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Abstract—The massive production of digital data and the com-
plexity of the underlying data management, motivate individuals
and enterprises to outsource their computational needs to the
cloud. While popular cloud computing platforms provide flexible
and inexpensive solutions, they do so with minimal support
for data security and privacy. As a result, owners of sensitive
information may be skeptical in purchasing such services, given
the risks associated with the unauthorized access to their data.
To this end, searchable encryption is a family of cryptographic
protocols that facilitate private keyword searches directly on
encrypted data. These protocols allow users to upload encrypted
versions of their documents to the cloud, while retaining the
ability to query the database with traditional plaintext keyword
queries. In this paper, we focus on public-key encrypted data
and introduce the first method that supports ranked results from
multi-keyword searches. Our solution employs a simple indexing
structure, and leverages homomorphic encryption and private
information retrieval (PIR) protocols to process queries in a
privacy-preserving manner. Using measurements from Amazon’s
Elastic Compute Cloud, we show that our method provides
reasonable response times with low communication cost.

I. INTRODUCTION

Cloud computing is the new trend in IT that offers users
great flexibility in purchasing off-site, third-party resources
(ranging from software to infrastructure) at competitive prices.
Popular cloud computing services, such as Amazon’s Elas-
tic Compute Cloud (EC2)1, provide on-demand computing,
network, and storage resources in an attractive “pay-as-you-
go” pricing model [1]. The flexibility of provisioning services
on-demand and the virtually endless amount of resources,
enable entrepreneurs to deploy their business instantly, without
purchasing expensive hardware/software or hiring technically
skilled system administrators [2]. Similarly, cloud storage has
become ubiquitous and numerous providers, such as Google
Drive, SkyDrive, and iCloud, offer multi-GB storage space
at no cost. Consequently, users are motivated to move their
personal data to the cloud, which gives them the ability to
access them anytime from anywhere.

Despite the aforementioned advantages, most cloud com-
puting platforms do not provide adequate security and privacy
for the outsourced data. As a result, owners of sensitive
information such as emails, personal health records, finan-
cial transactions, etc., may be skeptical in purchasing such
services, given the risks associated with the unauthorized
access to their data. To mitigate these security risks, sensitive

1http://aws.amazon.com/ec2/

information should be encrypted prior to being transferred to
the cloud provider. Nevertheless, outsourcing encrypted data
would not be practical if the service provider is unable to
process queries, as this would necessitate the transfer and
decryption of all records at the client site. Therefore, designing
privacy-preserving query mechanisms for encrypted data is of
paramount importance.

To this end, searchable encryption is a family of cryp-
tographic protocols that facilitate private keyword searches
directly on encrypted data. These protocols allow users to
upload encrypted versions of their documents to the cloud,
while retaining the ability to query the database with tradi-
tional plaintext keyword queries. Fully functional searchable
encryption can be achieved with oblivious RAMs [3], since
they can simulate any data structure in a private manner. Even
though oblivious RAMs can hide everything from the server
(including the access pattern), they incur a very high compu-
tational cost. Therefore, the majority of the research work on
searchable encryption has focused on efficiency improvements,
by weakening the underlying security definitions. In particular,
most searchable encryption schemes aim at hiding all but
the access and search patterns. Access pattern is defined as
the documents retrieved during a search, and search pattern
refers to the possibility of inferring whether two queries were
performed for the same keyword.

In the symmetric key setting, Searchable Symmetric En-
cryption (SSE) [4], [5] is a well-studied problem and there
exist numerous techniques that support different types of
keyword searches. The recent work by Cao et al. [6] offers the
most practical SSE scheme to date, as it implements ranked
keyword searches. Specifically, the client can issue an arbitrary
multi-keyword query (similar to web search engines) and the
sever will return the top-k most relevant documents in the
database. The main advantage of symmetric encryption is its
computational efficiency that allows the server to perform
linear searches on the encrypted documents at low cost. Never-
theless, symmetric encryption has an inherent key management
problem, so all SSE methods assume that the data owner is
the only entity that may upload encrypted data/indexes to the
server.

On the other hand, public-key cryptography allows any
user to update an encrypted database (i.e., add a new item)
without knowledge of the private key. A real-world scenario
that leverages this functionality is given by Boneh et al. in
[7]. Alice uses an email gateway for her communications and,
as she considers her emails sensitive, she asks her friends to



send their emails encrypted with her public key. A search-
able encryption scheme would then enable Alice to retrieve
all emails containing a specific keyword (e.g., “from:Bob”).
Public-key Encryption with Keyword Search (PEKS) [7] is the
most representative solution in this field that works by scanning
all keywords from every document in the database. However,
PEKS and all of its variants [8], [9] are very restrictive in the
types of queries that they allow and, most importantly, none
of them implements ranked keyword search.

In this paper, we introduce the first method that provides
ranked results from multi-keyword searches on public-key en-
crypted data. Since public-key cryptography is computationally
expensive, we incorporate the following two design principles
in our algorithms: (i) avoid a linear scan of the documents and
(ii) parallelize the computations as much as possible. The first
principle clearly necessitates the use of an indexing structure.
To this end, we encrypt the keyword information for each
document in a Bloom filter [10], and hierarchically aggregate
(using homomorphic encryption) the individual indexes into a
tree structure. Query processing is performed at the client side,
and entails the traversing of the tree in a best-first manner. To
hide the content of the query from the server, the client utilizes
an efficient private information retrieval (PIR) protocol [11] to
extract the necessary Bloom filter entries from the tree nodes.

To speed-up the search process, we leverage the abundance
of computational resources that are available in most cloud
computing platforms. In particular, we split the indexing
structure into multiple chunks, and utilize several CPUs in
parallel in order to execute the PIR queries efficiently. Using
measurements from Amazon’s Elastic Compute Cloud, we
show that our method provides reasonable response times with
low communication cost.

The remainder of the paper is organized as follows. Section
II discusses previous work on searchable encryption, and
Section III introduces the cryptographic primitives utilized in
our method. Section IV presents the details of our privacy-
preserving search mechanism, while Section V describes a few
optimizations to improve the query processing times. Section
VI illustrates the results of our experimental evaluation, and
Section VII concludes our work.

II. RELATED WORK

The work of Song et al. [5] is the first Searchable Sym-
metric Encryption (SSE) scheme proposed in the literature.
Their method does not employ indexes, but instead encrypts
each document in a way that allows keyword search. Searching
takes linear time in the combined size of all documents, as
the server has to test the trapdoor against every encrypted
block in a document. Although this model is proven to be
a secure encryption scheme, it is not a secure searchable
scheme, because of a vulnerability against statistical attacks. In
particular, every keyword search reveals the exact position(s)
in the document where there is a positive match.

Goh [12] introduces secure indexes that are based on
Bloom filters and pseudo-random functions as hash functions.
Specifically, each document has its own index that is con-
structed as follows. Every word in the document is first hashed
with the master key and the output is hashed again with the
document id, in order to differentiate a word’s hash values

in different files. The produced output is called a codeword
and is inserted into the Bloom filter. Finally, the Bloom filter
is blinded by inserting a random uniform distribution of 1’s.
To determine whether a certain keyword exists in a file, the
querier computes and sends the corresponding codeword to the
server which, in turn, checks whether the bits associated with
the codeword are all set (with a probability of false positives
that is inherent in Bloom filters).

Chang and Mitzenmacher [13], on the other hand, use a
predefined dictionary of all possible words in the database and,
for each document, they build a binary array (the index) that
identifies the keywords appearing in the document. Next, the
user masks the bits in the index with the output of a pseudo-
random function. To search for a keyword, the user sends short
seeds for the pseudo-random functions to the server, so as to
help recover the necessary parts of the index.

Curtmola et al. [4] maintain, for each keyword, an in-
verted index (stored as a linked list) comprising of document
identifiers. Every node in the list stores information about the
position and the decryption key of the next node. Then, the
nodes from all inverted indexes are encrypted with random
keys and are randomly inserted into an array. With this
construction, given the position and decryption key of the first
node of an inverted index, it is possible to find all documents
which include the corresponding keyword.

To support ranked keyword searches, Wang et al. [14]
build an inverted index for every keyword in the dataset.
For security, the actual scores are encrypted with a modified
Order-Preserving Symmetric Encryption (OPSE) scheme [15],
where the numeric ordering of the plaintexts is preserved in
the ciphertexts. During query processing, the user sends a
trapdoor that allows the server to decrypt the corresponding
entry in the inverted index. Then, the server compares the
encrypted scores and returns to the client the top-k results. Cao
et al. [6] address multi-keyword ranked queries by leveraging
inner product similarity as the scoring function. Similar to the
work of Chang and Mitzenmacher [13], they use a predefined
dictionary of all possible words in the database, and construct
an encrypted binary array for each document. To compute the
similarity scores from the encrypted indexes, they employ the
secure kNN computation method of [16].

In the public-key setting, Boneh et al. [7] first introduced
a solution called Public Key Encryption with Keyword Search
(PEKS). In their approach, the sender selects a set of keywords
related to the message and, for each keyword, he produces its
corresponding PEKS encryption. The encrypted message and
keywords are subsequently sent to the server for storage. When
the owner wants to search for messages containing a specific
keyword, he creates a trapdoor for that keyword and sends it
to the server. The server tests the trapdoor with each PEKS
encrypted keyword and, if the test returns true, the message is
returned to the owner.

Baek et al. [8] address several limitations of the PEKS
framework by (i) preventing the server from reusing the
trapdoors, (ii) eliminating the need for a secure authenticated
channel between the owner and the server, and (iii) adding
multi-keyword search capabilities. Although this work allows
queries with multiple keywords, it does not provide ranked
results. Similarly, further studies to improve PEKS [17], [18],



[19] do not include multi-keyword search or ranked result fea-
tures. Golle et al. [9] address conjunctive keyword searches on
public-key encrypted data. However, as noted by the authors,
their solution reveals the keyword fields that are searched by
the client. Moreover, it does not support ranked results.

Finally, Boneh et al. [20] propose a searchable encryption
scheme that provides perfect privacy. They use encrypted
Bloom filters to store keyword membership information, and
leverage the homomorphic encryption scheme of Boneh, Goh,
and Nissim [21] to allow the senders to modify the index in a
secure manner. Nevertheless, their solution is computationally
expensive, as it hides everything from the server (including the
access pattern).

III. PRELIMINARIES

In this section we give a brief description of the cryp-
tographic primitives incorporated in our methods. Section
III-A discusses homomorphic encryption and Section III-B
introduces private information retrieval. Section III-C describes
the underlying threat model and security of our protocol.

A. Homomorphic Encryption

Homomorphic encryption allows certain algebraic opera-
tions on two plaintexts to be carried out on their corresponding
ciphertexts, without any intermediate decryptions. In particular,
fully homomorphic encryption [22] enables both addition and
multiplication operations on the ciphertext space and, there-
fore, such cryptosystems could be used to build searchable
encryption schemes with perfect privacy. However, research
on fully homomorphic encryption is still in its infancy and all
existing methods are extremely expensive.

In this work, we utilize Paillier’s cryptosystem [23], which
is an efficient additively homomorphic encryption scheme.
Specifically, given the Paillier encryptions E(m1) and E(m2)
of two plaintext messages m1 and m2, we can compute the
encryption of E(m1+m2) by multiplying the two ciphertexts:

E(m1 +m2) = E(m1)E(m2)

Furthermore, any message m can be multiplied with a plaintext
constant c as follows:

E(cm) = E(m)c

The Paillier cryptosystem is semantically secure, i.e., it is
infeasible to derive any information about a plaintext, given
its ciphertext and the public key that was used to encrypt it.
Its security is based on the decisional composite residuosity
assumption. The cryptosystem works as follows.

Key generation. Choose two large primes p and q of equal
length, and compute the RSA modulus n = pq. For security,
each prime should be at least 512 bits in length. The public
key is n and the private key is ϕ(n) = (p− 1)(q − 1).

Encryption. To encrypt a message m ∈ Zn, choose a uni-
formly random integer r ∈ Z∗n, and compute the ciphertext
c ∈ Z∗n2 as c = (n+ 1)mrn mod n2 = (mn+ 1)rn mod n2.

Decryption. Given a ciphertext c, compute the plaintext

m =
(cϕ(n) mod n2)− 1

n
· ϕ(n)−1 mod n

where ϕ(n)−1 is the multiplicative inverse of ϕ(n) mod n.

B. Private Information Retrieval

Private information retrieval (PIR) was first introduced by
Chor et al. [24], and is formally defined as follows. The server
holds a database with N records and the client wants to retrieve
the i-th record, without the server knowing the value of index
i. Information theoretic PIR [24], [25], [26] is secure against
computationally unbounded adversaries, but it is not practical
as it requires that the database be replicated into multiple
non-colluding servers. On the other hand, computational PIR
protocols [11], [27], [28] work with a single server, and employ
well known cryptographic primitives that are secure against
computationally bounded adversaries.

In our methods, we leverage the computational PIR proto-
col of Gentry and Ramzan [11], because (i) it has very low
communication cost, and (ii) it allows the retrieval of multiple
records with a single query. The security of the protocol is
based on the ϕ-hiding assumption, and its operation can be
summarized as follows.

Setup. During a setup phase, the server associates each record
j with a prime power πj = p

cj
j , where pj is a small prime.

Assuming that each record is ` bits in size, cj is the smallest
integer such that log πj > `. All the above values are public
knowledge. Before participating in query processing, the server
computes a value β, which is the unique solution to the
congruences β ≡ Dj (mod πj), for all j ∈ {1, 2, . . . , N},
where Dj is the binary representation of record j. This is a
straightforward application of the Chinese Remainder Theorem
(CRT). Note that all client queries are processed on the
transformed database β.

Query generation. As noted by Groth et al. [29], Gentry and
Ramzan’s scheme can be used to retrieve multiple records with
a single query. Let i1, i2, . . . , ik be the indexes of the records
that the client wants to retrieve. Initially, the client computes
π =

∏k
j=1 πij . He then chooses two large primes p and q, such

that p = 2πr+1 and q = 2st+1, where r, s, and t are large
random integers. After setting m = pq, the client selects a
random element g ∈ Z∗m with order πv, where gcd(π, v) = 1.
Finally, he sends (g,m) to the server. For security, we want
m to be at least 1024 bits in size, and logm > 4 log π.

Query processing. The server simply computes c = gβ mod
m and returns the result to the client. Note that β is at least
equal to the size of the original database, so the computational
complexity at the server is linear in N .

Result extraction. To reconstruct the k records, the client
computes, for each ij , cij = cπv/πij mod m. This value
should be equal to gij = (gπv/πij )Dij mod m, and thus,
the client can retrieve record Dij using the Pohlig-Hellman
algorithm for discrete logarithms [30].
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C. Threat Model and Security

We assume that the adversary is the cloud provider (i.e.,
the server2) and its goal is to derive any non-trivial information
regarding (i) the plaintext keywords included in an encrypted
document and (ii) the plaintext keywords from a client query.
We also assume that the adversary runs in polynomial time and
is “curious but not malicious,” i.e., it will follow the protocol
correctly, but will try to gain any advantage by analyzing the
information exchanged during the protocol execution.

Similar to most searchable encryption schemes in the
literature, we want to hide everything but the access and search
pattern. In other words, the server will see the documents that
are retrieved during a search, and also the index nodes that
were accessed as part of that search. However, the following
information will not be leaked:

• The keywords associated with an encrypted document
(including their number).

• The keywords contained in a query (including their
number).

• The ranking scores of the result set (including their
actual order).

IV. RANKED KEYWORD SEARCH

In this section we present in detail our privacy-preserving
search mechanism. Section IV-A describes the system archi-
tecture, while Section IV-B presents our indexing scheme
and discusses the handling of data updates. Section IV-C
introduces our top-k query processing algorithm and Section
IV-D discusses the security of our approach.

A. System Architecture

Alice is subscribed to a cloud computing service that allows
her friends to send her documents, such as emails, in encrypted
form, in order to enforce data confidentiality. When Bob wants
to send Alice a new document (Figure 1), he first creates a set
of keywords that are stored in a metadata file. For example, if
the document is an email, the keywords could be the sender’s
name, the keywords appearing in the subject line, the most
frequent keywords from the email’s body, etc. Every keyword
is associated with an integer value (score) that indicates the
importance of that keyword in the document. The metadata
file may also include some additional information about the
document, such as a file name, format, size, etc. Bob also
creates an appropriate index structure that encodes membership

2Henceforth, we use terms server and cloud provider interchangeably.

and score information for all the keywords. Finally, Bob uses
Alice’s public key to encrypt each file separately (document,
index, metadata) and transmits all the encrypted files to the
cloud provider3. If Alice wants to view the emails from
Bob’s trip to Paris, she can create a query such as “Bob
Paris” in order to retrieve the top-k most relevant documents
from the database. In particular, the query will trigger a two-
party protocol between Alice and the cloud provider, which
will allow Alice to download the corresponding encrypted
documents.

TABLE I. SUMMARY OF SYMBOLS

Symbol Description
N Database size (number of documents)
M Size of Bloom filter vector
b Block size of Bloom filter vector
d Bit size of Bloom filter counter
f Node fan-out
ei Node i
Di Document i
Wi Keyword set for document i
|W | Max number of keywords per document
|K| Number of keywords in database
n RSA modulus for Paillier encryption
m RSA modulus for PIR scheme

The document index consists of a counting Bloom filter
[31] with a single hash function H (which is public knowl-
edge). The counting Bloom filter is essentially a vector of
counters (where each counter is initialized to zero) that is used
to probabilistically encode set membership information. As
shown in Figure 2, for every keyword w ∈Wi the sender adds
w’s score to the counter at position H(w). (Table I summarizes
the most frequently used symbols in the paper.) Note that, in
this work, we assume that every document Di is allowed to
define at most |W | number of keywords. To reduce the number
of ciphertexts required to store the Bloom filter, the sender
creates groups of b counters that are encrypted together as a
single binary value (using the additively homomorphic Paillier
cryptosystem). In the example of Figure 2, M = 9 and b = 3,
so the index is stored in M/b = 3 Paillier ciphertexts.

0  0  1 2  0  0 0  4  0

H("Bob") = 2

H("Trip") = 3

H("Paris") = 7

score = 1

score = 2

score = 4

(a) Index (b) Metadata

Keywords: ("Bob",1), ("Trip",2), ("Paris",4)
Format: MIME
Attachments: photo1.jpg, photo2.jpg
Total size: 3.2 MB

Fig. 2. Document index and metadata

The reason for using both an index and a metadata file is
twofold. First, documents can be quite large (e.g., emails with
multimedia attachments) and the client may want to see a brief
description of the document before downloading it locally.
Second, Bloom filters are probabilistic structures and, thus,
introduce several false positives in the result set. For instance,
any document with a keyword that hashes to position 7 (Figure
2) is a potential match for query “Paris.” On the other hand,
if we have the client download the (compact) metadata files
first, we can guarantee the correctness of the top-k result set.

3For better performance, the document and metadata files can be encrypted
with a hybrid cipher, as in the PGP protocol.
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Fig. 3. Database index

B. Index Construction and Update

The cloud provider maintains a single index for all the
client’s documents. It is constructed by hierarchically aggre-
gating the encrypted Bloom filters into a tree structure, as
illustrated in Figure 3. Specifically, every internal node in the
tree stores f Bloom filters (where f is the node fan-out), each
being the aggregation of all document indexes in the subtree
of the corresponding child. On the other hand, leaf nodes store
the individual indexes from f distinct documents.

To understand why each node can store multiple Bloom
filters, observe that the nodes in Figure 3 are identical to
document indexes, i.e., they consist of exactly M/b Paillier
encryptions. However, the Paillier cryptosystem allows for the
encryption of very large integers that are similar in size to the
RSA modulus n (typically a 1024-bit number). Consequently,
unlike individual document indexes, each Paillier encryption
in the tree structure will utilize most of the available storage
space, in order to store f groups of counters. To compute
an appropriate value for f , given the group size b, we need to
derive a lower bound for the counter size (in bits), such that the
overflow probability is negligible. Assuming a database with
|K| distinct keywords, the probability that at least x different
keywords hash in the same counter is [31]:

Pr(count ≥ x) ≤M
(
e|K|
xM

)x
As an example, if |K| = 20000 and M = 5000, the probability
that more than 30 keywords hash in the same location is less
than 3 × 10−10. If we can also estimate the distribution of
the keywords in the document collection, we can determine a
suitable bit size d for the individual counters.

Nevertheless, even if we end up underestimating the value
of d, there are several ways for the client to detect the resulting
overflows. For instance, since the counters are aggregated in
a bottom-up fashion, the client can recognize such overflows
during query processing (Section IV-C). Alternatively, the
client can periodically download the root node locally, and
identify counters that experience large drops in their values.
If such overflows are detected, the client can reconstruct the
index tree from scratch, using the existing document metadata.
Note that, in our experiments, we used d = 15 bits per counter
and never experienced any overflows at the root node. Based
on this value, and for a 1024-bit modulus n and groups of size
b = 4, a single Paillier encryption can store f = 17 groups of
counters.

Prior to indexing any documents, the cloud provider creates
an empty version of the tree structure, i.e., every node on the
tree will comprise of Paillier encryptions of 0. Specifically,
we assume there is a limit (set by the cloud provider) on the
number of encrypted documents N that the client can store,
which allows the server to initialize all nodes according to the
predetermined fan-out f . However, since all nodes are initially
identical, the server can simply construct one version and
then create multiple copies, as needed. This is not a security
concern, as the encryptions are re-randomized during every
aggregation operation.

When the cloud provider receives a new document index
from the sender (i.e., Bob), it selects an empty location at the
leaf level of the database index where it can be stored (this is
trivially done with a bitmap of size N ). Next, it determines
the nodes at all levels of the tree that need to incorporate the
new document information. In the example of Figure 3, the
insertion of document D6 will affect nodes e6, e3, and e1.
Since each Paillier ciphertext in a node consists of f groups
of counters, the document index counters must be shifted
accordingly so that they are added to the correct position at the
different nodes. Specifically, each of the M/b plaintext values
of the document index must be shifted (to the left) j ·d·b times,
where 0 ≤ j ≤ f − 1. Assuming counters of size d = 4 bits
(Figure 3), the index values of D6 must be shifted 12 times
for nodes e6 and e1, and 0 times for node e3. In the ciphertext
space, the shifting operation of the underlying plaintext values
is performed with a single modular exponentiation, where the
exponent is the value 2j·d·b.

To summarize, given a ciphertext c1 from the document
index and the corresponding ciphertext c2 from an arbitrary
tree node, the updated ciphertext c2, following the insertion of
the new document, is computed as:

c2 = c2
j·d·b

1 · c2
where j is calculated by the cloud provider, based on the
underlying tree structure. In addition, in order to save storage
space at the server site, document indexes can be destroyed
after the update operation.

Finally, note that document deletions also necessitate index
updates, as the individual keyword scores have to be subtracted
from the corresponding tree nodes. In particular, when deleting
a stored document, the client first re-constructs the encrypted
document index from the metadata file and sends it to the
cloud provider. The cloud provider then updates the index in a



Top k(Q, k)
1: nodeHeap← ∅; resultHeap← ∅;
2: θ ← 0;
3: Compute the Bloom filter indexes {hi} associated

with all keywords in Q;
4: Using PIR, retrieve from the root node the Paillier

ciphertexts corresponding to all hi’s;
5: Compute the aggregate score for every child of the

root node, and insert that node into nodeHeap;
6: while (nodeHeap not empty) do
7: Remove the top entry from nodeHeap and

store it into e;
8: if (e.score ≤ θ) then
9: break;
10: end if
11: Using PIR, retrieve from node e the Paillier

ciphertexts corresponding to all hi’s;
12: Compute the aggregate score for every child of e;
13: if (e is a leaf node) then
14: Retrieve the metadata files for all documents

with score > θ;
15: Compute the actual scores of these documents

and insert them into resultHeap;
16: θ ← score of k-th document in resultHeap;
17: else /∗ e is an internal node ∗/
18: Insert every child of e into nodeHeap;
19: end if
20: end while
21: return resultHeap;

Fig. 4. Top-k query processing algorithm

manner similar to the one explained above. The only difference
is that the document index values have to be negated, an
operation that is trivially performed (in the ciphertext space) by
computing the multiplicative inverse modulo n2 of the Paillier
ciphertext.

C. Top-k Query Processing

Query processing is performed at the client side, by travers-
ing the database index with a best-first search algorithm, as
illustrated in Figure 4. Specifically, the client initializes and
maintains two max-heaps: nodeHeap and resultHeap (line
1). The first one is used to visit nodes in decreasing score
value, while the later one (which can be of size k) stores the
result set that is eventually returned to the client. In addition,
the client maintains a threshold value θ (line 2) that keeps track
of the score value of the k-th document in resultHeap. This
threshold is used to terminate the algorithm early, i.e., when
there exists no other document that can alter the current top-k
result set.

Initially, the client computes the Bloom filter indexes
associated with all keywords comprising query Q (line 3).
As an example, consider a top-2 query with two keywords,
mapping into positions h1 = 0 and h2 = 7 (from left to right)
in the Bloom filter vectors shown in Figure 3. For simplicity,
assume that there are no false positives, i.e., every keyword
hashes into a unique location. The algorithm starts from the
root node (e1), and utilizes the PIR protocol of Section III-B to
retrieve the corresponding Bloom filter entries. In our example,
the client will retrieve the first and third ciphertexts that contain
the required values.

Next, the client computes the aggregate scores of e1’s
children (e2 and e3) by adding the corresponding values at

positions h1 and h2. Since e1 is an internal node, the client
simply inserts 〈e2, 12〉 and 〈e3, 3〉 into nodeHeap (lines 17-
18). Node e2 is visited next, as it has the highest score in
the heap (line 7). The same process is repeated, i.e., the
client retrieves privately the first and third ciphertexts of e2
and computes the aggregate scores of e4 and e5 (lines 11-
12). Subsequently, the client inserts 〈e4, 8〉 and 〈e5, 4〉 into
nodeHeap.

The next node removed from nodeHeap is e4, and the
client computes (privately) the estimated scores of D1 and
D2. Node e4 is now a leaf node, so the client retrieves the
encrypted metadata files of both D1 and D2 (line 14), since
both documents can potentially be part of the result set (i.e.,
their actual scores could be larger than θ). From the metadata
files, the client calculates the actual scores (line 15) and, as
in our example we assume the absence of false positives,
resultHeap is updated to {〈D1, 4〉, 〈D2, 4〉}. Additionally,
since there are exactly k = 2 documents in resultHeap, the
threshold value θ is updated to 4 (line 16).

Finally, node e5 is visited next, which has an aggregate
score of 4. Given that document indexes are aggregated in a
bottom-up fashion, none of the other documents in the database
can have a score larger than 4. Consequently, the two existing
documents in resultHeap are at least as “good” as any of the
remaining ones, so the algorithm can terminate safely (lines 8-
9). At this point, the result set stored in resultHeap is returned
to the client, along with the corresponding document metadata.
The client may then look into the metadata files and decide
whether she wants to retrieve the encrypted full documents
from the database server.

D. Security

First, all documents and their respective indexes are en-
crypted with Alice’s public key. Therefore, the server is
unable to decrypt them and derive the corresponding keywords.
Second, due to the PIR queries, the server cannot determine the
Bloom filter indexes that Alice is interested in. Consequently,
he cannot derive any information regarding Alice’s query.
Finally, the top-k query processing algorithm is executed at
Alice’s local machine, so the server is oblivious to the ranking
scores and order of the result set.

V. OPTIMIZATIONS

Public key operations are computationally expensive and,
thus, the query processing algorithm described above would
be inapplicable to large document collections. Therefore, in
this section, we present a number of optimizations, targeting
the cryptographic operations of our protocol, which may lead
to reasonable query response times, even for large datasets.
Section V-A presents several optimizations at the database
server, while Section V-B introduces a few optimizations at
the client side.

A. Server optimizations

Multiple CPUs. The PIR protocol of Section III-B is the major
performance bottleneck in our top-k retrieval algorithm. As
shown in a recent study [32], Gentry and Ramzan’s scheme
(which is arguably one of the more efficient computational PIR



protocols) requires many seconds of computing time, even for
databases of size less than 100 KB. In our system, a typical
index node consists of several thousands of Paillier ciphertexts,
each of size 256 bytes. Consequently, executing the PIR
protocol in a single CPU is not a practical implementation.

In our work, we adopt the striping technique of [32]
that sacrifices some communication cost in order to achieve
significantly faster PIR query response times. The idea is
to partition each node into t blocks (Figure 5), so that the
required Paillier ciphertexts are retrieved by querying each of
the t blocks in parallel. This is an ideal scenario for cloud
computing platforms (such as Amazon’s EC2) that offer large
CPU clusters at low cost. Recall that the PIR protocol of
Gentry and Ramzan associates a prime power πj with each
database record (in our case, Paillier ciphertext). Therefore, the
client can simply construct a single PIR query that is applied
to all t blocks comprising the node.

M/b values

Block 1 Block 2 Block 3 Block t

ciphertext 1

ciphertext 2

ciphertext 3

ciphertext M/b-1

ciphertext M/b

Fig. 5. Node partitioning

In our implementation, nodes are partitioned into t = 128
blocks, i.e., every block holds 2 bytes from each of the M/b
ciphertexts. (Using the notation of Section III-B, ` = 16.)
The reason behind this choice is the security constraint of the
query generation algorithm that sets a limit on the bit size
of the product of all the prime powers πj corresponding to
the requested records. Setting ` = 16 allows us to securely
retrieve up to 10 different ciphertexts with a single PIR query,
i.e., our system supports keyword search queries with up to
|Q| = 10 terms. Finally, note that the multiple CPUs can be
leveraged in the index update process as well. Since every
Paillier ciphertext is updated independently, we can always
process multiple ciphertexts in parallel.

Chinese Remainder Theorem. During the setup phase of the
PIR protocol, the server computes the transformed database β
by applying the Chinese Remainder Theorem (CRT) on the
original database records. In our setting, document insertions
and deletions alter the entire node content, so the CRT has
to be computed from scratch after each update operation.
Consequently, an efficient implementation of the CRT is of
paramount importance. In our work, we chose Garner’s algo-
rithm [33], which includes an expensive preprocessing step,
but is very efficient during data updates. Specifically, as long
as the number of records remains constant (which is true for
the index nodes) the preprocessing step has to be executed
only once and is independent of the database records (it only
depends on the prime powers πj of the PIR protocol). As
shown in our experimental results, calculating the CRT using
the pre-computed values is very inexpensive.

B. Client optimizations

Discrete logarithm. The most expensive operation at the client
side is solving the discrete logarithm problem when extracting
the result from the server’s reply. This cost is amplified in our
implementation, due to the aforementioned node partitioning
method. In particular, our approach requires t|Q| discrete
logarithm computations per visited node, in order for the client
to retrieve |Q| Paillier ciphertexts. Therefore, instead of relying
on the Pohlig-Hellman algorithm, we chose to pre-compute all
possible results during the query generation algorithm. As it
is evident in the protocol description (Section III-B), when
the client generates the PIR query she can compute the gij
values corresponding to all possible (in our case, 216) database
records Dij . Furthermore, these pre-computations are very
efficient if we apply successive modular multiplications.

Multiple CPUs. Similar to the server case, clients can also
benefit from the availability of multi-core CPUs and/or high-
performance GPU chips. Most operations, including discrete
logarithm computations, are fully parallelizable, since they can
be performed independently. Nevertheless, we did not explore
this possibility in our experiments, i.e., we assumed that the
client utilizes a single CPU.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate experimentally the performance
of our methods, in terms of storage, communication, and CPU
cost at the various entities of our architecture. Section VI-A
describes the setup of the experiments, while Section VI-B
presents the results.

A. Setup

We developed our programs in C++, utilizing the GMP4

arithmetic library to handle large integers. We run the client
and sender (Alice and Bob) programs on an Intel Core i7, 2.8
GHz CPU, and the server program on an Amazon EC2 instance
with 1 Compute Unit. In other words, we did not utilize
multiple CPUs at the cloud provider, but rather measured the
CPU times required to execute the cryptographic protocols of
our methods on Amazon’s infrastructure. Table II summarizes
the costs of the basic cryptographic primitives at the three
parties involved in our system architecture.

For the document collection, we downloaded the Enron
email dataset5, which is an excellent real life example of the
scenario described in Section I. We created several versions
of the document collection, corresponding to different values
of N and |W |. When selecting the keywords for a specific
document, we used the terms from the “From:” and “Subject:”
fields (excluding certain stop words) and, if there was more
room, we chose the most frequent terms from the email’s
body. For each experiment, we generated 1000 random queries
and run the top-k query processing algorithm of Figure 4.
We measured the average number of index nodes that were
accessed per query, and then used Table II to derive the
corresponding costs. When creating the queries, we tried to

4http://gmplib.org/
5http://www.cs.cmu.edu/∼enron/



TABLE II. COST OF CRYPTOGRAPHIC PRIMITIVES AT DIFFERENT
ENTITIES

Server (1 Amazon EC2 Compute Unit)
Paillier Cryptosystem

Modular exponentiation 2.1 ms
Modular multiplication 0.005 ms
Encryption 6.5 ms

PIR (250 elements, 2 bytes each)
Preprocessing (for CRT) 103 ms
CRT (per block) 0.4 ms
Query (per block) 7.8 ms

PIR (1250 elements, 2 bytes each)
Preprocessing (for CRT) 1.6 sec
CRT (per block) 5 ms
Query (per block) 53 ms

PIR (2500 elements, 2 bytes each)
Preprocessing (for CRT) 5.9 sec
CRT (per block) 19 ms
Query (per block) 143 ms

PIR (5000 elements, 2 bytes each)
Preprocessing (for CRT) 22 sec
CRT (per block) 81 ms
Query (per block) 377 ms

Sender (Intel Core i7, 2.8 GHz)
Paillier Cryptosystem

Encryption 4.6 ms
Client (Intel Core i7, 2.8 GHz)

Paillier Cryptosystem
Decryption 4.5 ms

PIR (2 keywords)
Query generation 441 ms
Result retrieval 192 ms

PIR (3 keywords)
Query generation 661 ms
Result retrieval 204 ms

PIR (4 keywords)
Query generation 667 ms
Result retrieval 230 ms

PIR (5 keywords)
Query generation 822 ms
Result retrieval 262 ms

mimic the typical user behavior by searching based on the
sender and subject fields. If there were not enough keywords
in these fields to fill the query, we used random keywords from
the email’s body.

Table III summarizes our system parameters, with their de-
fault values appearing in bold face. When testing the effect of
a single parameter, we fixed the remaining ones to their default
values. In the following plots we illustrate the effectiveness of
our approach, based on these performance metrics:

• The offline processing and storage cost at the server
to store the database index.

• The CPU time at the server to update the database
index.

• The CPU time and communication cost at the sender
to send a new document to the server.

• The query response time at the client, i.e., the time that
elapses from the instance the query is posed, until the
actual answer in obtained.

• The communication cost between the client and the
server during query processing. This cost includes the
transferred metadata files, whose size is fixed to 512
bytes.

TABLE III. SYSTEM PARAMETERS

Parameter Range
N 1000, 2000, 5000, 10000
M 1000, 5000, 10000, 20000
k 1, 2, 5, 10, 15
|Q| 2, 3, 4, 5
f 17
b 4
|W | 10, 20
logn, logm 1024
Number of CPUs at server 128

B. Results

Figure 6(a) shows the CPU time at the server for con-
structing the complete index tree (for N = 10000 documents),
as a function of the Bloom filter size M . As explained in
Section IV-B, the index is initially empty, i.e., every node
consists of Paillier encryptions of zero. The cost is dominated
by the preprocessing step of Garner’s CRT algorithm, because
the time to construct the Paillier ciphertexts is negligible
(the server simply creates a single Paillier ciphertext and
populates all index nodes with the same value). This figure also
illustrates the computational complexity of the CRT problem
that justifies the expensive preprocessing step at the cloud
provider. Figure 6(b) depicts the storage cost at the server to
hold the database index. As expected, it grows linearly in M ,
and reaches approximately 1.5 GB for M = 20000. Note that,
the actual storage cost of the index tree is only half of what is
shown in this figure. The reason is that, due to the underlying
PIR protocol, the server needs to maintain two versions of
the index: the “plaintext” version consisting of the Paillier
ciphertexts, and the transformed version β required by Gentry
and Ramzan’s scheme.
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Figure 7 plots the processing time at the cloud provider
for updating the index, as a function of M . Recall that, for
a single node, the update process requires (i) one modular
exponentiation and one modular multiplication per Paillier
ciphertext, and (ii) one CRT computation per block. Using
multiple CPUs in parallel (Section V-A) reduces considerably
the processing time at the server, which remains below 350
ms in all cases.

Figure 8(a) illustrates the CPU time at the sender, as
a function of M . When sending a new document to the
server, the sender has to encode the keyword information
on the Bloom filter, and then perform numerous Paillier
encryptions to construct the document index. Clearly, the cost
of these encryptions can be significant, requiring over 20
sec of processing time for M = 20000. One optimization
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that can be applied to reduce this cost, is for the sender to
pre-compute (offline) Paillier encryptions of zero. This may
alleviate significantly the online cost, because the vast majority
of the Bloom filter counters will always remain zero. Figure
8(b) shows the communication cost for the same experiment.
It grows linearly in M , and ranges from 62 KB to 1.2 MB.
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Figure 9(a) shows the response time of our top-k query
processing algorithm, with respect to the Bloom filter size
M . When M is small, the number of false positives at the
individual Bloom filters is high, thus affecting the accuracy of
the computed aggregate scores. As a result, the best-first search
algorithm has to visit a lot more index nodes than necessary,
a fact that increases the overall query response times. On the
other hand, larger Bloom filter vectors are more accurate, and
the top-k algorithm visits significantly less number of nodes
that result in better performance. Nevertheless, as M increases
even further, the cost of the PIR retrievals becomes a dominant
factor that eliminates the advantage of the reduced false pos-
itive rates. Similarly, Figure 9(b) depicts the communication
cost at the client for the same experiment. As M increases,
the Bloom filters become more accurate, leading to fewer node
accesses and, thus, lower communication cost. As evident in
Figure 9, the value M = 5000 achieves a good trade-off
between query response time and communication cost.
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Fig. 9. Query processing cost vs. M

Figure 10 illustrates the response time and communication

cost of the query processing algorithm, as a function of the
number of documents N . Recall that, in this experiment, M
is fixed to 5000, so increasing the number of documents
produces more false positives and, therefore, the performance
of our algorithm deteriorates. However, even for N = 10000
documents, the algorithm terminates in less than 17 sec and
incurs less than 900 KB of communication cost.
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Figure 11 depicts the cost of the query processing algo-
rithm, with respect to the number of requested documents k.
When the client wants to retrieve more relevant documents,
the threshold value θ that terminates the algorithm (Figure 4)
becomes smaller, thus allowing the algorithm to run further
and access more nodes. As a result, both the query response
time and the communication cost increase with k.
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Figure 12 shows the response time and communication cost
of the query processing algorithm, as a function of the number
of keywords |Q| in the client’s query. As |Q| increases, the
effect of the false positives is amplified, since more Bloom
filter indexes are involved in the score computations. Conse-
quently, the number of visited nodes increases slightly with
|Q|. Note that, the query response time increases faster than
the communication cost, because the PIR-related computations
at the client side are more expensive for larger values of |Q|
(Table II).
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Finally, Figure 13 illustrates the number of metadata files
that are transferred to the client during query processing, with
respect to k and N . As explained previously, increasing either
k or N leads to more node accesses and, therefore, more meta-
data files are sent to the client. Nevertheless, under all settings,
less than 1% of the total number of document metadata are
transferred to the client. Consequently, the resulting overhead
is negligible, thus justifying their use to offset the effect of
false positives in the Bloom filters.
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VII. CONCLUSIONS

Searchable encryption is an important cryptographic prim-
itive that facilitates private keyword searches directly on en-
crypted data. While this problem is studied extensively in the
symmetric key setting, existing public-key algorithms are very
restrictive in the types of keyword queries that they allow. To
this end, our work introduces the first method for privacy-
preserving ranked keyword search on public-key encrypted
data. Our solution employs a simple indexing structure, and
leverages homomorphic encryption and private information
retrieval protocols to process queries in a privacy-preserving
manner. Furthermore, we introduce several optimizations for
the cryptographic primitives of our approach that reduce the
query response times by several orders of magnitude. Using
measurements from Amazon’s EC2 infrastructure, we show
that our method can process ranked keyword searches in less
than 17 sec, while incurring less than 900 KB of communica-
tion cost.
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