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Abstract— Server selection is an important function in any
replication-based infrastructure, aiming at redirecting client
requests to the “best” server according to some predefined
metrics. Previous research work has mainly focused on client-
side redirection schemes, where the client is responsible for the
server selection process. Furthermore, previous work has shown
that client probing techniques perform significantly better in
discovering the “best” server, compared to hop- or RTT-based
schemes. Client probing, however, is not very scalable, since the
number of clients and servers in the network will be very large.
In this paper, we propose a novel technique to transform the
server selection problem into a problem of optimal routing, which
enables us to shift the redirection process from the client to
the server-side. In particular, we consider the environment of
a Content Distribution Network (CDN), and propose a flexible
framework that can be used to optimize the server selection
process, according to various metrics and/or policies. Using trace-
driven simulations, we show that the proposed method can
improve significantly the response time of HTTP requests while
keeping the control overhead at a very low level.

I. INTRODUCTION

The explosive growth of the World Wide Web and the
increasing availability of fast Internet access to the end-
user, have turned centralized web servers into a performance
bottleneck. Popular web sites (e.g., news sites) receive tens
of millions of requests per day, which may easily overload a
state-of-the-art web server and increase significantly the delay
perceived by end-users.

Replication is a popular technique for reducing the latency
of HTTP requests, and is realized by moving the web content
as close to the end-user as possible. Content distribution
networks (CDNs), for example, accomplish that by replicating
popular web sites across a number of geographically distrib-
uted servers. The key objectives of a CDN are to increase
the availability of the hosted sites and, most importantly, to
minimize the response time of HTTP requests. One of the most
important functions in any replication-based infrastructure is
the server selection process, i.e., the process of identifying the
“best” server for each client, according to some predefined
metrics. Previous research work has mainly focused on client-
side redirection schemes, where the client is responsible for
the server selection process. Furthermore, previous work has
shown that client probing techniques perform significantly
better in discovering the “best” server, compared to hop-
or RTT-based schemes. Client probing, however, is not very

scalable, since the number of clients and servers in the network
will be very large.

In this paper, we propose a novel technique to transform
the server selection problem into a problem of optimal routing,
which enables us to shift the redirection process from the client
to the server-side. In particular, we consider the environment of
a CDN system, and propose a flexible framework that can be
used to optimize the server selection process according to var-
ious metrics and/or policies. Using trace-driven simulations,
we show that the proposed method can improve significantly
the response time of HTTP requests while keeping the control
overhead at a very low level.

The remainder of the paper is organized as follows. In
Section II we give a brief overview of previous research work
on server selection algorithms. The proposed transformation
technique is introduced in Section III, while the simulation
results are illustrated in Section IV. Finally, Section V con-
cludes our work.

II. PREVIOUS WORK

Server selection algorithms may be generally classified into
two categories, depending on which metrics they take into
consideration for selecting the “best” server. The first category
consists of those algorithms that use network distance as the
selection criteria, and typical examples include [8], [5], [10],
[11]. Guyton and Schwartz [8] use routing table polling and
network probing to calculate the distance between a client-
server pair. Similarly, the work by Jamin et al. [10] utilizes
the IDMaps [7] infrastructure to derive estimates of the client-
server distance. In a more recent work, Ratnasamy et al. [11]
introduce a binning scheme to cluster nodes into bins, such that
the nodes inside any bin are relatively close to each other in
terms of network latency. Finally, a slightly different approach
is considered by Carter and Crovella [5], which uses several
tools to measure the latency and available bandwidth from the
server to the client, in order to make the selection process
more dynamic.

The other class of server selection algorithms concentrates
on the complete path from the server to the client that includes
both the server load and the network delay. Sayal et al. [12]
show that the correlation between either the number of hops or
the measured RTT (through the ping utility) and the response
time is quite low. Instead, the best policy is shown to be past
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latency, an estimate of which is kept by sending periodic HTTP
HEAD messages to the server. Similar results are reported by
Dykes et al. [6], where the dynamic probe approach is again
shown to be superior to other metrics, such as bandwidth or
latency. A different two-step selection metric is introduced by
Hanna et al. [9], where a small subset of five well-performing
servers is isolated from the server population, and testing is
restricted to that subset for a period of ten days. Then, each
request is redirected randomly to any one of these five servers,
thus achieving some degree of load balancing.

Finally, the studies in [1] and [13] are more closely related
to our work. Andrews et al. [1] introduce a system called
Webmapper, which clusters the clients according to their IP
addresses, and assigns each cluster to an optimal server. The
clustering is performed by monitoring the TCP connections
between the clients and the servers. When the best server for
a cluster is discovered (by solving a min-cost flow problem),
this information is propagated to the clients through the DNS
infrastructure. The work by Zegura et al. [13] proposes an
application-layer anycasting architecture, where anycast re-
solvers are distributed across the network and maintain metric
information needed by the clients. The authors consider two
different techniques, namely server push and client probing,
that offer different levels of accuracy and overhead. However,
a hybrid approach that combines the two is shown to be the
best policy, since it offers a good trade-off between metric
accuracy and scalability.

III. SERVER SELECTION ALGORITHMS

A. System Model

We assume that the CDN infrastructure consists of N
geographically distributed servers, where each server i has a
processing capacity Ci (in bps). We also assume that there are
M different objects (e.g., web sites) that are being replicated
at various servers inside the CDN provider’s network.

Co-located with each server is a redirection agent, which is
responsible for redirecting the client requests to the appropriate
CDN server. Whenever a client issues an HTTP request for
one of the M hosted objects, the DNS resolver at the client
side will reply with the IP address of the nearest, in terms of
network distance, server. Based on the redirection matrix, the
redirection agent at that server will route the packet towards
the appropriate CDN server (if necessary). The HTTP reply
will be forwarded directly to the client.

The client population behind a server j will generate a
certain amount of requests for each of the M objects. Let us
use rij to denote the traffic load (in bps) from object i towards
the clients of server j. Then, the traffic load generated from
object i will be equal to ri =

∑N
j=1 rij , while the overall load

from all the hosted objects will be equal to r =
∑M

i=1 ri. In
this work we try to answer the following question: given a
replica placement matrix (i.e., the detailed location of copies)
and the corresponding traffic load matrix (i.e., the values of
rij), where should each client request be redirected in order
to minimize the average response time for the whole system?

B. Problem Transformation

Consider the network topology shown in Fig. 1. It con-
sists of four columns of nodes, where the leftmost column
represents the M hosted objects, and each of the other three
columns represents the N servers of the CDN architecture.
Therefore, each server i (1 ≤ i ≤ N) has three instances
in the topology and, in particular, it is represented by nodes
(M + i), (M + N + i) and (M + 2N + i). Traffic will
enter the topology through the M objects, and exit at the
servers of the rightmost column. Consequently, the set of
origin-destination (OD) pairs will consist of MN elements.
For each OD pair there will be at most N distinct paths,
which represent the N different servers that may satisfy a
client request. For example, a positive amount of flow on the
path i → (M +j) → (M +N +j) → (M +2N +k) indicates
that some requests for object i generated by a client in the area
of server k, will be redirected to server j.
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Fig. 1. Transformation of the server selection problem into a problem of
optimal routing.

Our goal is to minimize the delay inside this artificial
network, using a well-known optimal routing technique. In
particular, we choose the gradient projection method, using
the following cost function for each link (i, j) [3]

Dij =
Fij

Cij − Fij
+ dijFij (1)

where Cij is the link capacity, dij is the propagation and
processing delay, and Fij is the amount of traffic on that link.

Let us now examine closer the various links of the topology
in Fig. 1, and identify their role in the response time of user
requests. First, the links on the left hand side of the topology
correspond to the different servers where a particular object is
replicated. In other words, a link (i,M + j) will be present in
the topology only if object i is replicated at server j. However,
the value of Fij should not affect the latency of client requests,
since these links are not part of the data path. This fact may
be realized by setting dij = 0 and Cij � r in Equation (1).

The bottleneck links in the middle of the topology corre-
spond to the delay encountered at the CDN servers. It consists
of two parts, namely, the processing delay (e.g., due to disk
access time), and the delay due to the server load. In general,
the second part (i.e., the term Fij/(Cij −Fij) in Equation (1))

1491



will dominate the average delay, especially when the server is
highly loaded.

Finally, the links on the right hand side of the network
topology model the average delay experienced by the HTTP
reply message inside the core network. However, the HTTP
reply messages destined towards different clients within the
area of a single server, will follow different routes inside
the core network. As a result, it is impossible to estimate
this delay on a per-client basis. Instead, we follow a simple
approach in which the redirection agents periodically exchange
ping messages (e.g., every few minutes), thus obtaining a
rough estimate of the network delay (both propagation and
queueing) between any pair of servers. Since we assume that
the clients will always contact the closest (in terms of network
distance) server, this delay will also approximate the actual
delay between any client-server pair. Going back to Equation
(1), we may set Cij � r, and dij to be equal to the delay
measured by the ping messages.

Our problem formulation is very flexible, and can be easily
modified to solve different versions of the server selection
problem. For instance, if we decide that load balancing is
more important than average delay, we may set dij = 0 in
all the links of the topology. Furthermore, the CDN provider
may explicitly favor some servers to satisfy the requests for a
specific object (i.e., policy-based redirection). This approach
may be realized by setting dij > 0 in any link (i,M + j) on
the left hand side of the topology, if we want to discourage
requests for object i being redirected to server j.

Finally, the computational complexity of the gradient pro-
jection method (and thus of our approach) is O(LMN2),
where L is the number of iterations. However, the projection
method converges very fast to a good solution, meaning that
the value of L would normally be very small. For instance, in
all our simulation experiments the gradient projection method
converged at most within a couple of iterations.

C. Implementation Details

The solution obtained from the optimal routing formula-
tion is a global redirection matrix, containing the selection
probabilities for each object-server pair. In order to adapt to
the changing access patterns and avoid the overloading of the
servers, this matrix should be updated, if necessary, based on
the most recent traffic load matrix (i.e., the values of rij).
The calculation of the redirection matrix will be performed in
a completely distributed manner at the redirection agents of
the CDN infrastructure. Specifically, each agent will propagate
its own traffic load vector to all the other agents, and the
updated version of the redirection matrix will be calculated
locally at every agent. Notice, that there is no reason to
propagate any information regarding the network delay, since
each redirection agent keeps an estimate of the delay towards
every other agent.

The most important issue regarding the operation of the
redirection mechanism, is when to update the redirection ma-
trix. The obvious solution would be to perform the updates at
regular time intervals (e.g., every five minutes). This method,
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Fig. 2. Workload for day 62 of the WorldCup98 logs.

however, has two disadvantages: (i) it will incur unnecessary
overhead at periods when the traffic load matrix remains fairly
stable, and (ii) it will perform poorly when the access patterns
are changing very fast (unless, of course, we set the update
interval to a very small value). Instead, we propose a technique
where the updates are triggered by the CDN servers as soon
as they discover a potential change in the access patterns.

A straightforward indication of a varying traffic load matrix,
would be a significant change in the utilization at one or more
servers. This change would also affect the overall performance
of the system, as it is evident in Equation (1). In order to
maintain a low rate of updates, we set certain thresholds that
need to be violated before a server can trigger an update.
Specifically, each server will measure periodically (every one
minute) its current utilization unew, and compare it to a
previous value uold. If the two values differ by at least δ,
the server will trigger an update and broadcast its local traffic
load matrix. Notice, that a similar technique may be applied in
the case of the network delay part (dij) of the optimal routing
formulation. Whenever a server discovers (through the ping
messages) a significant change in the network delay towards
another server, it may also initiate an update procedure.

Clearly, the control overhead imposed by our server se-
lection algorithm is very low, in terms of both network
and server load. Unlike client-side redirection schemes where
client probing is essential, our approach is based on a global
optimization of the server selection probabilities, which is
transparent to the end-user. Consequently, the only overhead
of our algorithm is due to the exchange of the ping messages
and the traffic load vectors among the redirection agents, both
of which are performed in the order of minutes.

IV. SIMULATION EXPERIMENTS

A. Simulation Setup

Dataset: We used one day from the WordCup98 server
logs [2] to feed our simulations. Specifically, we selected day
62, which was one of the busiest days with a total of over
68 million requests. The requests were collected from four
different servers across the United States and Europe, located
at California (CA), Texas (TX), Virginia (VA) and France
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(FR). Of particular interest to our work is the fact that the
server workload varies significantly both across the different
servers and over time, as shown in Fig. 2.

Network topology: Following the system model described in
Section III-A, we assume that the clients issuing the requests
are located within a small network distance (around 40 ms
round-trip) from the corresponding server. In addition, the
inter-server delays were set in accordance to the geographic
location of the four servers. We also consider the case
of homogeneous servers, i.e., all the servers have identical
processing capacity C, and processing delay d = 20 ms.
Consequently, the CDN architecture consists of N = 4 servers,
and is required to provide a hosting service to M = 1 object.
Finally, we assume that all the requested documents are of
fixed size (equal to 12KB), and that the requests at the servers
are processed in a FIFO order.

In order to test the performance of our algorithm in a larger
topology, we also used the GT-ITM topology generator [4]
to generate a random transit-stub graph. We set the number
of stub domains to be equal to 50, and placed one CDN
server inside each stub domain (i.e., N = 50). In addition,
we set the propagation, queueing and processing delay inside
the network to be equal to 20 ms/hop. Similarly, we split the
original dataset into 50 synthetic datasets, by assigning each
request to a particular server according to some probability.
We run two sets of experiments, by drawing these probabilities
from two different distributions. The first one was a Gaussian
distribution with mean µ = 1/N and standard deviation
σ = 1/4N , while the second was an exponential distribution
with mean µ = 1/N .

B. Simulation Results

In this section we compare the performance, in terms of
user-perceived latency, of the following four server selection
algorithms

• Approximate: This is our proposed server-side selection
algorithm, based on the gradient projection method.

• Proximity: Each request is served at the nearest server
(i.e., the server where the request was initially forwarded
to).

• Random: Each request is redirected to a randomly se-
lected server.

• Delay: This is a non-realistic case, where we assume
that perfect knowledge (regarding the individual server
loads and the network path delay) is available, and each
request is redirected to the server that would result in the
minimum delay (at that time instant).

Fig. 3 shows the cumulative distribution function (CDF) of
the response time for the four server selection strategies. The
server capacity was set to C = 80 Mbps, which corresponds to
approximately 800 HTTP requests/sec. The proximity-based
approach has the worst performance overall, mainly due to
the fact that server processing capacity at TX is not enough to
accommodate the high arrival rate during the two peaks shown
in Fig. 2. Furthermore, random redirection performs much
worse than the approximate method, and its corresponding
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Fig. 3. Response time CDF for different server selection mechanisms (real
dataset, C = 80 Mbps).
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Fig. 4. Response time CDF for different server selection mechanisms
(synthetic dataset, C = 6.5 Mbps).

average response time is more than 2 times larger. This is
due to the fact that network distance is not taken into account
during the server selection process. Finally, the “Delay” curve
in Fig. 3 illustrates a potential problem of client-side redirec-
tion. Specifically, once a new best server is discovered, all the
subsequent client requests are forwarded to that server, causing
it to overload for a small period of time (oscillation effect).
This trend was also observed in [13], where the authors used
the concept of equivalent servers (i.e., a set of servers with
similar performance) in order to avoid it. The optimal routing
formulation, though, overcomes this limitation by assigning
different selection probabilities to each server.

Similar results hold for the synthetic datasets, and the
corresponding graphs are shown in Fig. 4. The only difference
is in the performance of the minimum delay approach, which
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Fig. 5. Average response time for different server selection mechanisms (real
dataset, C = 80 Mbps).

is improved considerably. This is due to the lower arrival
rate of requests at each server that minimizes the oscillation
effect. Furthermore, the synthetic dataset produced by the
Gaussian distribution has the best performance overall, since
the variance in the arrival rate among the CDN servers is very
small. Also notice that we have scaled the server capacity C,
in order to maintain a cumulative capacity equivalent to the
real dataset case.

A more detailed picture of the dynamics of each technique
is given in Fig. 5. In particular, this figure shows the average
delay experienced by the end-users during the last 8 hours of
the trace (i.e., during the two peaks). The random selection
strategy has a very stable performance, and the average
response time remains almost constant at around 200 ms. The
approximate method experiences many small peaks that are
caused by the changes in the access patterns. However, these
peaks are eliminated very fast, since they trigger an update of
the redirection matrix. Finally, the minimum delay approach
performs considerably worse than the approximate method,
due to the instability problem discussed earlier. The results
for the synthetic datasets are consistent with the real dataset,
and are omitted due to lack of space.

Finally, Fig. 6 illustrates the ability of the gradient pro-
jection algorithm to make the “correct” redirection decisions
(the reader should also refer to Fig. 2 for comparison). When
the processing capacity at the servers is sufficient (i.e., just
before the two peaks), all the requests are served locally at
the corresponding servers. When the offered load is increased
(mainly at the servers in TX and VA), some requests are
redirected to nearby servers, in order to accommodate the
overall arrival rate. In addition, the fraction of requests to be
redirected depends both upon the processing capacity, and the
network distance among the different servers. Specifically, the
majority of the “overflow” requests are redirected to the server
in CA, and only a small fraction of them is redirected to FR,
due to the large network delay.

V. CONCLUSIONS

In this paper, we proposed a novel technique to transform
the server selection process, in the context of a generic CDN
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Fig. 6. Server load as a function of time (real dataset, C = 80 Mbps).

system, into a problem of optimal routing. Specifically, we
introduced a flexible framework based on server-side redirec-
tion, that can be used to optimize the server selection process
according to various metrics and/or policies. Our simulation
results indicate that the proposed method can improve signifi-
cantly the response time of HTTP requests, and it outperforms
all strategies that try to minimize other parameters, such as
network distance or delay. Furthermore, the control overhead
imposed by this approach is very low, both in terms of network
and server load.
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