates the cumulative cost). Clearly, the
communication overhead is very low, requiring just 4 KB of
data transmissions. For n devices, the cost would increase
linearly, as it involves the exchange of the same type of
messages per added device.

VII. CONCLUSIONS

Security is a vital requirement for every smart home system.
But any security solution must also take into account the
resource limitations of the underlying devices. To this end, we
proposed an identity-based security system that addresses the
computational and storage limitations of IoT devices. Our pro-
tocols simplify the pairwise authentication and key exchange
among smart home devices, without the need for a trusted
and centralized key generation center. In addition, they are

Fig. 8. Communication cost for one device invoking all three protocols with
the admin device

secure against standard network attacks, including man-in-the-
middle, impersonation, and replay attacks. We implemented
all protocols on Raspberry Pi 3 devices and experimentally
evaluated their performance on a WiFi-based network. The
results indicate that the proposed smart home security solution
is very efficient and scales well with the home network size.
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