
Efficient Resource Management for End-to-End QoS Guarantees in DiffServ
Networks

Spiridon Bakiras and Victor O.K. Li
Department of Electrical & Electronic Engineering

The University of Hong Kong
Pokfulam Road

Hong Kong

Abstract—The Differentiated Services (DiffServ) architecture has been
proposed as a scalable solution for delivering end-to-end Quality of Ser-
vice (QoS) guarantees over the Internet. While the scalability of the data
plane emerges from the definition of only a small number of different ser-
vice classes, the issue of a scalable control plane is still an open research
problem. The initial proposal was to use a centralized agent, called Band-
width Broker (BB), to manage the resources within each DiffServ domain
and make local admission control decisions. In this paper, we propose an
alternative distributed approach, where the local admission decisions are
made independently at the edge routers of each domain. We will show,
through simulation results, that this distributed approach can manage the
network resources very efficiently, leading to lower bandwidth blocking
rates when compared to traditional shortest path admission control. More-
over, its simplicity and distributed implementation make it a very scalable
solution for resource management in DiffServ networks.

I. INTRODUCTION

THE Differentiated Services (DiffServ) architecture [1] has been
proposed recently by the Internet Engineering Task Force (IETF)

as a scalable solution for delivering end-to-end Quality of Service
(QoS) guarantees over the Internet. The basic idea of this architec-
ture is that only edge routers should manage traffic on a per flow basis.
Core routers should not keep any kind of per flow state, and should pro-
cess traffic on a much coarser granularity. At the data plane this goal
is achieved by specifying different Per Hop Behaviors (PHBs), where
packets belonging to the same PHB form a Behavior Aggregate (BA)
and receive identical service at the core routers. More specifically, the
edge routers will be equipped with flow classifiers, policers, and mark-
ers that will properly mark the incoming packets by setting a number
of bits on the DiffServ Codepoint (DSCP) [2] field of the IP packet
header. The DSCP value will indicate the corresponding PHB, and the
core routers will forward the packets based on their DSCP value (by
utilizing several scheduling and buffer management techniques).

The IETF has currently specified two different PHBs. The Expe-
dited Forwarding (EF) PHB [3] offers the equivalent of a leased line
(i.e. low delay, loss, and jitter) between a source and a destination.
This is accomplished by giving EF traffic strict priority over the tra-
ditional best-effort traffic inside the DiffServ domain. However, each
flow has to specify in advance the required bandwidth so that the ap-
propriate resources can be reserved inside the network. In addition, the
maximum burst size that is allowed is equal to two Maximum Trans-
mission Units (MTUs). The edge routers will police each flow, and the
non-conformant packets will either be dropped or shaped. The Assured
Forwarding (AF) PHB group [4] does not offer hard QoS guarantees,
but instead defines four different AF classes with three different lev-
els of drop precedence within each class. Each AF class is assigned
a certain amount of bandwidth at each node, and when the amount of
traffic exceeds this bandwidth, packets will be dropped according to
their drop precedence value. In this paper, however, we will focus on
providing hard end-to-end QoS guarantees, so we will mainly concen-
trate on the EF PHB.

While the scalability of the data plane emerges from the definition
of only a small number of PHBs, the issue of a scalable control plane
is still an open research problem. The initial proposal was to use a
centralized agent, called Bandwidth Broker (BB) [5], to manage the
resources within each DiffServ domain and make local admission con-
trol decisions. The centralized approach removes the burden of ad-
mission control from the core routers, but there might be some scal-
ability considerations if the BB has to process thousands of requests
per second. Moreover, this approach has certain disadvantages that are
inherent to any centralized architecture.

� The links around the BB will become very congested when the
traffic load from the signaling messages is high.

� The BB must maintain per flow information about every flow that
is currently active inside its domain.

� The BB is a single point of failure (i.e. undesirable in reliability
considerations).

In this paper, we propose an alternative distributed approach, where
the local admission decisions are made independently at the edge
routers of each domain. The BB in each domain will be responsible
for periodically updating the allocation of the resources inside the do-
main, according to some measurements of the traffic load at the edge
routers. When the allocation of resources is completed, all the edge
routers will be able to make instantaneous and independent admission
control decisions for new connection requests. We will show, through
simulation results, that this distributed approach can manage the net-
work resources very efficiently, leading to lower bandwidth blocking
rates when compared to traditional shortest path admission control.
Moreover, its simplicity and distributed implementation make it a very
scalable solution for resource management in DiffServ networks.

The remainder of this paper is organized as follows. In Section II we
present the overall system design, and discuss various implementation
issues of our resource management scheme. In Section III the results
of the simulation experiments are presented, while in Section IV some
related work is discussed. Finally, Section V concludes our work.

II. SYSTEM DESIGN

In this section we will describe in detail all the network functions
that need to be performed, in order to provide end-to-end QoS guar-
antees in DiffServ-based networks. In particular, we will address the
issues of routing, packet forwarding, and both intra- and inter-domain
admission control. Throughout this paper we will assume that the
Internet consists of several independently administered DiffServ do-
mains, that are interconnected in order to provide global connectivity.
One typical example is shown in Fig. 1, where the source and the desti-
nation are connected through domains A and B. Each domain consists
of a BB, and the core, edge, and leaf routers. The BB will exchange
control messages with the edge and leaf routers for the purpose of re-
source management. From this point on, for simplicity, we will refer
to the leaf routers as either leaf or edge routers.

1220
0-7803-7400-2/02/$17.00 © 2002 IEEE

Fig. 1. The DiffServ architecture.

A. Routing

Routing is the process of correctly identifying the next hop at each
node (router) so that a packet will be able to reach its final destination.
In this work we focus on intra-domain routing, and we assume that
all the DiffServ domains use a standard inter-domain routing protocol,
such as the Border Gateway Protocol (BGP) [6], to exchange reacha-
bility information with their neighbor domains. All the edge routers in
each domain will participate in this information exchange.

Providing hard QoS guarantees in any kind of network requires the
reservation of enough resources along the path from the source to the
destination. Therefore, unlike best-effort traffic routing, a path has to
be established in advance between the source and destination nodes,
and all the packets should follow the same path. In our resource man-
agement scheme we perform static intra-domain routing, where k dif-
ferent paths are pre-computed by the BB to carry the traffic between
each pair of edge routers. In the case of link or node failure, the BB
will re-compute the paths, and send control messages to the domain
routers so that they can update their routing tables accordingly. In
the simulation results of Section III we used the well known k-shortest
path algorithm [7] for the path selection, where the hop count was used
as the link metric.

The static routing approach was adopted for several reasons. First, it
facilitates fast packet forwarding which will be further discussed in the
following subsection. Second, it follows the general principles of the
DiffServ architecture, by completely isolating the core routers from
the admission control procedure. Finally, it provides the means for
implementing a completely distributed admission control mechanism.

B. Packet forwarding with IPv6

The slowest process in the forwarding path of an IP router is the
multi-field classification and routing procedure. When a packet is re-
ceived at a router, the next hop is decided by looking into several fields
on the IP header (e.g. IP addresses, TCP/UDP port numbers, etc.), and
then finding the appropriate entry at the local routing table. This oper-
ation will be even more complicated for QoS-based flows, since their
packets must follow exactly the same path. Clearly, this procedure will
become the bottleneck in a multi-Gbps router.

The IPv6 packet header contains a new 20-bit field, which does not
exist in the earlier IPv4, called flow label. In our scheme we will utilize
this field, in order to increase the speed of the forwarding path. Since
the routing tables are fixed, the core routers will not need to perform
any complex multi-field classification in order to make the routing de-
cision. For each pair of edge routers inside the domain there will be
k pre-computed paths connecting them. We may then assign one flow
label value to each one of them, and construct new (much smaller)
routing tables inside the core of the domain, based only on flow labels.
In this way, each packet will be forwarded according to the flow la-
bel and DSCP values. During the intra-domain admission control the
edge router will select one of the k paths for each new flow, and then
mark all the packets that belong to this flow with the corresponding
flow label value.

C. Intra-domain admission control

In order to avoid the potential scalability problems that will emerge
by having one centralized agent responsible for the resource manage-
ment inside each domain, our goal is to provide a fully distributed ap-
proach where all the edge routers will independently participate in this
procedure. The BB in each domain will be responsible for periodically
updating the allocation of the resources inside the domain, according
to some measurements of the traffic load at the edge routers. When the
allocation of resources is completed, all the edge routers will be able
to make instantaneous and independent admission control decisions
for new connection requests.

The overall system model inside each DiffServ domain may be de-
scribed as follows:

� There are M edge routers in the domain.
� There are N = M(M � 1) different router pairs to which we

shall refer to as Source-Destination (SD) pairs.
� For each SD pair there are k pre-computed paths.
� The source of each SD pair iwill periodically measure (e.g. every

second) the total amount of reserved bandwidth ri towards the
destination. This means that each of the M routers will keep
(M � 1) different measurements.

� Every T seconds the BB will receive the following information
about every SD pair i:

– The current reserved bandwidth x
j
i on each of the k paths,

j = 1; 2; : : : ; k. Clearly, ri =
Pk

j=1
x
j
i .

– The average reserved bandwidth wi over the measurement
window T .

� After receiving all the information, the BB will run an algorithm
which will calculate the new amount of resources that should be
allocated to each path. Specifically, each path j of SD pair i will
be allocated an amount of bandwidth equal to yji , where yji � x

j
i .

One possible improvement that takes into consideration the rejected
traffic load at the edge routers, is to introduce one more variable vi
which we call virtual reserved bandwidth. This variable is normally
updated (just like ri) whenever a new connection is accepted or an
existing connection is terminated. However, when a new request is
rejected, the edge router will update vi as if the request was accepted.
It will also assign a virtual finish time, which may be based on some
measured average call holding time. When those virtual connections
are terminated, vi will be updated accordingly. Then, wi will represent
the average virtual reserved bandwidth measured over the time period
T . In this way, when the rejection rate for a particular SD pair is
increasing, the BB will try to allocate (if possible) more resources to
accommodate the increased traffic load.

Suppose the source node at domain A in Fig. 1 wants to establish a
connection to the destination node at domain B. Then the intra-domain
admission control at domain A will be performed as follows (with an
RSVP-like [8] signaling protocol):

1) The source node will send a PATH message to LR1 which will
include the required amount of bandwidth b.

2) LR1 will know that the destination node is in domain B, so it
will check whether there are enough resources to carry this flow
towards ER1. In particular, for every path j of this SD pair i
(i.e. the pair LR1-ER1), it will check whether xji + b � y

j
i , for

j = 1; 2; : : : ; k.
3) If none of the paths satisfies this inequality, the request will be

rejected. Otherwise the path with the largest amount of resid-
ual bandwidth will be selected, and the PATH message will be
forwarded to ER1.

To complete the resource management scheme we need to introduce
our proposed algorithm which will periodically allocate the resources
among the different paths. It is a simple heuristic algorithm which aims

1221

to find a near-optimal solution for the resource allocation. We could
not use any of the standard optimal routing algorithms [9] (e.g. the
gradient projection method), because these algorithms might produce
a solution where for some paths yji < x

j
i . This is unacceptable in our

case, since the bandwidth xji has already been allocated.
At the initialization phase of the algorithm we determine which SD

pairs require an additional amount of bandwidth to satisfy the offered
traffic load. We will name those SD pairs eligible. For every eligible
SD pair i we determine the additional amount of resources bi that must
be allocated. Specifically, bi = wi � ri, which means that an SD pair
i is eligible if bi > 0. We then add, in a round-robin manner, a very
small amount of bandwidth dx to each eligible SD pair. This amount
of bandwidth will be added to the path which minimizes a certain cost
function. The above procedure will continue until all SD pairs become
either non-eligible (i.e bi � 0) or saturated (i.e. no more resources can
be allocated to them). The cost function that we used was the average
number of packets in an M/M/1 system [9], given by

costj =
X

(l;m)

Flm

Clm � Flm

where (l;m) are the links that belong to path j, Flm is the flow on link
(l;m), and Clm is the capacity of link (l;m). This is a very good cost
function for spreading the traffic load among different paths.

After this procedure is terminated there might be some resources
left that have not been allocated to any path. These unused resources
will be allocated equally among all the non-saturated SD pairs, in a
manner similar to the one described above. The complete resource
management algorithm is shown in Fig. 2.

D. Inter-domain admission control

Having introduced the intra-domain admission control protocol, we
move on to illustrate how to perform admission control over multiple
domains. We will continue the example from the previous subsec-
tion, where the source node at domain A (Fig. 1) wants to establish
a connection to the destination node at domain B. We start from the
point where the PATH message is sent to the edge router of domain A
(ER1).

1) ER1 will forward the PATH message to ER2.
2) ER2 will perform the intra-domain admission control in a way

identical to the one described in the previous subsection.
3) If the request is accepted, it will forward the PATH message to

the destination node.
4) The destination node will send the RESV message back to the

source node.
5) While the RESV message travels back to the source node, all

the intermediate edge routers will configure their traffic shapers,
policers, and markers to account for the new connection.

Therefore, the response time for a connection request is very small,
and it is equal to the round-trip delay between the source and the des-
tination. It is clear that our resource management algorithm is based
on dynamic per flow admission control, and not on aggregate resource
reservation. This fact, however, does not affect the scalability of this
design, since the admission control is performed on the fly while the
the PATH message travels from the source to the destination node. The
algorithm in Fig. 2 can be easily modified to account for other resource
allocation policies as well. For example, two neighbor domains may
choose to limit the amount of traffic that is exchanged between them.
This may be realized by limiting the capacity of the inter-domain link
in the resource management algorithm. Another example is the more
permanent connection set up of a Virtual Private Network (VPN). This
may also be realized by setting up these connections in advance, and
then limiting the capacity of the corresponding links.

Procedure resource_management()
{
/* Calculate bi, for all sd pairs i */
 for (i=0; i<N; i++) {

sd[i].b = sd[i].w - sd[i].r;
sd[i].saturated=0;

 }
/* Initialize yi

j, for all paths j and sd pairs i */
for (i=0; i<N; i++) {

for (j=0; j<k; j++)
y[i][j] = x[i][j];

 }
/* Allocate necessary resources */
 while (exists i with (sd[i].b>0 and sd[i].saturated==0)) {
 for (i=0; i<N; i++) {
 if (sd[i].b>0) {
 for (j=0; j<k; j++)
 calculate cost[j] for additional bandwidth dx;
 if (cost[j]==infinity, for all j)
 sd[i].saturated=1;
 else {
 select j, where cost[j]=min;
 y[i][j] += dx;
 sd[i][j].b -= dx;
 }
 }
 }
 }
/* Allocate unused resources */
 while (exists i with sd[i].saturated==0) {
 for (i=0; i<N; i++) {
 if (sd[i].saturated==0) {
 for (j=0; j<k; j++)
 calculate cost[j] for additional bandwidth dx;
 if (cost[j]==infinity, for all j)
 sd[i].saturated=1;
 else {
 select j, where cost[j]=min;
 y[i][j] += dx;
 }
 }
 }
 }
}

Fig. 2. The resource management algorithm.

Finally, we will summarize below some advantages of our resource
management scheme:

� The signaling overhead for connection set up is spread across
multiple links, avoiding the congestion of the links around the
centralized BB.

� The BB does not need to maintain per flow information about
every flow that is currently active inside its domain. This infor-
mation will be distributed across the edge routers of the domain.

� It offers a scalable solution for dynamic connection set up with
very fast response time (equal to the round-trip delay between the
source and the destination).

� A temporary failure of the BB will not affect the functionality
of the domain, since the admission control is performed at the
ingress routers. The failure of an ingress router will have no ef-
fect, since no traffic should be routed through this node (i.e. no
admission control is required at this node).

III. SIMULATION RESULTS

We simulated our resource management scheme in the MCI inter-
net topology of Fig. 3, which has also been used in [10]. We as-
sumed that all the links have a capacity of 2.4 Gbps, and that all the
capacity may be allocated to EF traffic. In a real network, though,
the service provider will allocate a portion of the available bandwidth
to EF traffic, according to some policy. This topology represents an
autonomous DiffServ domain, so we have only simulated the intra-
domain resource management scheme. As we have shown in the pre-
vious section, inter-domain admission control is performed as a series
of independent intra-domain admission decisions.

New requests may arrive at any one of the 19 routers, which means
that there were N = 342 different SD pairs. The new requests ar-
rive at each SD pair i, according to a Poisson process with mean �i.

1222

Fig. 3. The simulated network topology.

The arrival rates for the different SD pairs were chosen from a uni-
formly distributed random variable in the interval [1,�max]. The value
of �max was properly selected to control the average arrival rate per
SD pair. Every new request was either for a voice or video connection
with equal probability. The duration of each voice connection was ex-
ponentially distributed with mean 5 min, and the required bandwidth
was 64 kbps. For video connections the duration was exponentially
distributed with mean 20 min, and the required bandwidth was uni-
formly distributed in the interval [300,2000] kbps. These exponen-
tial holding times are quite realistic for voice and video connections,
and they have been shown [10] to produce higher blocking rates when
compared to long-tail distributions. We simulated 24 hours of real
time, and collected the results after an initial warm-up period. The
bandwidth blocking rate was used as the perfomance metric, i.e. the
percentage of actual bandwidth that was rejected due to insufficient
resources inside the domain.

12 13 14 15 16 17 18 19 20 21 22
5

10

15

20

25

30

35

Average arrival rate per SD pair (req/min)

B
an

dw
id

th
 b

lo
ck

in
g

ra
te

 (
%

)

k=1
k=2
k=3
k=4

Fig. 4. Bandwidth blocking rate as a function of the average arrival rate for
different values of k.

In the first experiment we investigated the impact of the number of
paths k that are pre-computed for each SD pair. The results are de-
picted in Fig. 4, where it is clear that setting up at least two paths
per SD pair is very important for efficient resource management. The
additional performance gain, however, by adding more paths is very
small. This can be explained from the fact that the connectivity of the
selected network topology is relatively sparse. In a network with a
large average node degree we may gain more in performance by estab-
lishing more paths between each SD pair.

We then investigated the impact of the measurement window T on
the performance of the resource management scheme. The ‘static re-
source assignment’ curve in Fig. 5 corresponds to a system where
the resource allocation is manually configured according to some long
term traffic measurements. In the simulations, this curve was produced
by running the resource management algorithm of Fig. 2 at the start of
each experiment (using the known values of �i for each SD pair), and
then using the resulting fyji g values for admission control. Another
promising result in Fig. 5 is that the performance of our scheme is not
affected much by the length of the measurement window, as long as
it is kept at reasonably small values. Therefore, the control overhead
imposed by the resource management scheme is almost insignificant.

12 13 14 15 16 17 18 19 20 21 22
5

10

15

20

25

30

35

Average arrival rate per SD pair (req/min)

B
an

dw
id

th
 b

lo
ck

in
g

ra
te

 (
%

)

Static resource assignment
Dynamic resource assignment, T=1 min
Dynamic resource assignment, T=5 min
Dynamic resource assignment, T=10 min
Dynamic resource assignment, T=20 min

Fig. 5. Bandwidth blocking rate as a function of the average arrival rate for
different values of T .

Finally, we compared our scheme with a few other alternatives, and
the results are shown in Fig. 6. The ‘shortest path routing’ curve
was produced with typical centralized shortest path routing. When-
ever a new request arrived, the BB performed the admission control,
based on up to date information about the reservation status on ev-
ery link. The hop count was used as the metric for finding the shortest
path, because in our simulations it had better performance compared to
residual bandwidth or average delay. Our scheme clearly outperforms
shortest path routing, and its bandwidth blocking rate was more than
10% lower. This result was anticipated, since shortest path routing
tends to overload the links that belong to the shortest paths, and fur-
ther connections have to be established over longer paths, which will
consume a lot of the network resources. In the same figure, an obvious
disadvantage of static resource allocation is also illustrated. In the ‘in-
correct static resource assignment’ curve, the resources were allocated
with the assumption that �i = � for all SD pairs. In the experiments,
though, the �i’s were uniformly distributed with an average value of
�. In general, static resource allocation results in poor performance,
and it should be avoided.

IV. RELATED WORK

Most of the research on scalable resource management focuses on
aggregate resource reservations between DiffServ domains. The BB
is still the centralized agent responsible for resource reservation, but
the scalability is achieved by reserving resources for aggregate traf-
fic between different domains. In [11] a two-tier model is introduced,
where each domain is assumed to have long-term bilateral agreements
with each of its neighbors, specifying the amount of traffic that will be
exchanged between them. Whenever there is an increase in the traffic

1223

12 13 14 15 16 17 18 19 20 21 22
5

10

15

20

25

30

35

40

45

Average arrival rate per SD pair (req/min)

B
an

dw
id

th
 b

lo
ck

in
g

ra
te

 (
%

)

Dynamic resource assignment
Static resource assignment
Shortest path routing
Incorrect static resource assignment

Fig. 6. Bandwidth blocking rate as a function of the average arrival rate for
different resource management schemes.

between two domains, the BBs will re-negotiate and make new agree-
ments. In our scheme, though, this is done automatically without the
need for an inter-BB signaling procedure. Moreover, the authors did
not investigate the efficiency of their intra-domain resource manage-
ment.

In [12] a Clearing House architecture is proposed, where multiple
basic domains are clustered to form a logical domain. In this way, a
hierarchical tree is created, where the BB of the logical domain is re-
sponsible for resource reservation across the basic domains. The BBs
at the basic domains forward only aggregation of inter-domain requests
to the BB of the logical domain, thus enhancing the scalability of this
architecture. However, the authors only consider the inter-domain re-
source allocation, and they do not address the problem of resource
allocation within a basic domain.

Unlike these two architectures which are more concerned with inter-
domain admission control, our scheme tries to optimize the resource
management within each domain, which in turn will improve the per-
formance of inter-domain resource management. In addition, we elim-
inated the centralized BB from both the intra- and inter-domain admis-
sion control procedure, which greatly improves the scalability of our
design.

Finally, the authors in [13] propose an MPLS-based approach for
intra-domain resource reservation, where RSVP signaling is used to
make aggregate reservations between each pair of edge routers. Specif-
ically, a sink tree is maintained towards each egress router, and all the
traffic follows the paths specified in the sink tree topology. However,
as we have shown in our simulation results, having only one path for
each pair of edge routers is not very efficient. In addition, the authors
do not give any details on how the resources are allocated among the
different sink trees or how admission control is actually performed.

V. CONCLUSIONS

We have proposed a new distributed resource management scheme
for end-to-end QoS guarantees in DiffServ-based networks. Our ap-
proach offers a scalable solution to resource management, by com-
pletely eliminating the centralized BB from the admission control pro-
cedure. The BB in each domain is only responsible for periodically
updating the allocation of the resources inside the domain, according
to some measurements of the traffic load at the edge routers. Each
new request is then forwarded from the source node to the destina-
tion node, and admission control is performed instantaneously at the
ingress router of each domain. We have shown that this distributed ap-
proach can manage the network resources very efficiently, leading to
lower bandwidth blocking rates when compared to traditional shortest
path admission control.

ACKNOWLEDGMENTS

This research is supported in part by the Areas of Excellence
Scheme established under the University Grants Committee of the
Hong Kong Special Administrative Region, China (Project No.
AoE/E-01/99).

REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” Internet RFC 2475, December
1998.

[2] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differ-
entiated services field (DS field) int the IPv4 and IPv6 headers,” Internet
RFC 2474, December 1998.

[3] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding PHB,”
Internet RFC 2598, June 1999.

[4] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding
PHB group,” Internet RFC 2597, June 1999.

[5] K. Nichols, V. Jacobson, and L. Zhang, “A two-bit differentiated services
architecture for the Internet,” Internet RFC 2638, July 1999.

[6] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” Internet
RFC 1771, March 1995.

[7] J. Y. Yen, “Finding the K shortest loopless paths in a network,” Manage-
ment Science, vol. 17, no. 11, pp. 712–716, July 1971.

[8] R. Branden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
reservation protocol (RSVP) – version 1 functional specification,” Inter-
net RFC 2205, September 1997.

[9] D. Bertsekas and R. Gallager, Data Networks, 2nd edition, Prentice-Hall,
1992.

[10] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” in Proceedings International Conference on Network Proto-
cols (ICNP), October 1997, pp. 191–202.

[11] A. Terzis, L. Wang, J. Ogawa, and L. Zhang, “A two-tier resource man-
agement model for the Internet,” in Proceedings Global Telecommunica-
tions Conference (GLOBECOM), December 1999, pp. 1779–1791.

[12] C. Chuah, L. Subramanian, R. H. Katz, and A. D. Joseph, “QoS provi-
sioning using a clearing house architecture,” in Proceedings International
Workshop on Quality of Service (IWQoS), June 2000, pp. 115–124.

[13] T. Li and Y. Rekhter, “A provider architecture for differentiated services
and traffic engineering (PASTE),” Internet RFC 2430, October 1998.

1224

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

