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Abstract—Future intelligent transportation systems necessitate
a fine-grained and accurate estimation of vehicular traffic flows
across critical paths of the underlying road network. This task is
relatively trivial if we are able to collect detailed trajectories
from every moving vehicle throughout the day. Nevertheless,
this approach compromises the location privacy of the vehicles
and may be used to build accurate profiles of the correspond-
ing individuals. To this end, this work introduces a privacy-
preserving protocol that leverages roadside units (RSUs) to
communicate with the passing vehicles, in order to construct
encrypted Bloom filters stemming from the vehicle IDs. The
aggregate Bloom filters are encrypted with a threshold cryptosys-
tem and can only be decrypted by the transportation authority
in collaboration with multiple trusted entities. As a result, the
individual communications between the vehicles and the RSUs
remain secret. The decrypted Bloom filters reveal the aggregate
traffic information at each RSU, but may also serve as a means
to compute an approximation of the traffic flow between any
pair of RSUs, by simply estimating the number of common
vehicles in their respective Bloom filters. We performed extensive
simulation experiments with various configuration parameters
and demonstrate that our protocol reduces the estimation error
considerably when compared to the current state-of-the-art
approaches. Furthermore, our implementation of the underlying
cryptographic primitives illustrates the feasibility, practicality,
and scalability of the system.

Index Terms—vehicular traffic flow estimation, Bloom filters,
privacy, homomorphic encryption

I. INTRODUCTION

Traffic statistics facilitate transportation authorities in many
use cases, including investment plans, signal time determi-
nation, road expansions, etc. Traffic statistics are measured
in terms of single-point or multi-point traffic flows. Single-
point traffic flow refers to the number of vehicles passing
through a specific location, which can be measured by placing
fixed sensors at roadsides, such as inductive loop detectors,
wireless magnetometer sensors, road cameras, or microwave
radar sensors. Single-point statistics are useful for measuring
the average annual daily traffic (AADT) [1], [2], [3], [4]. On
the other hand, multi-point traffic flow, sometimes referred to
as origin-destination (O-D) or point-to-point flow, is defined
as the total number of vehicles moving from one location
to another. Multi-point traffic statistics may be deduced from
single-point counters [5], however, there are serious concerns
about the accuracy of such approaches, because they are
oblivious to the identities of the underlying vehicles.

Consequently, to derive accurate traffic statistics, we need
alternative methods for collecting data from moving vehicles.
One approach is to use the drivers’ smartphones [6], [7] or
the GPS systems integrated in most vehicles [8], [9], in order
to generate detailed object trajectories. Alternatively, recent
advancements in vehicular communications and networking
technologies have brought cyber physical systems (CPS) into
road networks, where roadside equipment are used to collect
traffic data [10]. The dedicated short-range communications
(DSRC) protocol is standardized by the IEEE (802.11p) [11]
and enables the direct communication between vehicles and
roadside units (RSUs). In this scenario, generating accurate
traffic statistics is trivial: each vehicle reports its ID to every
RSU it encounters, with all the reports being aggregated to a
centralized server (the transportation authority). Nevertheless,
this approach violates the privacy of the vehicle owners and
may reveal sensitive personal information, such as home and
work locations, habits, etc.

To address these privacy concerns, Zhou et al. [12], [13]
have proposed the use of a bit array as an alternative to
individual vehicle IDs. In particular, every vehicle selects (in
advance) a set of s bit locations that it may reveal to an RSU.
When the vehicle identifies a new RSU, it randomly selects
one of the s locations and sends it to the RSU as its identifier.
Each RSU gradually aggregates the bit array data from all
passing vehicles, by setting a bit to ‘1’ if it is selected by
at least one vehicle (non-selected bits are set to ‘0’). Point-
to-point traffic flows are then constructed by comparing the
bit arrays of the corresponding RSUs. While this approach
improves the privacy compared to the trivial method, it still has
several limitations. First, the bit information is exchanged in
plaintext and is, thus, vulnerable to timing attacks. Indeed, any
number of RSUs may collude to deduce the vehicles’ secret
information (the s bit locations), by correlating successive
samples based on the driving distance between the RSUs.
Second, for sufficient privacy, s should be relatively large (e.g.,
s ≥ 5), which negatively affects the accuracy of the traffic flow
statistics.

To this end, our work advances the state-of-the-art in two
directions. Our major contribution is a novel method that sum-
marizes the vehicle information at each RSU into an encrypted
Bloom filter [14]. We employ a two-tiered approach where (i)
the vehicles’ Bloom filters are encrypted with a simple one-



time pad (OTP) cipher and (ii) the OTP keys are encrypted
with a homomorphic threshold public key cryptosystem. The
underlying cryptosystems make it infeasible for an adver-
sary to decrypt the individual Bloom filters, thus enhancing
significantly the vehicles’ privacy. Each RSU aggregates the
Bloom filters and OTP keys from multiple vehicles, and sends
the corresponding ciphertexts to the transportation authority.
Finally, the transportation authority engages multiple trusted
parties to decrypt the aggregate OTP keys and retrieve the
plaintext Bloom filters.

Our second contribution is a simple and accurate method
for estimating the number of common vehicles in two distinct
Bloom filters, which is an indication of the traffic flow volume
between the two RSUs. We performed extensive simulation
experiments and demonstrate that, compared to the current
state-of-the-art approaches, our methods improve the accuracy
of point-to-point traffic flow estimation by a large factor. In
addition, our software implementation of the cryptographic
primitives illustrates the feasibility and scalability of our
approach.

II. RELATED WORK

Early work on road network traffic flows focused on the
prediction of the annual average daily traffic. To this end, a
variety of machine learning models have been applied, includ-
ing regression [2], [4], neural networks [3], support vector
regression (SVR) [1], and regression with Bayesian analysis
[15]. All these systems exploit the capabilities of roadside
units for traffic data collection. On the other hand, Ref. [6],
[9], [7] utilize data from mobile phones and GPS devices to
extract origin-destination information. This is similar to the
approach used by Google Maps and Waze to optimize their
routing decisions [8].

Hoh et al. [16] highlighted the serious privacy threats
in traffic monitoring systems, as they were able to locate
85% of the drivers’ home locations from the collected data.
This is also true for popular apps, like Google Maps and
Waze, that use a static ID for each reporting client, even
across different trips [8]. Therefore, to protect the privacy
of trajectory data, Hoh and Gruteser [17] proposed a path
perturbation algorithm for a centralized, trusted server, by
employing path confusion. PADAVAN [18] is another scheme
for anonymous data collection that allows anonymous data
reporting, while avoiding fake submissions and linkage be-
tween submitted samples. Likewise, Rass et al. [19] introduced
trajectory anonymization by deriving pseudonyms for trips
and samples. Finally, Hoh et al. [20] proposed a distributed
and privacy-preserving traffic monitoring system that utilizes
virtual trip lines, i.e., geographical markers where the vehicle
has to report its location.

The above-mentioned schemes introduce some level of
privacy in traffic monitoring systems, but they are not well-
suited towards estimating point-to-point traffic flows with high
accuracy. To this end, several researchers applied intricate
cryptographic protocols to protect the privacy of drivers and
their trips. Förster et al. [21] proposed a distributed secret

sharing algorithm, using location- and time-specific keys, and
enforced k-anonymity of location data in a decentralized
environment. Zhou et al. [22] measure origin-destination traffic
flows using commutative one-way hash functions that are
constructed from an RSA-like cryptosystem. Although the
hash function hides the vehicle’s ID from the RSU, it fails
to protect the privacy of the trajectory when all the data is
aggregated at the centralized server.

The current state-of-the-art approaches are due to Zhou
et al. [12], [13], which provide privacy without the use of
cryptographic techniques. Specifically, in their system, every
receiver maintains a physical bit array of size m (similar to a
Bloom filter), and each passing vehicle sets one of the bits
to ‘1’. To avoid being identified across multiple receivers,
the vehicle uses a logical bit array of size s � m, i.e., it
can only set (randomly) one of s pre-selected bits at each
receiver. The centralized server collects all the physical bit
arrays and applies maximum-likelihood estimation (MLE) to
measure the intensity of the traffic flow between any pair of
receivers. While this approach is very efficient, it has several
shortcomings. For sufficient privacy, s should be large, but this
negatively affects the accuracy of the traffic flow estimation.
Furthermore, the lack of encryption makes it possible to launch
a variety of attacks, such as timing or direct observation, which
may disclose the contents of a vehicle’s logical bit array.

III. PRELIMINARIES

A. System Model

We consider the cyber physical system depicted in Fig. 1,
where roadside units (also called receivers) are installed at
different geographical locations along the road network. Every
vehicle and receiver is equipped with a computing unit,
and is able to communicate with other devices through the
IEEE 802.11p protocol. Whenever a vehicle comes in close
proximity to an RSU (e.g., within 100–500m), it transmits
an encrypted Bloom filter that is a representation of its
unique identifier. (To enhance privacy, a vehicle may choose
a different identifier at the start of a new trip.) The RSU
blindly aggregates the individual Bloom filters and submits the
resulting ciphertexts to the transportation authority. Note that
we are interested in collecting fine-grained traffic statistics, so
each RSU will produce a new Bloom filter when (i) a timer
expires (e.g., every 2–5 minutes) or (ii) a threshold number of
measurements is reached (e.g., 1000–2000 vehicles). To satisfy
basic privacy requirements, an RSU will not submit a Bloom
filter if the number of vehicles is below a lower threshold (e.g.,
100–200 vehicles). Such fine-grained measurements allow for
the collection of important traffic statistics, including point-to-
point travel speed estimation.

Prior to system deployment, the transportation authority ini-
tializes a threshold Paillier cryptosystem [23] in collaboration
with several third-party trusted entities. For example, these
entities may include various consumer protection agencies
and other non-profit organizations. The reason for employing
a threshold cryptosystem is to prevent individual parties—
especially the transportation authority that has access to all



Fig. 1. System model

data through the RSUs—from decrypting the Bloom filters that
are transmitted by the passing vehicles. Threshold decryption
necessitates the collaboration of all involved parties, so a single
honest player is sufficient for ensuring that only aggregate
Bloom filters are being decrypted.

B. Threat Model

We assume that all entities in the aforementioned system
model are semi-honest, i.e., they will execute all protocols
correctly but will try to gain an advantage (in identify-
ing vehicle-specific secret information) by examining the
exchanged messages. We also allow collusions among the
transportation authority and the RSUs, i.e., the adversary is
given the full communication transcript of the underlying
network. Furthermore, our methods do not require TLS-based
communications to thwart eavesdropping attacks, because all
transmitted information is encrypted. (Nevertheless, if we wish
to authenticate the vehicles and/or receivers, we may utilize the
TLS protocol with the existing public key infrastructure.) The
only requirement with regards to privacy is that, out of the t
trusted parties engaged in the threshold cryptosystem, at most
t−1 of those can collude. Finally, we assume that the vehicles
can remove all identifying information when communicating
with a receiver, e.g., by spoofing the actual MAC address of
their network interface card. While it is still possible to track
a vehicle using road cameras or other devices, such attacks
are out of the scope of this paper.

IV. PRIVACY-PRESERVING DATA AGGREGATION

Our solution comprises of three distinct phases: Bloom filter
encryption, aggregation, and decryption. We describe all of
them in detail in the following sections.

A. Bloom Filter Encryption

A Bloom filter [14] is a fast, memory-efficient, and prob-
abilistic data structure that facilitates rapid searching. It is
essentially an m-bit vector that is initialized with all its bits set
to ‘0’. Prior to adding elements into the Bloom filter, we define
k hash functions H1, H2, . . . ,Hk, where each hash function
returns a value in the range [0,m). To add an element v into the

Bloom filter, we compute Hi(v),∀i ∈ {1, 2, . . . , k} and set the
corresponding bits in the bit vector to ‘1’. Unfortunately, ag-
gregating Bloom filters with an additively homomorphic public
key encryption scheme (such as Paillier) is infeasible, because
the logical OR operation necessitates a fully homomorphic
cryptosystem [24]. Instead, we may utilize counting Bloom
filters [25] which are integer vectors that enable element
deletions as well. In a counting Bloom filter, instead of setting
the bits at the k vector positions, we simply increment the
corresponding counters. However, this approach is vulnerable
to correlation attacks, by inspecting the Bloom filters of two
or more successive receivers. If their counters differ in only
a small fraction of the m vector locations, an adversary may
be able to deduce the k secret indexes of the non-common
vehicles.

As a result, in this work, we employ a one-time pad cipher
to encrypt the Bloom filter vectors. In particular, let q = 2`

be a prime power and let Fq be the finite field of integers
modulo q. For a vehicle v, its Bloom filter is represented as a
vector b ∈ Fm

q , where bi,∀i ∈ {H1(v), H2(v), . . . ,Hk(v)}
is chosen uniformly at random from the range [1, q). The
remaining values are all set to zero. To encrypt its Bloom filter,
the vehicle chooses a random vector e←$Fm

q and outputs the
following ciphertext (in modulo q arithmetic).

c = b+ e (1)

The next step is to devise an efficient method for vehicles
to communicate the aggregate encryption keys to the trans-
portation authority. For that purpose, we employ the additively
homomorphic Paillier cryptosystem that is instantiated prior to
system deployment. Under this cryptosystem, if Enc(a) and
Enc(b) are the encryptions of messages a and b, respectively,
we can blindly compute the encryption of message (a + b)
as Enc(a + b) = Enc(a) · Enc(b). Assume now that the
number of vehicles that may be summarized into a single
Bloom filter is upper bounded by n. Then, the number of bits
required to store a single Bloom filter entry is log n + log q.
Based on the maximum message size that can be encrypted
under Paillier (which depends on its RSA composite), we
denote as l the max number of Bloom filter entries that can
fit into a single Paillier ciphertext. Then, the vehicle will
output the following ciphertext vector r, where ‘|’ denotes
the concatenation operator.

r = [Enc(e0|e1| . . . |el−1), . . . ,Enc(. . . |em−2|em−1)]> (2)

The size of vector r is dm/le and the elements ei represent the
elements of the key vector e. The tuple 〈c, r〉 is the encrypted
Bloom filter (i.e., identification) of that vehicle.

B. Bloom Filter Aggregation

When the vehicle encounters a new RSU, it will transmit
its Bloom filter 〈c, r〉. After that, it will compute a re-
randomized version of the Bloom filter, by choosing fresh
random values for vectors b and e. In this way, the vehicle can
not be identified across multiple RSUs. Each RSU maintains,
locally, an aggregate (encrypted) Bloom filter 〈cA, rA〉 that



summarizes the vehicles that have passed during the current
measurement period. Once it receives a new sample from a
passing vehicle, it updates the vectors as follows:

cA = cA + c (3)

rA = rA � r (4)

where � denotes element-wise multiplication. When the cur-
rent measurement period ends, the RSU will send 〈cA, rA〉
to the transportation authority, along with the duration of the
measurement period (start and end time).

C. Bloom Filter Decryption

Decryption is a two-step process that involves the trans-
portation authority and all the trusted third-parties. Once
the transportation authority receives a new encrypted Bloom
filter 〈cA, rA〉, it engages all t trusted parties to collectively
decrypt the aggregate encryption key eA =

∑n
i=1 e

i from the
ciphertext vector rA. This step entails the threshold decryption
of dm/le Paillier ciphertexts. Next, it reduces (element-wise)
eA modulo q, and computes the plaintext of the aggregate
Bloom filter as follows:

bA = cA − eA (5)

It is important to note that, an adversary can not determine
the number of vehicles that have set a certain bit, because the
corresponding value is uniformly random in the range [0, q).
The downside of this approach is that certain Bloom filter
entries that have been selected by at least two vehicles, may
produce an incorrect value of zero (which signifies a ‘0’ bit).
However, the probability of that event is low. More specifically,
let P (i) be the probability that a certain Bloom filter entry is
selected by exactly i out of n vehicles:

P (i) =

(
nk

i

)(
1

m

)i(
1− 1

m

)nk−i

(6)

where m is the Bloom filter size and k is the number of hash
functions. From this formula, we may compute the bit error
probability Perr as follows:

Perr = [1− P (0)− P (1)]
1

q
(7)

As an example, if n = 2000, m = 8000, k = 4, and q = 210,
the bit error probability is just 0.026%. As we will show in our
simulation experiments, the effect of bit errors on the accuracy
of our protocol is negligible.

D. Privacy Analysis

We define as a privacy breach the disclosure of a vehicle’s
secret Bloom filter. This may be accomplished by (i) perform-
ing ciphertext-only attacks on the underlying cryptosystems or
(ii) analyzing Bloom filters from different receivers.

Regarding the first type of attack, we argue that it is
infeasible because of the semantic security of the OTP and
Paillier cryptosystems that render every message indistinguish-
able. Furthermore, according to our threat model stated in

Section III-B, at least one of the trusted third-parties will
not collude to decrypt individual Bloom filters. Instead, the
only plaintext information available to the adversary is the
aggregate encryption key eA =

∑n
i=1 e

i from the OTP
ciphertexts of the n vehicles. That information alone is not
sufficient to decrypt individual Bloom filters.

Indeed, let us consider a single Bloom filter entry j, and the
n ciphertext values that are known by the adversary, namely
c1, c2, . . . , cn. To retrieve the corresponding plaintext values
bi, the adversary must solve the following system of equations

ci = bi + ei − si · q,∀i ∈ {1, 2, . . . , n} (8)

e1 + e2 + . . .+ en = eAj (9)

Clearly, a unique solution does not exist, since there are n+1
equations with 3n unknowns. In fact, we can easily produce
a solution for any combination of vehicles that have selected
a non-zero value for that exact Bloom filter entry.

Therefore, the only viable attack vector for an adversary
is to examine the Bloom filters from two different RSUs,
whose Hamming distance is small. To this end, we consider
the worst case scenario for our approach, which entails two
almost identical datasets. In particular, consider the unlikely
scenario where the adversary has knowledge (e.g., using
external observations) that sets A and B (containing n − 1
and n vehicles, respectively) are constructed such that all of
A’s vehicles are also present in B. (This is similar to the
definition of differential privacy.) We can then determine the
probability that the adversary can derive one or more of the
k bit locations that identify the extra vehicle. Let Pi be the
probability that we can identify exactly i out of k bits. This is
equal to the probability that the i bits have been set by exactly
one vehicle which, using Equation (6), can be written as:

Pi = P (1)i =

[(
1− 1

m

)nk
nk

m− 1

]i
(10)

For instance, if n = 2000, m = 8000, and k = 4, the
probability of recovering the vehicle’s entire Bloom filter is
just 1.8%.

V. POINT-TO-POINT TRAFFIC FLOW ESTIMATION

Let us consider two sets A and B with cardinalities n(A)
and n(B), respectively. According to basic set theory, the
number of common elements, n(A ∩B), is computed as

n(A ∩B) = n(A) + n(B)− n(A ∪B) (11)

where n(A ∪ B) is the number of elements in their union.
Assume now that the elements comprising A and B are
unknown, but we do have their Bloom filter representations,
BFA and BFB , in the form of m-bit vectors. Note that, if
we compute the logical OR of BFA and BFB , we get the
correct Bloom filter representation of BFA∪B . Therefore, to
estimate the traffic flow between two receivers A and B, we
need a formula that estimates the number of elements stored
in a Bloom filter, based on the number of bits that are set.



To this end, Equation (6) can be used to estimate the
cardinality of the underlying set, by measuring the fraction
of bits that are ‘0’. More specifically, the probability that a bit
is not set is given below:

P (0) =

(
1− 1

m

)nk

(12)

Solving for n gives us our estimate n̂, which can be written
as follows:

n̂ =
lnP (0)

k · ln
(
1− 1

m

) (13)

Therefore, given the Bloom filters from two distinct receivers
A and B, the transportation authority will apply Equation (11)
to estimate the volume of the traffic flow between them, where
all set cardinalities are estimated using Equation (13).

VI. SIMULATION EXPERIMENTS

A. Simulation Setup

In this section, we evaluate the performance of our system
in terms of accuracy and efficiency. To measure the accuracy,
we simulated a pair of receivers, A and B, each holding a
Bloom filter of size m that contains n entries (vehicles). We
then vary the number of common vehicles passing through A
and B to be in the range of 10%–70% of n, and measure the
average absolute difference (AAD) between the real number of
common vehicles and the estimated one. We performed each
experiment 1000 times and compared our method against Zhou
et al.’s state-of-the-art approach [13].

To measure the computational overhead, we implemented all
cryptographic operations on a desktop machine with sixteen
3.0GHz CPUs and 64GB of memory. To simulate the limited
computational capabilities of the vehicle and receiver, we
employed a single CPU core to perform their tasks. On the
other hand, the server process utilized all sixteen cores in
a multi-threaded implementation. Our code was written in
C++ and we leveraged the OpenSSL library1 for arbitrary
precision arithmetic operations. For sufficient security, the
RSA modulus of the Paillier cryptosystem was set to 2048
bits, which produces ciphertexts of size 512 bytes.

B. Accuracy

Our basic motive is to design a system for fine-grained
traffic flow estimation, so we considered a small number
of vehicles (n ≤ 2000) at each receiver. In this scenario,
new Bloom filters will be generated at relatively short time
intervals. Fig. 2 shows the AAD for different values of n,
when k = 4 and m = 8000. For Zhu et al.’s method, we depict
three different curves, i.e., for s = 2, 4, 7. Our approach clearly
outperforms the competitors, especially for larger values of s.
Note that, the value s = 2 is generally not recommended,
due to insufficient privacy. When s ≥ 4, our methods reduce
the AAD by a factor of 3–8. In addition, our estimation error
exhibits a significantly smaller variance across all settings.

1https://www.openssl.org/
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Fig. 2. AAD vs. real traffic flow (k = 4,m = 8000, q = 27)

C. Overhead

The main advantage of previous work [13] is the lack
of cryptographic operations that result in a very efficient
implementation. However, this has a negative impact on both
the privacy of the vehicles and the accuracy of the traffic
flow estimation. Therefore, to illustrate the feasibility of
our approach, we need to investigate the overhead of the
cryptographic operations in terms of both computation and
communication costs. To this end, the two basic operations
involved in our methods are the modular exponentiation (for
Paillier encryption/decryption) and the modular multiplica-
tion (for Paillier homomorphic addition). In our software
implementation, these operations cost, on average, 8 ms and
0.015 ms, respectively. Notice that the overhead of the OTP
operations is negligible compared to the public key operations
and is, thus, not measured in our results.

Fig. 3 shows the computational cost at the vehicle and the
server, as a function of the bit-length of q. For the vehicle,
the cost involves the encryption of the OTP keys into multiple
Paillier ciphertexts. For q = 27 the cost is just 600 ms (for
m = 8000), which is long enough for the vehicle to compute
a new Bloom filter before reaching the next RSU. It is also
possible for the vehicle to pre-compute (offline) several Bloom
filters before the start of a new trip. Similarly, the cost at the
server shows the time needed to decrypt a single aggregate
Bloom filter (each trusted party will incur this cost). Here, the
server application employs all sixteen CPU cores, so the cost
is greatly reduced.

Finally, we investigate the scalability of our approach with
regards to the vehicle throughput that can be supported at the
RSUs. First, the computational cost involves only modular
multiplications, which are considerably cheaper than expo-
nentiations. As such, adding one vehicle to the aggregate
Bloom filter entails just 1 ms of CPU time for n = 2000,
m = 8000, and q = 27. At this rate, the receiver can
process approximately 1000 vehicles/sec. On the other hand,
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Fig. 3. Computational cost at vehicle and server (n = 2000)

the communication cost is the bottleneck with regards to the
processing throughput. Indeed, the data rate of the DSRC
protocol is between 6–27 Mbps, which can only support a
limited number of Bloom filter transmissions within any given
time period. As an example, when n = 2000, m = 8000, and
q = 27, the size of a single Bloom filter is 43 KB. Fig. 4
shows the processing throughput as a function of the available
bandwidth, which demonstrates that at 10 Mbps, the system
is able to accommodate the load of a typical rush hour traffic.
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VII. CONCLUSIONS

We studied the problem of point-to-point traffic flow es-
timation in road networks. Our objective was to provide
very accurate statistics, while at the same time protect the
privacy of the underlying vehicles. To this end, we proposed
a protocol based on vehicle-to-infrastructure communications,
where vehicles transmit encrypted Bloom filters that are ho-
momorphically aggregated at the roadside units. The aggregate
Bloom filters are decrypted by the transportation authority,
where the intensity of the traffic flow between two endpoints
is measured by estimating the number of common vehicles
in their Bloom filters. Our simulation results show that,
compared to the current state-of-the-art, our methods improve
the estimation accuracy by a large factor. In addition, our
preliminary implementation demonstrates the feasibility and
scalability of the system.
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