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Abstract—Dynamic spectrum access (DSA) is envisioned as
a promising framework for addressing the spectrum shortage
caused by the rapid growth of connected wireless devices. In
contrast to the legacy fixed spectrum allocation policies, DSA
allows license-exempt users to access the licensed spectrum bands
when not in use by their respective owners. More specifically,
in the database-driven DSA model, mobile users issue location-
based queries to a white-space database, in order to identify
idle channels in their area. To preserve location privacy, existing
solutions suggest the use of private information retrieval (PIR)
protocols when querying the database. Nevertheless, these meth-
ods are not communication efficient and fail to take into account
user mobility. In this paper, we address these shortcomings and
propose an efficient privacy-preserving protocol based on the
Hilbert space filling curve. We provide optimizations for mobile
users that require privacy on-the-fly and users that have full
a priori knowledge of their trajectory. Through experimentation
with two real life datasets, we show that, compared to the current
state-of-the-art protocol, our methods reduce the query response
time at the mobile clients by a large factor.

I. INTRODUCTION

The allocation of radio spectrum for mobile wireless net-

working is governed by federal agencies via a static spectrum

sharing strategy. However, with the ever growing need for

mobile wireless services and applications, the static sharing

method has led to the depletion of the available spectrum. To

this end, Dynamic Spectrum Access (DSA) allows users to

access licensed spectrum bands when not in use by their re-

spective owners. DSA is built on top of Cognitive Radio (CR),

an intelligent wireless communications system that is aware

of its spectral environment [16]. Initially, DSA relied mostly

on distributed and cooperative sensing. In this approach, CR

nodes employ sheer power detection methods and collectively

measure spectrum activity in their surrounding area.

Alternatively, in database-driven dynamic spectrum access,

a CR node understands its spectral surroundings in a three-step

process. A node attempting to analyze its spectral surround-

ing would first learn its geographic location through a GPS

device. Subsequently, it would contact a centralized white-

space database (WSDB) and issue its GPS coordinates as part

of the query. Finally, it would download the centrally fused

repository report containing the available spectrum at that

location. The compilation and fusion of the spectrum reports

is done by specialized entities, called Spectrum Database Op-

erators (SDOs), by applying appropriate propagation modeling

and interference avoidance algorithms for a given geographic

location.

Nevertheless, the database-driven DSA approach is prone

to severe location privacy leakage. According to FCC speci-

fications [3], a mobile Television Band Device (TVBD) must

issue a new query whenever it moves further than 100m from

its previous location. Since the GPS coordinates must be part

of every query, a WSDB operator could easily build a detailed

history of the mobile TVBD’s trajectories, which could reveal

sensitive information about the underlying user (such as health

condition, habits, etc.).

To this end, Gao et al. [5] introduce a scheme that leverages

a private information retrieval (PIR) protocol to query the

WSDB in a privacy-preserving manner. A PIR protocol allows

any user to retrieve a record from a database server, while

maintaining the identity of the record secret from the server.

Therefore, Gao et al. partitions the space with a fixed n × n
grid and require users to download the location-dependent

(based on the cell where they are located) channel information,

through the PIR protocol. This is the only protocol so far in

the literature dealing with location privacy in database-driven

DSA but, unfortunately, it suffers from several drawbacks.

First, Gao et al. utilize the PIR scheme of Trostle and

Parrish [20] whose communication cost (for a single query) is

significant. More precisely the scheme incurs a communication

cost of (2n+ 3) · log p bits, where p is a 2048-bit modulus.

For instance, if n = 5000, the amount of data exchanged to

retrieve the bitmap of a single cell is 2.5 MB. For highly

mobile clients, the cost of this approach can exceed the

cost of downloading the entire database. Second, most PIR

protocols typically return multiple records per query that, in

the case of mobile users, could be used to answer future

queries. However, the authors modify [20] so that the PIR reply

contains channel availability information for a single cell (as

opposed to n in the original protocol). Finally, they view each

query as an independent event, without taking into account

user mobility. As a result, when a user is constantly moving,

the communication cost can surpass the cost of downloading

the entire database.

In this paper, we first argue that dynamic spectrum access

will most likely be utilized in areas with poor/intermittent

cellular connectivity. As such, the underlying query process-

ing protocol should be communication efficient. Therefore,



unlike [5], our methods leverage the PIR scheme of Gentry

and Ramzan [6], which is the most communication efficient

protocol to date. Furthermore, to address user mobility, we

index the WSDB based on the Hilbert space filling curve

(HSFC) [10]. In this way, neighboring cells are typically stored

in consecutive locations on the white-space database. Finally,

to allow for the retrieval of multiple cells with a single PIR

query, we split the WSDB into multiple, disjoint segments. As

such, a PIR query is processed independently on each segment,

and the user retrieves channel availability information from a

large number of consecutive cells IDs. Due to the properties of

the underlying HSFC, these cells will be spatially close (with

a very high probability), and could reduce the number of PIR

queries in the near future.

We consider two distinct cases in our work: (i) the user’s

trajectory is known a priori and (ii) the user’s trajectory is gen-

erated on-the-fly. For the latter case, we propose a trajectory

prediction method, based on a simple linear regression model

of the recently traveled coordinates. The predicted values are

then used to retrieve the corresponding cells from the WSDB

and, thus, reduce further the number of future PIR queries.

In the case of the a priori trajectory knowledge, our approach

enables mobile users to simulate their routes and invoke the

optimal number of PIR queries. We tested our methods on

two real life datasets, namely Microsoft’s T-Drive dataset [21]

and Microsoft’s GeoLife GPS dataset [22]. The experimental

results show that, compared to the protocol of Gao et al. [5],

our methods reduce the query response time at the mobile

clients by at least a factor of 30.

The remainder of this paper is organized as follows. Sec-

tion II presents a literature review on location privacy. Sec-

tion III provides the necessary background on PIR protocols

and Hilbert space filling curves. Section IV-B describes our

methods in detail, and Section V presents the results of the

experimental evaluation. We conclude our work in Section VI.

II. RELATED WORK

Most existing approaches for location privacy rely on the

notion of k-anonymity [19] or l-diversity [15]. In location-

based services, a spatial query is said to be k-anonymous, if it

is indistinguishable from at least k−1 other queries originating

from the same region. This region is called a spatial cloaking

region (SCR), and encloses the querying user as well as at least

k− 1 other users. To compute the SCR, existing k-anonymity

algorithms typically extend the SCR around the query point

until it encloses k − 1 other users [9].

l-diversity based methods [15], on the other hand, extend

the SCR until l− 1 different locations are included. Although

k-anonymity and l-diversity provide some degree of location

privacy, they may still leak semantic location information. For

example, if the SCR only contains casinos, the server can infer

that the mobile user is interested in gambling. To this end, the

work of Lee et al. [12] attempts to provide location privacy

using location semantics.

The k-anonymity and l-diversity based approaches, as well

as collaborative location privacy protection methods [4], of-

ten rely on third party trusted anonymizers, which is not

always a viable solution. On the other hand, Ghinita et al.

[7] propose the first privacy-preserving protocol (for nearest

neighbor queries) that does not require a trusted third party.

Instead, their method achieves perfect location privacy via the

cryptographic primitive of private information retrieval [11].

Location privacy work in the DSA realm has mainly focused

on the collaborative spectrum sensing aspect. In particular,

most of the existing algorithms aim towards securing the

location privacy of secondary users that submit sensing reports

to a malicious fusion center [13], [18].

Location privacy research in database-driven DSA networks

is still in its early stages. The state-of-the-art protocol is due to

Gao et al. [5], which builds upon a modified version of Trostle

and Parrish’s PIR scheme [20]. They assume a fixed grid of

n× n cells, where each cell contains a bitmap that represents

the channel availability information (typically 32 bits). The

authors modify [20] so that the PIR reply contains channel

availability only for a single cell. Furthermore, each query is

seen independently, without any regard to user mobility. As

a result, for highly mobile clients, the communication cost in

[5] can surpass the cost of downloading the entire database.

III. PRELIMINARIES

In this section we give a brief description of PIR protocols

and Hilbert space filling curves. Section III-A introduces the

concept of private information retrieval and Section III-B

describes the threat model of our methods. Section III-C

presents the Hilbert space filling curve algorithm.

A. Private Information Retrieval

PIR protocols allow a user to obtain information from a

database server, in a manner that prevents the database from

knowing which data was retrieved. Typically, the server holds

a database of N records and the user wants to retrieve the i-th
record, such that i remains unknown to the database. The triv-

ial PIR case consists of downloading the entire database, which

clearly preserves privacy but has an unrealistic communication

cost. Therefore, the objective of a PIR protocol, as applied to

mobile applications, is to reduce the communication cost.

Information theoretic PIR protocols [2] are secure against

computationally unbounded adversaries. However, they require

that the database be replicated into multiple non-colluding

servers. This non-collusion assumption is not realistic in

typical applications, so information theoretic protocols are not

utilized in practice. On the other hand, computational PIR

(CPIR) protocols base their security on well-known crypto-

graphic problems that are hard to solve (such as discrete log-

arithm or factorization). As such, their security is established

against computationally bounded adversaries. Kushilevitz and

Ostrovsky [11] introduced the first CPIR protocol for a single

database, whose security is based on the quadratic residuosity

assumption. The communication complexity of [11] is O(nǫ).
Further work [1], [14] demonstrates CPIR schemes with

polylogarithmic communication complexity.



In this work, we leverage the protocol of Gentry and

Ramzan [6], because it is the most communication efficient

PIR protocol to date. For a particular instantiation, it exhibits

a constant communication cost that is independent of the

database size (it typically involves the exchange of three 128-

byte numbers). The security of the protocol is based on “φ-

hiding” assumption.

B. Threat Model and Security

In this work we are concerned with privacy against the

WSDB operator (adversary). We assume that the adversary’s

goal is to derive any relevant information regarding the lo-

cation of any user that has sent a query to the database.

We also assume that the adversary runs in polynomial time

and follows the honest-but-curious adversarial model, i.e., it

follows the protocol correctly but tries to gain an advantage

by examining the communication transcript. Note that our

methods inherit the security of the underlying PIR protocol,

since the only interaction between the WSDB operator and the

users is through a series of PIR invocations.

C. Hilbert Space Filling Curve

The Hilbert space filling curve [10] is a continuous fractal

that maps space from 2-D to 1-D. If (x, y) are the coordinates

of a point within the unit square and d is the distance along

the curve when it reaches that point, then points with nearby

d values will also be spatially close. As an example, Fig. 1

shows a HSFC of level l = 3, containing 4l = 64 cells. Each

of the cells is identified by its (x, y) coordinates, starting with

(0, 0) on the lower left hand corner and ending with (x =
2l − 1, y = 2l − 1) on the right upper hand corner. The values

shown in the individual cells correspond to their Hilbert IDs

(HIDs), i.e., their specific order within that mapping.

Fig. 1. A level 3 Hilbert space filling curve.

IV. EFFICIENT LOCATION PRIVACY FOR MOVING DSA

CLIENTS

In this section, we present the details of our methods.

Section IV-A describes the system architecture, and Sec-

tion IV-B introduces our basic approach. Section IV-C presents

an enhanced method that retrieves multiple cells from the

area surrounding the query point. Section IV-D introduces

our best algorithm that incorporates trajectory prediction, and

Section IV-E describes the case where there is full a priori

trajectory knowledge.

A. System Architecture

Similar to previous work [5], we assume a fixed grid

of n × n cells. According to the FCC specifications [3],

each cell is 100m×100m in size, and users must query the

WSDB whenever they move into a cell with no prior spectrum

availability knowledge. The dimensions of the grid (i.e., n)

can be made arbitrarily large, which has a direct effect on the

database size. Mobile TVBDs are allowed to communicate

only in the frequency ranges 512-608 MHz (TV channels 21-

36) and 614-698 MHz (TV channels 38-51), i.e., there are a

total of 31 possible white-space TV band channels that can be

accessed in a DSA manner. Therefore, we represent the daily

channel availability as 32 bits (per cell), where bit 0 represents

a busy channel and bit 1 represents an idle channel.

B. Single Row Retrieval

Papadopoulos et al. [17] conducted a in-depth study of the

PIR protocol by Gentry and Ramzan [6] that we employ in our

methods. As they point out, due to the security constraints of

the algorithm, the optimal strategy in terms of communication

and computational cost is to set the size of each record to 32

bytes. Therefore, based on our system settings, each record can

store channel availability information from 8 distinct cells. A

straightforward implementation would then be to (i) sort the

cells based on their unique Hilbert IDs, and (ii) create a single

database (DB) with N = ⌈n2/8⌉ records, such that record

0 stores cells 0–7, record 1 stores cells 8–15, etc. (Table I

summarizes the symbols used in the remainder of this paper.)

In the toy example of Fig. 1, we would have a database of

N = 8 records, and a user located inside cell 30 would retrieve

the record containing cells 24–31. Observe that, due to the

properties of the HFSC, all the retrieved cells are spatially

close and could be useful in subsequent queries.

TABLE I
SUMMARY OF SYMBOLS

Symbol Description

n Number of rows/columns in the grid

k Number of DB segments

N Number of records in each DB segment (N = ⌈n2/8k⌉)

u Number of records retrieved from each DB segment

logm Size of PIR request/reply (Gentry-Ramzan)

R Number of rings to explore in the surrounding area

Nevertheless, the single DB approach would not work well

in practice. First, it is beneficial for a client to retrieve a large

number of cells that are in proximity to his current location,

in order to reduce the number of future PIR queries. Second,

Gentry and Ramzan’s protocol is computationally expensive

(at the server side), due to its heavy use of cryptographic

operations. As such, we would like to parallelize its operation,

to the extent possible, by utilizing large CPU clusters that are

typical in most cloud computing platforms.

The obvious solution to both limitations is to partition the

database into k distinct segments. By doing so, we can employ

k CPUs to process each segment in parallel, thus reducing

the computational time by a factor of k. The price we have

to pay is an increase in the communication cost, since the



client receives k PIR replies instead of one. Specifically, the

communication cost is equal to (2 + k) · logm, where m is

an RSA modulus. Table II shows a sample DB segmentation

(for k = 4) for a level 4 HFSC, containing 256 cells. The

segments are constructed by assigning the original records to

each segment in a round-robin manner.

TABLE II
SAMPLE DB SEGMENTATION WITH 4 SEGMENTS

DB segment 0 DB segment 1 DB segment 2 DB segment 3

0–7 8–15 16–23 24–31

32–39 40–47 48–55 56–63

64–71 72–79 80–87 88–95

96–103 104–111 112–119 120–127

128–135 136–143 144–151 152–159

160–167 168–175 176–183 184–191

192–199 200–207 208–215 216–223

224–231 232–239 240–247 248–255

During query processing, the client first identifies the row

r that contains his current cell’s HID (r = HID/8k). He

then constructs the corresponding PIR query that is processed

on all k DB segments, in parallel. In the example of Table II,

if the client is located in cell 180, he will retrieve all cells in

row r = 180/32 = 5, i.e., all cells within the range 160–191.

The results are stored in the client’s cache and may be utilized

when the client moves into a new cell. Algorithm 1 lists the

detailed algorithm for the single row retrieval method.

Algorithm 1 Single Row Retrieval

1: procedure SINGLE-ROW-RETRIEVAL(HID, k)
2:
3: if (HID /∈ cache) then
4: r ← HID/8k;
5: cells[ ]← PIR(r);
6: cache← cells[ ];
7: end if
8:
9: end procedure

C. Exploring the Surrounding Area

When a mobile user’s trajectory is generated on-the-fly, i.e.,

without any prior planning, retrieving a single row per PIR

query is not the optimal strategy. Consider, for example, a user

that issues a PIR query from the cell marked with a white dot

in Fig. 2. The numbered boxes in this figure indicate the cells

that comprise the corresponding database rows. According to

that figure, the user first retrieves row 6 and then moves to the

next location that is part of row 8 (the black dots show the

remaining trajectory points). He now has to send a new query

to the WSDB and all the information contained in row 6 is

rendered useless.

A second drawback of the single row retrieval approach, is

the structure of the Hilbert curve itself. As evident in Fig. 1, a

cell’s nearest neighbors are not always mapped on consecutive

Hilbert IDs. For instance, cells 5 and 58 are direct neighbors

on the grid, but their Hilbert IDs are very far apart. These

inconsistencies are common in all space filling curves, and

are more severe on higher level curves (which is typically the

case in real life applications).

Fig. 2. Exploring the surrounding area with 2 and 4 sub-segments.

To address these shortcomings, we take advantage of Gentry

and Ramzan’s multi-record retrieval feature, as described

by Groth et al. [8]. Specifically, given a database segment

containing N 32-byte records, we partition the segment into

u sub-segments, each storing N (32/u)-byte records. By

doing so, it is possible to retrieve u records from each sub-

segment, while keeping the computational cost unchanged.

Therefore, by sacrificing some communication cost, we can

retrieve more relevant results with a single query. Note that,

the communication cost in the multi-record retrieval scheme

is (2 + k · u) · logm.

As a first step towards improving our basic scheme, we

require the user to explore the area surrounding his current

location, and retrieve the database rows that maximize the

coverage of that area. The intuition is that, if the user has

no prior knowledge of his trajectory, we should anticipate

his movement towards any possible direction. Algorithm 2

illustrates the functionality of this approach. We define as R
the number of rings surrounding the user’s current cell that

we want to explore.

Algorithm 2 Surrounding Area

1: procedure SURROUNDING-AREA(HID, k, u,R)
2:
3: count[N ]← {0};
4:
5: if (HID /∈ cache) then
6: r ← HID/8k;
7: insert r into rows[ ];
8: for each cell i in the area defined by R do
9: r′ ← hid(i)/8k;

10: if (r′ 6= r and hid(i) /∈ cache) then
11: count[r′] + +;
12: end if
13: end for
14: find the top (u− 1) values in array count;
15: insert their indexes into rows[ ];
16: cells[ ]← PIR(rows[ ]);
17: cache← cells[ ];
18: end if
19:
20: end procedure

The algorithm maintains an array rows, which stores the

row numbers that should be retrieved from the database. The

first row is always the one containing the user’s current cell

(lines 6–7). Next, the algorithm iterates over all cells within the



area defined by R, and counts how many times the underlying

row numbers appear in the result (lines 8–13). Finally, it

selects the (u− 1) most frequent row numbers and adds them

into rows (lines 14–15). The cells from all u rows are then

retrieved via the PIR query and are eventually cached at the

client. In the example of Fig. 2, when u = 2 we retrieve rows

6 and 8. On the other hand, when u = 4 we retrieve rows 6,

8, 7, and 15.

D. Trajectory Prediction

Even if a mobile user is unaware of his exact trajectory, he

is very likely to occasionally follow a specific direction (e.g.,

south-east) for a sufficiently large period of time. Therefore,

in our next method, we explore the feasibility of employing

a trajectory prediction algorithm, in order to maximize the

amount of useful information retrieved from a PIR query. To

this end, we assume that the client maintains a cache v of his

most recent GPS measurements that are taken at regular time

intervals.

Algorithm 3 shows the detailed steps of this approach. As

in our previous method, we retrieve a total of u rows, where

the first row is always the one containing the user’s current

cell. Next, the client applies a simple linear regression (SLR)

model on the vector v of GPS measurements, and computes

a straight line l that predicts the following trajectory points

(line 6). This line is then extended forward, until it encounters

(u−1) additional cells whose underlying rows are not present

in the cache. The row numbers of these cells are also added

to the PIR query (lines 7–11).

Algorithm 3 Trajectory Prediction

1: procedure TRAJECTORY-PREDICTION(HID,k, u, v)
2:
3: if (HID /∈ cache) then
4: r ← HID/8k;
5: insert r into rows[ ];
6: l← SLR(v);
7: for i = 1 to (u− 1) do
8: extend l until you find cell j: hid(j) /∈ cache;
9: r ← hid(j)/8k;

10: insert r into rows[ ];
11: end for
12: cells[ ]← PIR(rows[ ]);
13: cache← cells[ ];
14: end if
15:
16: end procedure

Fig. 3 illustrates an example of the prediction algorithm for

u = 2 and u = 4. The dots in these figures represent the

user’s trajectory (starting from the upper left corner), and the

shaded boxes represent the rows retrieved from the WSDB.

When u = 2 (Fig. 3a), the first PIR query is constructed by

extending the predicted line, until it encounters the cell marked

with the hollow square. As a result, the first PIR query retrieves

rows 31 and 30. When the user enters row 28, a new query

is issued for rows 28 and 4. This process repeats and the user

issues a total of four PIR queries, represented by the white

dots in Fig. 3a.

On the other hand, when u = 4 (Fig. 3b) the client is

able to prefetch more results from the predicted trajectory,

thus resulting in just two PIR queries for the entire trajectory.

The first query retrieves rows 31, 30, 28, and 4, while the

second one retrieves rows 5, 6, 8, and 9. Note that, reducing

the number of PIR queries is very important, as they incur a

high computational cost at the WSDB. Regarding the commu-

nication cost in our example, the 2 sub-segment case requires a

total of 40 · logm bits, while the 4 sub-segment case requires

36 · logm bits. In other words, for approximately the same

communication cost, we were able to reduce the computational

cost at the WSDB by 50% (4 vs. 2 PIR queries).

(a) (b)

Fig. 3. Trajectory prediction example. (a) Using 2 sub-segments. (b) Using
4 sub-segments.

E. A Priori Trajectory Knowledge

Our last method deals with mobile users that have full a

priori knowledge of their trajectories. This is not an unrealistic

assumption, since that feature is common in GPS navigation

systems. In this scenario, users are allowed to choose the

trajectory starting and ending points, and then control the route

connecting the two end points. Knowing the exact trajectory

enables us to simulate the route on the underlying grid, and

identify the cells that intersect with that route. Algorithm 4

depicts that simulation. It simply initializes an empty hash

table HT , and inserts therein the row numbers of all cells that

intersect trajectory T . Note that, this method is guaranteed to

invoke the optimal number of PIR queries.

Algorithm 4 A Priori Trajectory Simulation

1: procedure A-PRIORI-TRAJECTORY-SIMULATION(T, k)
2:
3: HT ← ∅;
4:
5: for each cell i intersecting trajectory T do
6: r ← hid(i)/8k;
7: insert r into HT ;
8: end for
9:

10: end procedure

Once the algorithm computes the final hash table, the client

has two options regarding query processing. The first one is

to issue |HT |/u PIR queries to the WSDB and retrieve all the



necessary results beforehand. The second option is to issue the

queries “on-demand.” That is, when the client moves into a

cell without any channel availability information, he retrieves

the row of that cell as well as (u − 1) other rows from the

hash table (it could be the ones that are spatially close to the

query point).

V. EXPERIMENTAL EVALUATION

In this section, we evaluate experimentally the performance

of our proposed methods. Section V-A describes the setup of

our experiments, and Section V-B provides the detailed results.

A. Experimental Setup

We developed our experiments in Java SDK, running on

Ubuntu 14.04.1 LTS. For the experimental tests, we utilized

two real life datasets, namely Microsoft’s GeoLife GPS Tra-

jectories1 and Microsoft’s T-Drive GPS Dataset2. Both are

excellent datasets, containing real life trajectories from users

traveling around Beijing, China.

The T-Drive dataset [21] contains GPS trajectories from

10,357 taxis, during the period of Feb. 2 to Feb. 8, 2008. The

average sampling interval is about 177 seconds, with a distance

of about 623 meters. The GeoLife GPS dataset monitors 182

users for a period of over five years (from Apr. 2007 to Aug.

2012), and 91.5 percent of the trajectories are logged in a

dense representation, e.g., every 1–5 seconds or every 5–10

meters per point.

In our experiments, we set a bounding box of 409.6km

× 409.6km (thus setting n = 4096) around Beijing’s co-

ordinates, which are 39.9139◦N, 116.3917◦E. The bounding

box’s coordinates are set as minlat = 37.7, maxlat = 41.5,

minlong = 114.1, and maxlong = 118.9. From all the

available trajectories, we compiled a list of the longest ones

that are completely contained within the bounding box. In

particular, we selected 9727 trajectories from the T-Drive

dataset, and 2188 trajectories from the GeoLife dataset.

As performance metric, we measure the average cumulative

query response time from all PIR queries that are issued to the

WSDB throughout the duration of a mobile user’s trajectory.

This cost includes (i) the query generation time at the client,

(ii) the processing time at the server, (iii) the network transfer

time, and (iv) the result extraction time at the client. To provide

realistic results, we implemented the underlying PIR protocols

([6] and [20]) using the GMP3 multiple precision arithmetic

library. Table III shows the detailed costs. The client-side

computations are performed on an iPhone 5 device running

iOS 7.1, while the server-side computations are performed on

a 3.5 GHz Intel Core i7 processor.

For Trostle and Parrish’s scheme we set the modulus size

equal to 2048 bits, as described in [5]. Note that, the query

generation cost at the client can be avoided, since it involves

the computation of n random values that are independent

1http://research.microsoft.com/en-us/projects/GeoLife/
2http://research.microsoft.com/en-us/projects/tdrive/
3http://gmplib.org

TABLE III
COST OF PIR OPERATIONS

Cost GR [6] TP [20]

Query generation (client) 450ms Pre-processing

Server processing (64 CPUs) 4560ms 18ms

Server processing (128 CPUs) 2280ms 9ms

Result extraction (client) 125ms 0.5ms

Communication cost 20800 bytes 2121728 bytes

of the queried row. As a result, these values can be pre-

computed offline. For Gentry and Ramzan’s protocol we set

the modulus size m equal to 1280 bits, in order to satisfy

the security requirement of the protocol. Also, the query

generation algorithm for Gentry and Ramzan depends on the

queried row(s) and should be computed online. The values

shown in the table above correspond to the single row retrieval

method, where k = 128 and u = 1.

Fig. 4 shows the query response time for the two PIR

protocols (based on Table III) as a function of the cellular

bandwidth available at the mobile client. Clearly, the cost of

Trostle and Parrish’s scheme is dominated by the network

transfer time, since each PIR query necessitates the exchange

of over 2 MB of data. On the other hand, Gentry and Ramzan’s

protocol is practically independent of the available bandwidth,

and its cost is determined solely by the computing power at

the WSDB (64 vs. 128 CPUs). Nevertheless, as we mentioned

earlier, the primary deployment targets for database-driven

DSA are areas with scarce cellular bandwidth, making Gentry

and Ramzan’s protocol a better choice as the underlying PIR

mechanism.
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Fig. 4. Response time for a single PIR query. (a) 64 CPUs (b) 128 CPUs

Note that, another option for achieving location privacy is

through the trivial PIR case, i.e., by downloading the entire

spectrum WSDB with one query. However, this is only viable

when the database size is small or when there is ample

bandwidth to do so. In our experiments, the database size is

over 67 MB, which takes around 536 seconds to download at

1 Mbps, and 108 seconds at 5 Mbps.

B. Experimental Results

In the first experiment we investigate the performance of the

single row retrieval method (k = 128, u = 1), as explained

in Section IV-B. Fig. 5 depicts the average cumulative query

response time as a function of the available bandwidth. The

curve labeled “Gao et al.” corresponds to an improved version



of the original protocol [5] that incorporates Trostle and

Parrish’s unmodified scheme, which retrieves one row with

a single query. (Note that, the two variants have practically

identical performance in terms of both computation and com-

munication cost.) Clearly, Gao et al. is not designed for moving

clients, and averages 174 PIR queries (per trajectory) for the

GeoLife dataset, and 135 queries for the T-Drive dataset. As

a result, the overall cost of Gao et al. exceeds the cost of the

trivial PIR case by a wide margin and we will, thus, omit it

from further comparisons in our experiments.
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Fig. 5. Response time for the single row retrieval method. (a) 64 CPUs
(GeoLife) (b) 128 CPUs (GeoLife) (c) 64 CPUs (T-Drive) (d) 128 CPUs
(T-Drive)

Our single row retrieval method outperforms the trivial PIR

case for the GeoLife dataset, and is marginally worse for

the T-Drive dataset (for 64 CPUs) when there is adequate

download bandwidth. The difference in performance across

the two datasets is explained by the structure of the under-

lying trajectories. Recall that the data points in the T-Drive

dataset are recorded at sparse distances (average 623m). The

sparseness of the data points mimics well the requirements of

a “paging” application, where ubiquitous connectivity is not

a requirement. In this scenario, prefetching results from the

surrounding area is not always beneficial, since the user may

issue the next query from an entirely different area. On the

other hand, the data points in the GeoLife dataset are very

dense so, with a high probability, several consecutive queries

may be issued within a small area.

In the remainder of this section, we investigate the perfor-

mance of our multi-record retrieval protocols for the case of

k = 128 and u = 4. We begin by evaluating the surrounding

area method, which was explained in Section IV-C (we set

R = 50 rings as the explored area). Fig. 6 illustrates the

cumulative query response time as a function of the available

bandwidth for the two datasets. It is evident that our method

outperforms considerably the trivial PIR case in almost all

settings. Compared to the single row retrieval method (which

is also included in the figure for clarity), the surrounding area

approach decreases the overall query cost by 57%, on average,

for the GeoLife dataset, and 47% for the T-Drive dataset.
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Fig. 6. Response time for the surrounding area method. (a) 64 CPUs
(GeoLife) (b) 128 CPUs (GeoLife) (c) 64 CPUs (T-Drive) (d) 128 CPUs
(T-Drive)

Next, we evaluate the performance of our trajectory predic-

tion method, as described in Section IV-D. Fig. 7 shows the

cumulative query response time for the three methods under

various settings. The trajectory prediction approach is clearly

superior to the trivial PIR case under all settings. Utilizing

128 compute units at the server results in a response time of

just 18 sec (for the whole trajectory) in the GeoLife dataset

and 42 sec in the T-Drive dataset. In addition, the trajectory

prediction algorithm decreases the query processing cost even

further compared to the surrounding area method. Specifically,

it reduces the cost by an additional 34% in the GeoLife dataset,

and 28% in the T-Drive dataset. This is due to the fact that,

with trajectory prediction, we prefetch results according to a

specific direction of movement instead of a generic rectangular

area.

In our last experiment, we investigate the performance

of the a priori trajectory knowledge approach, which was

explained in Section IV-E. Recall that, this method is optimal

in terms of PIR requests, since the client avoids the retrieval

of any unnecessary rows from the WSDB. Fig. 8 illustrates the

corresponding cumulative query response times. Our method

outperforms the trivial PIR approach by a large factor, and

entails a cost of just 12 sec in the GeoLife dataset and 23 sec in

the T-Drive dataset (for 128 compute units). Compared to the

trajectory prediction method, the a priori trajectory knowledge

enables us to reduce the query processing cost by an additional

33% in the GeoLife dataset and 43% in the T-Drive dataset.
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Fig. 7. Response time for the trajectory prediction method. (a) 64 CPUs
(GeoLife) (b) 128 CPUs (GeoLife) (c) 64 CPUs (T-Drive) (d) 128 CPUs
(T-Drive)
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Fig. 8. Response time for the a priori trajectory knowledge method. (a) 64
CPUs (GeoLife) (b) 128 CPUs (GeoLife) (c) 64 CPUs (T-Drive) (d) 128 CPUs
(T-Drive)

VI. CONCLUSIONS

Existing methods for location privacy in the database-

driven DSA model are very inefficient, because they are not

optimized for mobile clients. To this end, our work introduces

an efficient solution, based on a Hilbert space filling curve

indexing of the white-space database. Our methods leverage a

communication-efficient PIR protocol, and employ trajectory

prediction algorithms to minimize the number of PIR queries.

Through extensive experimentation with real life datasets, we

show that, compared to the current state-of-the-art protocol,

our methods reduce the query response time at the mobile

clients by a large factor.
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