
An Anonymous Messaging System for Delay
Tolerant Networks

Spiridon Bakiras
College of Science and Engineering

Hamad bin Khalifa University
Email: sbakiras@qf.org.qa

Erald Troja
The Graduate Center

City University of New York
Email: etroja@graduatecenter.cuny.edu

Xiaohua Xu
Department of Computer Science

Kennesaw State University
Email: xxu6@kennesaw.edu

Abstract—Security and anonymity are vital components in
today’s networked world, and play critical roles in several real-
life situations, such as whistleblowing, intelligence operations,
oppressive governments, etc. In this paper, we study anonymous
communications in the context of Delay Tolerant Networks
(DTNs). Existing work in this area relies on the standard onion
routing paradigm to provide anonymity and is, therefore, vulner-
able to malicious nodes. To this end, we introduce a novel message
forwarding algorithm that utilizes random walks to deliver
messages to their destinations. By removing the requirement
to list all the intermediate nodes on the end-to-end path, our
method enhances considerably the anonymity of the underlying
communications. Our simulation results show that the proposed
forwarding algorithm achieves high message delivery rates, at
the expense of a moderate computational overhead at the mobile
devices.

I. INTRODUCTION

Technological advances in software vulnerabilities and com-
munications surveillance have turned privacy breaches into
a commonplace. Incidents like the Yahoo breach [1] or the
widespread surveillance of private citizens’ communications
by the NSA [2], illustrate that no piece of personal information
is safe in the digital world. It is, thus, not surprising that users
are becoming increasingly interested in secure and anonymous
communications. Tor (the onion router) [3] is currently fill-
ing up that need, by providing a low-latency platform that
anonymizes the user’s web browsing activities. Tor is utilized
by a diverse user population, including the military, media,
activists, and even family and friends.

Tor is inspired by Chaum’s work on mix nets [4]. Specif-
ically, it employs the concept of onion routing that encap-
sulates each message into multiple layers of encryption. The
message then travels through a series of predetermined nodes
(selected by the source) before reaching the destination. Each
intermediate node removes one encryption layer, which in turn
reveals the next hop towards the destination. The onion routing
paradigm is adopted by the majority of anonymous networks
that operate today, because of its efficiency and low end-to-
end delay. Nevertheless, onion routing is extremely vulnerable
to malicious nodes, because they have the potential to reveal
part of the route between the communicating parties. In the
extreme case, when all intermediate nodes are compromised,
the anonymity of the conversation is broken.

Delay Tolerant Networks (DTNs) [5] have also been con-
sidered as the underlying platform for building anonymous

communication systems. DTNs employ opportunistic routing
by bouncing messages randomly among roaming nodes in a
store-carry-and-forward manner. As such, DTNs are more re-
silient against malicious nodes, because they operate in a peer-
to-peer (P2P) manner without any infrastructure support. Their
location-based forwarding mechanism limits the attack vector
of an adversary, and forces malicious nodes to get physically
close to the victim in order to launch an attack. DTN-based
messaging applications have gained a lot of attention recently,
mainly due to the popularity of the FireChat app [6], [7].

Unfortunately, existing work on anonymous DTN com-
munications [8], [9] also relies on the concept of onion
routing. In particular, nodes are partitioned into groups and
the source node selects specific groups that the message has
to travel through before reaching the destination. Furthermore,
these schemes rely on a trusted key generator to produce
the private keys that are shared by the groups, which is an
obvious security risk. In this paper, we diverge from the onion
routing paradigm and design a novel, decentralized network
for anonymous communication. We leverage the opportunistic
nature of DTNs to deliver messages with the traditional store-
carry-and-forward approach. By removing the requirement to
list intermediate nodes/groups on the end-to-end path, our
method enhances considerably the anonymity of the under-
lying communications. Our simulation results show that the
proposed forwarding algorithm achieves high message delivery
rates, at the expense of a moderate computational overhead at
the mobile devices.

The remainder of the paper is organized as follows. Sec-
tion II reviews previous work on anonymous communications
and Section III presents the details of our anonymous mes-
saging system. Section IV discusses the anonymity properties
of our design and Section V presents our simulation results.
Section VI concludes the paper with some directions for future
work.

II. RELATED WORK

There is a plethora of research work on onion routing
networks, such as Ref. [10], [11], [12], [13], [14], [15],
that mainly differ on the cryptographic constructions of the
underlying encryption layers. In addition to theoretical work,
several anonymous networks (besides Tor) have been deployed
at some point, including Mixmaster [16] and Mixminion [17]

for anonymous email, and I2P (Invisible Internet Project) [18]
for anonymous messaging, web browsing, blogging, email, and
file sharing. However, all the aforementioned protocols are
targeted towards networks with a stable/known connectivity.

The first work towards security and anonymity in DTNs is
due to Kate et al. [19] that study anonymous Internet access in
remote areas. The authors employ identity-based cryptography
(IBC) [20] to build an anonymous authentication protocol
that allows users to authenticate themselves using pseudonyms
instead of real identities. The main limitation of this approach
is that it requires a trusted key generator, which computes and
distributes private keys to the users. This is a single point of
failure and, if compromised, the attacker has access to all the
private keys, thus breaking the security and anonymity of the
entire system.

Jansen and Beverly [8] propose the threshold pivot scheme
(TPS), which adapts the onion routing paradigm in the DTN
environment. In particular, the authors employ a group onion
routing algorithm that uses threshold secret sharing [21] to
distribute the encryption key among multiple groups. There-
fore, in order to reveal the message’s destination, the secret
has to be reconstructed by nodes in at least τ distinct groups.
TPS has several drawbacks. First, it is vulnerable to malicious
(or simply colluding) nodes that can decrypt all the receivers’
identities once they gain access to τ different groups. Having
access to all the groups may also reveal the sender of a
message, by simply tracking it as it passes through the different
groups. Second, the protocol necessitates that each group
maintains a unique public/private key pair, which is extremely
challenging to achieve without a trusted third party.

Similar to TPS, ARDEN [9] also employs the group
onion routing mechanism to provide anonymity. However, the
groups are not statically defined. Instead, the sender leverages
attribute-based encryption (ABE) [22] to construct random
groups, based on the IDs of nodes that are currently present
in the network. Although ARDEN decreases the probability
that an adversary has control over nodes in all the generated
groups, it still has some major limitations. First, IBE requires
a trusted key generator to generate and distribute secret keys
to the users. As mentioned previously, this is a single point of
failure, and any attacker that gains access to the users’ keys
can decrypt all traffic in the network. Second, to construct
the group onion route, the sender node must have knowledge
of the IDs from a large number of users that are currently
in the network. This is not a trivial task, and may incur
a significant overhead in the system. Finally, ABE is an
expensive cryptographic primitive, which imposes a large
computational burden on the mobile devices.

III. ANONYMOUS MESSAGING SYSTEM

In this section, we present the details of our anonymous
messaging system. We start by outlining the adversarial model,
and then introduce the various elements of our design, includ-
ing key management, message forwarding, and cryptographic
solutions.

A. Threat Model

Our system will defend against powerful adversaries that
may launch both passive and active attacks. We allow passive
adversaries (eavesdroppers) access to all data communications
across the entire anonymous network. Naturally, we assume
that adversaries run in polynomial time, so they are not
able to break the underlying cryptographic protocols. Active
adversaries have the ability to compromise a number of honest
nodes and turn them into malicious ones. Malicious nodes
can attack legitimate users, by forwarding to them carefully
crafted messages (including replay messages) and examining
the resulting output. The objective is to identify any pair of
users that are communicating with each other. Note that, in
this work, we do not address denial-of-service (DoS) attacks,
since such attacks are not specific to our system (i.e., they are
not cryptographic in nature) and can take place in any network
environment.

B. Key Management

The first requirement of an anonymous network is data
confidentiality, i.e., the ability to send messages that can
not be deciphered by an eavesdropper. In our system, we
employ end-to-end encryption, using the existing public key
infrastructure (PKI) [23]. Specifically, we assume that the
sender has knowledge of the recipient’s public key, and uses
this key to encrypt the corresponding message. As a result,
only the recipient can successfully decrypt that message. There
are several ways for users to retrieve the necessary public keys
for communication. For example, the keys could be stored at
a public server and be available for download on demand.
However, to preserve anonymity, a user must download all
keys. Furthermore, all keys should be signed by a trusted
certificate authority (CA), in order for users to verify their
authenticity. (Note that, in contrast to existing work, all users
generate their own public/private key pairs.) Alternatively,
users may choose to exchange their public keys privately,
without involving a third party. This assumes that the parties
know how to exchange their keys in a secure manner.

C. Message Forwarding

The novelty of our work lies in the message forwarding
algorithm, which deviates from the traditional onion routing
paradigm that is employed in the majority of anonymous net-
works today. Our solution is to leverage a best-effort approach
that forwards messages randomly within the network until they
reach their destination (i.e., random walk). However, this is
not sufficient to provide anonymity, because an adversary with
access to all traffic can trace the entire path between the sender
and receiver nodes. Therefore, to preserve anonymity, (i) the
identity of the receiver node should be removed and (ii) every
message must be re-randomized prior to being forwarded to
the next node. In this way, all messages appear as random
noise to an adversary, making it infeasible to trace individual
messages as they traverse the network. Another requirement
is that all messages have the same size, i.e., smaller messages

are padded to a default message size, while larger messages
are transmitted into multiple chunks.

When Alice wants to send an anonymous message m to
Bob, she first constructs a packet1 P containing the following
information (‘|’ denotes concatenation):

P = 〈nym,PK,m,H(nym|PK|m)〉

PK is a fresh public key that does not exist in the public
key database, i.e., it can not be traced back to Alice. This
key should be used by Bob, if he wishes to send a reply
(or acknowledgment) message to Alice. To hide her real
identity, Alice uses a pseudonym (nym) instead of her own
name2. Furthermore, to thwart message modification attacks,
she computes and attaches the message digest H(·) of the
aforementioned packet data. (Note that the message digest may
also be used by Bob to detect duplicate messages.) P is then
encrypted with Bob’s public key, before being sent out on the
network.

DTNs employ a store-carry-and-forward routing algorithm,
where nodes store messages in a local buffer B while roam-
ing. Once they discover a new peer (i.e., a node within
communication range), they exchange (part of) their buffer
contents and continue with their respective trajectories. When
a node identifies a message destined to itself, it does not
propagate it any further. The simplest forwarding mechanism
is flooding, also called epidemic routing, where nodes transmit
copies of their entire buffer to every node they encounter. The
high cost of epidemic routing has triggered the development
of numerous efficient protocols, such as spray routing [24],
PRoPHET [25], RAPID [26], and many others.

In our context, existing DTN routing protocols face the fol-
lowing challenges: (i) messages do not include the recipient’s
address or time-to-live (TTL) information, (ii) it is infeasible
for a node to identify duplicate messages, and (iii) there is
a considerable overhead associated with message forwarding,
due to the underlying cryptographic operations. Challenges (ii)
and (iii) dictate the use of multi-copy routing algorithms, such
as Spray and Wait [24], which generate a fixed number k
of copies per message. Indeed, without duplicate detection, a
flooding algorithm (such as epidemic routing) will generate an
enormous amount of messages that go through expensive re-
randomization operations at each forwarding step. Challenge
(i) also excludes direct transmission routing [27] (i.e., direct
delivery of a message to its destination), as well as intelligent
algorithms that use node history/location in the forwarding
decisions [25].

To tackle the aforementioned challenges, we make the
following three design decisions. First, when a node generates
a new message, it creates k copies and places them randomly
into the output buffer B. Second, to control the flooding
process, the buffer size |B| is fixed to a relatively small
value, and incoming packets are only accepted if there is

1Or bundle in the DTN terminology.
2When two users know each other but want to hide their communication

from an adversary, they may use their real identities instead.

sufficient buffer space. Finally, to reduce the computational
cost of the packet randomization process (and at the same
time improve the anonymity of the system), only a fraction f
of the output buffer B is exchanged between two connected
nodes. Furthermore, the outbound messages are immediately
deleted at the source node. Algorithm 1 illustrates the message
forwarding mechanism of our system. Note that, when a node
receives a batch of messages from another peer, it has to check
all of them for ownership (lines 3–5), because they do not
include the destination address. This is done by attempting
to decrypt part of the encrypted message, as explained in the
following section.

Algorithm 1 Message forwarding algorithm
1: procedure RECEIVE-BUFFER(Q)
2: // Input: A buffer Q received from a connected peer
3: for each packet P in Q do
4: if decrypt(P) = true then
5: store P for further processing;
6: else
7: B.enqueue(P);
8: end if
9: end for

10: end procedure
11:
12: procedure SEND-BUFFER(B)
13: // Input: Local buffer B
14: Initialize an empty buffer Q;
15: for each packet P in B do
16: u

R← [0, 1);
17: if u < f then
18: Q.enqueue(P);
19: B.remove(P);
20: end if
21: end for
22: Q.randomize();
23: Send Q to the connected peer;
24: end procedure

D. Choosing a Suitable Cryptosystem

Our message forwarding protocol necessitates a public key
cryptosystem that allows for ciphertext re-randomization with-
out knowledge of the underlying public key. In this project,
we will leverage the ElGamal cryptosystem [28] that has
this desirable property. The operation of the cryptosystem is
summarized below.

1) Initialization: Let p = 2q + 1 be a safe prime, and G
be a cyclic group of prime order q under multiplication
modulo p. Let g be a generator of G. All users in the
system share the public parameters (G, g, q, p).

2) Key generation: Choose a private key x uniformly at
random from Zq , and set the public key h = gx.

3) Encryption: Given a message m ∈ Z∗q , choose a
uniformly random r ∈ Zq and compute the ciphertext
(c1, c2) = (gr,m · hr). Note that all ciphertexts belong

to the same group, regardless of the underlying pub-
lic/private key pair.

4) Decryption: Compute m = c2/c
x
1 .

To enable intermediate nodes to re-randomize a ciphertext,
the sender will attach an encryption of value ‘1’ with the
recipient’s public key. That is, the packet will consist of the
following tuple:

〈E(1), E(P)〉 = 〈(gr1 , hr1), (gr, P · hr)〉

Therefore, without knowledge of the recipient’s public key,
a node may randomize E(P) as:

E(1)r2 · E(P) = (gr · (gr1)r2 , P · hr · (hr1)r2)
= (gr+r1r2 , P · hr+r1r2)

= E(P)

Each message will consist of multiple ciphertexts, because
a single one can encrypt up to log q bits (typically 2048 bits).
As an example, two ciphertexts are sufficient to deliver short,
SMS-style messages. In addition, when checking an encrypted
message for ownership, a node may simply attempt to decrypt
E(1). If the output is indeed ‘1’, the rest of the message is
decrypted and displayed to the user.

E. Message Integrity

This particular version of the ElGamal cryptosystem is vul-
nerable to a message hijacking attack, due to the multiplicative
masking of the plaintext packet P . An attacker, without knowl-
edge of the actual recipient of a message, can utilize E(1) to
hijack the original message and send his own version of the
message to that recipient. In particular, given E(1) = (gr, hr),
the attacker may produce E(P ′) = (gr, P ′ · hr) and replace
the original message E(P). The recipient is unable to detect
this replacement, because the attacker can recompute the hash
digest to match the new packet contents. By choosing a public
key PK′ of his own, the attacker may subsequently try to
communicate with the recipient, in order to learn her identity.

To thwart this type of attack, we will leverage another
version of the ElGamal cryptosystem (additive ElGamal),
where the plaintext message is hidden in the exponent of the
public key. Specifically, the ciphertext of a packet P has the
form E(P) = (gr, hP+r) and, to allow for ciphertext re-
randomization, it is sufficient to attach E(0) = (gr1 , hr1).
Note that, the presence of E(0) is useless to the attacker,
because it can not be manipulated to produce the encryption
of an arbitrary packet P ′.

However, a notable limitation of the aforementioned cryp-
tosystem is that the decryption function necessitates a discrete
log computation. As such, it can not be used to encrypt
arbitrarily large messages. To overcome this limitation, we
will use a hybrid system where (i) the multiplicative version
of the ElGamal cryptosystem is used for message encryption
(as before), and (ii) the additive version is used to encrypt
a session key K that will turn the hash function in packet

P (Section III-C) into an HMAC. Therefore, each plaintext
packet P will now have the following form:

P = 〈nym,PK,m,HMACK(nym|PK|m)〉

Similarly, the encrypted version of the packet will consist of
the following tuple:

〈EA(0), EA(K), EM (1), EM (P)〉

where EA(·) and EM (·) represent the additive and multi-
plicative versions of the ElGamal cryptosystem. To launch a
successful message hijacking attack, an adversary must guess
the session key K in order to compute the correct value of
the HMAC.

IV. ANONYMITY PROPERTIES

In this section, we discuss in detail the anonymity prop-
erties of our messaging network. We consider two types of
adversaries, namely passive and active adversaries.

Passive adversaries A passive adversary (or eavesdropper)
does not interfere with the protocol, but instead monitors
the underlying communications in order to deduce any piece
of relevant information regarding the end-points of an active
conversation. In this work, we allow passive adversaries access
to all communications. Indeed, even with a global view of the
network, an adversary has no advantage in linking an incoming
message (entering a node) to an outgoing one (exiting that
node). This is due to the semantic security of the ElGamal
cryptosystem that renders all messages indistinguishable from
each other. Therefore, it is infeasible for an adversary to
identify any pair of communicating nodes.

Another important property of our messaging system (under
passive adversaries) is sender and receiver unobservability.
This means that an external observer that sees all traffic can
not identify any instance of a node sending or receiving a
message. This is due to (i) the fixed buffer space and (ii)
the probabilistic forwarding process. More specifically, new
messages replace existing ones at the sender’s buffer, thus
hiding the message creation process. (A node that just joined
the system may simply wait until its buffer is full before
creating new messages.) On the other hand, by sharing a
fraction f of the outbound buffer (instead of the whole buffer),
a node may remove a message from the network without
leaving any trace.

Active adversaries An active adversary will compromise
honest nodes and retrieve all their private keys and gain access
to all their internal computations. The compromised (and now
malicious) nodes can launch a number of different attacks
against honest users. The simplest one is a replay attack, where
a malicious node may inject old messages into the network.
This has no effect on the anonymity of the system, because
all messages are re-randomized at each step of the random
walk. In addition, replayed messages can be identified at the
destination node, by matching their digests against the ones
that were received in the past.

A more serious attack is when malicious nodes flood a
victim with their own tagged messages that can be detected
even when they are re-randomized. Eventually, the victim’s
buffer will not contain any legitimate messages and, when
it sends or receives a new message, a simple traffic analysis
will reveal that. However, as long as honest nodes interact
with each other frequently (i.e., the percentage of malicious
nodes is not overwhelming), the anonymity of the system is
maintained. Note that, this is not an attack specific to our
system, but is applicable to all onion routing based methods
as well. On the other hand, if a legitimate message travels from
a source to the destination through a series of malicious nodes,
our system will not leak any information to the adversary, due
to the random walk nature of the routing mechanism.

V. SIMULATION RESULTS

In this section, we evaluate experimentally the performance
of our proposed message forwarding algorithm. We developed
the experiments on the ONE DTN simulator [29], where we
simulated random walks of 1000 pedestrian users over a period
of one week. We utilized ONE’s default pedestrian path maps
and the default event generation engine, in order to produce
the underlying node meetings. The new message generation
rate was set to one message/minute and the buffer size at
each node was set to 1000 messages. As performance metrics,
we measure (i) the message delivery rate, (ii) the end-to-end
delay, and (iii) the total number of relayed messages. We
compare our method against the baseline epidemic routing
(best delivery rate and lowest delay), and Spray and Wait
[24] routing (lowest overhead). For the baseline methods, we
assume a standard DTN environment without anonymity, and
use an infinite buffer to ensure that no messages are dropped.
Note that we do not compare against other anonymous DTN
routing protocols, such as TPS and ARDEN, because they
do not offer the same level of anonymity as our scheme (see
Section II).

Fig. 1(a) shows the message delivery rate as a function
of the forwarding probability f (k = 10). For f = 0.2 our
method (RW) delivers 88% of the created messages, while
for f = 0.5 the rate goes up to 92%. Larger values im-
prove the performance even further, but are not recommended
due to their impact on anonymity and computational cost.
In comparison, epidemic routing (ER) delivers 96% of the
messages, while Spray and Wait (SW) is slightly worse at
89%. Fig. 1(b) illustrates the end-to-end delay for the same
experiment. Epidemic routing is the clear winner due to its
flooding nature, while our random walk approach outperforms
Spray and Wait when f ≥ 0.2.

Fig. 2 shows the effect that the forwarding probability has
on the number of relayed messages (overhead). For f ≤ 0.2
the random walk protocol reduces the overhead by 38%-
89% compared to epidemic routing. This is very important,
because our method necessitates expensive re-randomization
operations for each relayed message. Note that, Spray and Wait
has a very low overhead, because it utilizes direct delivery to
route messages to their destinations.

0.5

0.8

1

0.2 0.5 0.8 1

D
e
liv

e
ry

 r
a
te

Forwarding probability

ER
SW
RW

(a) Delivery rate

 0

 50

 100

 150

 200

0.2 0.5 0.8 1

D
e
la

y
 (

m
in

)

Forwarding probability

ER
SW
RW

(b) Delay

Fig. 1. Performance vs. forwarding probability

 0

 300

 600

0.2 0.5 0.8 1

R
e
la

y
e
d
 m

e
s
s
a
g
e
s
 (

x
 1

0
0
0
)

Forwarding probability

ER
SW
RW

Fig. 2. Relayed messages vs. forwarding probability

Given the benefits of a small forwarding probability f on the
system’s performance (lower overhead and better anonymity),
we next investigate whether it is possible to improve message
delivery by generating more copies for new messages. To
this end, Fig. 3 depicts the delivery rate and end-to-end
delay as a function of the number of message copies (k),
for f = 0.2. As expected, increasing the number of copies
improves the performance, because it creates more paths that
may potentially reach the destination node. (Recall that, in our
forwarding algorithm, messages do not include the destination
address, so it is easy to miss a delivery even when exchanging
messages with the actual destination node.) For k = 20, our
algorithm is within 7% of the optimal delivery rate (as dictated
by the epidemic routing result), while remaining within a
factor of two in terms of end-to-end delay. The number
of copies affects Spray and Wait more drastically, because
messages are delivered solely through direct transmission to
the destination node.

0.5

0.8

1

1 5 10 15 20

D
e
liv

e
ry

 r
a
te

Number of message copies

ER
SW
RW

(a) Delivery rate

 0

 50

 100

 150

 200

1 5 10 15 20

D
e
la

y
 (

m
in

)

Number of message copies

ER
SW
RW

(b) Delay

Fig. 3. Performance vs. k (f = 0.2)

Fig. 4 illustrates the number of relayed messages as a
function of k, for f = 0.2. Clearly, increasing k does
not have a adverse impact on the network overhead. Using
k = 20 copies per message is considerably more efficient than
epidemic routing, resulting in a 35% lower cost. Spray and

Wait is again the most efficient approach, because messages
are only forwarded upon encountering the destination node.

 0

 300

 600

1 5 10 15 20

R
e
la

y
e
d
 m

e
s
s
a
g
e
s
 (

x
 1

0
0
0
)

Number of message copies

ER
SW
RW

Fig. 4. Relayed messages vs. k (f = 0.2)

Finally, we investigate the computational overhead of the
cryptographic operations that take place during the message
forwarding process. We implemented the ElGamal cryptosys-
tem in C, using the GMP library [30] for multiple precision
arithmetic. The basic operation involved in the cryptosystem
is the modular exponentiation which, for a 2048-bit modulus,
took 3.5 ms to complete on a 2.8 GHz Inter Core i7 CPU.
Fig. 5 shows the CPU cost at the mobile devices as a
function of the number of exchanged messages. Ownership
check is significantly faster, as it necessitates a single modular
exponentiation for each message. On the other hand, message
randomization is expensive, because it involves numerous
ciphertexts, each requiring two modular exponentiations. Here,
we assume that both EA(K) and EM (P) consist of two
ciphertexts, so there are a total of six ciphertexts in each
encrypted packet (see Section III-E). Nevertheless, the overall
cost is acceptable, and requires just 8.4 sec of compute time
for 200 messages.

 0

 5

 10

 15

 20

 25

50 100 200 500

C
P

U
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of messages

Randomization
Ownership check

Fig. 5. CPU time vs. number of messages

VI. CONCLUSIONS

Anonymity in private communications has become an im-
portant issue for everyday users. To this end, we introduce
a novel wireless messaging system with stringent anonymity
properties. It leverages the opportunistic forwarding mecha-
nism of Delay Tolerant Networks and, as such, it provides
stronger anonymity compared to the traditional onion routing
paradigm. Our simulations experiments demonstrate that our
methods achieve high message delivery rates, while incurring
a moderate computational overhead. One shortcoming of our
work, is that it utilizes public key encryption for message
confidentiality and is, thus, limited to small SMS-style mes-
sages. In our future work, we will investigate the feasibility
of employing symmetric key encryption in order to allow for
larger, multimedia messages.

REFERENCES

[1] The NY Times. (2016) Defending against hackers took a back seat
at Yahoo, insiders say. http://www.nytimes.com/2016/09/29/technology/
yahoo-data-breach-hacking.html.

[2] ——. (2015) AT&T helped U.S. spy on internet on a
vast scale. http://www.nytimes.com/2015/08/16/us/politics/
att-helped-nsa-spy-on-an-array-of-internet-traffic.html? r=0.

[3] Tor Project: Anonymity Online. https://www.torproject.org/.
[4] D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.
[5] K. R. Fall, “A delay-tolerant network architecture for challenged inter-

nets,” in ACM SIGCOMM, 2003, pp. 27–34.
[6] CNN. (2014) FireChat in Hong Kong: How an app tapped its

way into the protests. http://www.cnn.com/2014/10/16/tech/mobile/
tomorrow-transformed-firechat/.

[7] FireChat. http://opengarden.com/.
[8] R. Jansen and R. Beverly, “Toward anonymity in delay tolerant networks:

Threshold pivot scheme,” in MILCOM, 2010.
[9] C. Shi, X. Luo, P. Traynor, M. H. Ammar, and E. W. Zegura, “ARDEN:

anonymous networking in delay tolerant networks,” Ad Hoc Networks,
vol. 10, no. 6, pp. 918–930, 2012.

[10] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in CRYPTO, 2005, pp. 169–187.

[11] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a
type III anonymous remailer protocol,” in IEEE Symposium on Security
and Privacy (S&P), 2003, pp. 2–15.

[12] G. Danezis and I. Goldberg, “Sphinx: A compact and provably secure
mix format,” in IEEE Symposium on Security and Privacy (S&P), 2009,
pp. 269–282.

[13] B. Möller, “Provably secure public-key encryption for length-preserving
chaumian mixes,” in CT-RSA, 2003, pp. 244–262.

[14] E. Shimshock, M. Staats, and N. Hopper, “Breaking and provably fixing
minx,” in International Symposium on Privacy Enhancing Technologies
(PETS), 2008, pp. 99–114.

[15] L. Zhuang, F. Zhou, B. Y. Zhao, and A. I. T. Rowstron, “Cashmere:
Resilient anonymous routing,” in Symposium on Networked Systems
Design and Implementation (NSDI), 2005.

[16] Mixmaster. http://mixmaster.sourceforge.net/.
[17] Mixminion. http://mixminion.net/.
[18] I2P Anonymous Network. https://geti2p.net/.
[19] A. Kate, G. M. Zaverucha, and U. Hengartner, “Anonymity and security

in delay tolerant networks,” in International Conference on Security and
Privacy in Communication Networks (SecureComm), 2007, pp. 504–513.

[20] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
CRYPTO, 1984, pp. 47–53.

[21] ——, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, 1979.

[22] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE Symposium on Security and Privacy (S&P),
2007, pp. 321–334.

[23] J. Viega, M. Messier, and P. Chandra, Network Security with OpenSSL.
O’Reilly Media, 2002.

[24] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing
in intermittently connected mobile networks: the multiple-copy case,”
IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 77–90, 2008.

[25] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” Mobile Computing and Communications
Review, vol. 7, no. 3, pp. 19–20, 2003.

[26] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Replication
routing in dtns: a resource allocation approach,” IEEE/ACM Trans.
Netw., vol. 18, no. 2, pp. 596–609, 2010.

[27] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing
in intermittently connected mobile networks: the single-copy case,”
IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 63–76, 2008.

[28] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Advances in Cryptology, 1985, pp. 10–18.

[29] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN
Protocol Evaluation,” in Proc. International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems
(SimuTools), 2009, p. 55.

[30] The GNU MP Bignum Library. https://gmplib.org/.

