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ABSTRACT

With the popularity of location-based services and the abun-
dant usage of smart phones and GPS enabled devices, the
necessity of outsourcing spatial data has grown rapidly over
the past few years. Nevertheless, in the database outsourc-
ing paradigm, the authentication of the query results at the
client remains a challenging problem. In this paper, we fo-
cus on the Outsourced Spatial Database (OSDB) model and
propose an efficient scheme, called VN-Auth, that allows a
client to verify the correctness and completeness of the re-
sult set. Our approach can handle both k nearest neighbor
(KNN) and range queries, and is based on neighborhood in-
formation derived by the Voronoi diagram of the underlying
spatial dataset. Specifically, upon receiving a query result,
the client can verify its integrity by examining the signatures
and exploring the neighborhood of every object in the result
set. Compared to the current state-of-the-art approaches
(i.e., methods based on Merkle hash trees), VN-Auth pro-
duces significantly smaller verification objects (VO) and is
more computationally efficient, especially for queries with
low selectivity.
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1. INTRODUCTION

The amount of information generated in our daily lives
has grown rapidly over the past decade. This large amount
of information as well as the complexity of the data, de-
mand sophisticated management systems that are beyond
the capabilities of many small businesses or individuals. Ad-
ditionally, the cost of running a state-of-the-art database
management system may be significant, far exceeding the
initial data acquisition cost. Consequently, the database out-
sourcing paradigm is becoming increasingly popular, and
has received a lot of attention in the research community.
In this paradigm, the data owner (DO) delegates the man-
agement and maintenance of its database to a third-party
service provider (SP), and the SP is responsible for indexing
the data and answering client queries.

In this work, we focus on the Outsourced Spatial Database
(OSDB) model, as shown in Figure 1. We assume that
the clients are mobile users who issue location-based queries
(e.g., kNN or range queries), in order to discover points of
interest (POIs) in their neighborhood. However, since the
SP is not the real owner of the data, query integrity assur-
ance is an important (and challenging) problem that has
to be addressed. In particular, the SP has to prove to the
client that (i) the data is originated from the DO and, (ii)
the result set is correct and complete.
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Figure 1: System architecture.

The general framework that is commonly used in the liter-
ature is based on digital signatures and utilizes a public-key
cryptosystem, such as RSA [5]. Initially, the DO obtains,



through a trusted key distribution center, a private and a
public key. The private key is kept secret at the DO, while
the public key is accessible by all the clients. Using its pri-
vate key, the DO digitally signs the data, by generating a
number of signatures. Then, it sends the signatures and the
data to the SP, which constructs the necessary data struc-
tures for efficient query processing. When the SP receives a
query from a client, it generates a verification object (VO)
that contains the result set along with the corresponding au-
thentication information. Finally, the SP sends the VO to
the client, which can verify the results using the public key
of the owner.

Currently, the state-of-the-art solution for authenticating
spatial queries is the Merkle R-tree (MR-tree) [29]. The MR-
tree is essentially an R-tree that is augmented with authen-
tication information (i.e., hash digests). In particular, every
leaf node of the tree stores a digest that is computed on the
concatenation of the binary representation of all objects in
the node. Internal nodes are assigned a digest that summa-
rizes the child nodes’ MBRs (minimum bounding rectangles)
and digests. Digests are computed in a bottom-up fashion,
and the single digest at the root is signed by the DO. Range
queries on the MR-tree are handled by a depth-first traver-
sal of the tree. The resulting VO contains (i) all the objects
in every leaf node visited, and (ii) the MBRs and digests
of all the pruned nodes. Having this information, the client
can reconstruct the root digest and compare it against the
one that was signed by the owner. In addition, the client
also examines the spatial relations between the query and
each object/MBR included in the VO, in order to verify the
correctness of the result.

We argue that the structure of the MR-tree as well as the
verification process, suffer from several drawbacks. First,
the authentication information (hash digests) embedded in
the MR-tree reduces the node fanout, leading to more I/O
accesses during query processing. Second, in the presence of
updates, all the digests on the path from an affected leaf
node to the root have to be recomputed. Consequently,
when updates are frequent, query performance is degraded,
as discussed in [21]. Finally, the overhead of the VO can
be significant, especially for queries that return only a few
objects. This is due to the fact that the SP has to return
all the objects that lie inside the leaf nodes that are vis-
ited during query processing. As an example, consider the
range query ¢ in Figure 2. Even though the result set in-
cludes only two objects (p2,pa), the corresponding VO has
to return all 12 objects in the database. An extension of the
MR-tree, called MR*-tree [30], mitigates this last drawback,
by ordering the entries of each node and constructing hier-
archical relationships of the digests therein. Nevertheless, it
does not eliminate the VO overhead entirely, while at the
same time it increases the verification cost at the client.

Motivated by the above observations, we propose VN-
Auth, a novel approach that authenticates arbitrary spatial
queries based on neighborhood information derived by the
Voronoi diagram of the underlying spatial dataset. In par-
ticular, before delegating its database to the SP, the owner
transforms each data object by creating a signature of the
object itself along with information about its Voronoi neigh-
bors. A key aspect of our method is that it separates the au-
thentication information from the spatial index. As a result,
the efficiency of the spatial index is not compromised, and
all updates are restricted in the neighborhood of the affected
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Figure 2: Range query on the MR-tree.

objects. Furthermore, the VO is extremely compact, since it
only includes the transformed objects that belong to the re-
sult set. Our simulation results show that, compared to the
MR-tree variants, VN-Auth produces significantly smaller
verification objects and is more computationally efficient,
especially for queries with low selectivity.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work, while Section 3 discusses
Voronoi diagrams and signature aggregation techniques. Sec-
tion 4 describes the data transformation process, and Sec-
tion 5 introduces the verification algorithms for ANN and
range queries. Database updates are handled in Section 6,
followed by our experimental results in Section 7. Section 8
introduces some additional features of VN-Auth and, finally,
Section 9 concludes the paper with directions for future
work.

2. RELATED WORK

Section 2.1 reviews query authentication methods with a
focus on spatial database outsourcing. Section 2.2 discusses
spatial query processing techniques on R-trees.

2.1 Query Authentication for Outsourced Spa-
tial Databases

The idea of outsourcing databases to a third-party ser-
vice provider was first introduced by Hacigiimiis et al. [8].
Since then, numerous query authentication solutions have
been proposed for auditing query results in outsourced re-
lational databases [7, 15, 20, 25, 19, 13, 28, 27]. The first
mechanism for verifying query results in multi-dimensional
databases was proposed in [2]. The idea is to add authen-
tication information into a spatial data structure, by con-
structing certified chains [19] on the data points within each
partition as well as on all the partitions in the data space.
For a given range query, this approach generates a proof that
every data point (within the intervals of the certified chains
that overlap the query window) is either returned as a re-
sult or falls outside the query range. Based on [2], Cheng
and Tan designed a mechanism for authenticating k near-
est neighbor (kKNN) queries on multi-dimensional databases,



ensuring that the result set is complete, authentic, and min-
imal [3, 4]. Nevertheless, both solutions incur significant
authentication overhead, and the required verification infor-
mation consumes considerable client-server communication
bandwidth.

Yang et al. [29, 30] introduced the MR- and MR*-trees,
which are space-efficient authenticated data structures sup-
porting fast query processing and verification. The MR-tree
augments the standard R-tree, by computing hash digests
on the concatenation of the binary representation of all the
entries in a tree node. To verify the correctness and com-
pleteness of range query results, the generated VO includes
(i) all the visited objects, and (ii) the MBRs and digests
of all the pruned nodes. The MR*-tree improves MR-tree
by ordering the entries of each node and constructing hi-
erarchical relationships of the digests therein. Entries are
sorted according to an in-order traversal of a KD-tree. As
a result, when a query intersects an MBR, not all entries
are required for query verification, and some of them can
be pruned. The idea is similar to building a small Merkle
tree on each node of the MR-tree. The MR*-tree reduces
significantly the VO size, but incurs some CPU overhead
due to the embedded information. Nevertheless, neither the
MR-tree nor the MR*-tree are able to handle data updates
efficiently.

Efficient verification in the presence of frequent updates
has been studied in the context of relational data. The Par-
tially Materialized Digest scheme (PMD) [14] verifies one-
dimensional range queries, and applies to both static and
dynamic databases. PMD employs separate indexes for the
data and their associated verification information, in order
to avoid unnecessary costs when processing queries that do
not request verification. Furthermore, Pang et al. [21] in-
troduced a protocol, based on signature aggregation, that
verifies the authenticity, completeness and freshness of the
query result. An important property of the protocol is that
it allows new data to be disseminated immediately, while
ensuring that outdated values (beyond a pre-set age) can
be detected. In addition, the authors also implemented an
efficient verification technique for ad-hoc equi-joins. Pa-
padopoulos et al. [22] designed a solution for the authentica-
tion of continuous spatial queries, i.e., queries that are con-
stantly evaluated on a highly dynamic database (consisting
of moving objects). The proposed mechanism achieves both
correctness and temporal completeness, and aims at reduc-
ing the transmission overhead between the service provider
and the clients.

All the aforementioned solutions require changes to be
made in the DBMS kernel, in order to support the embed-
ded authentication information. This may not be realistic
in many applications. On the other hand, Ku et al. [12]
proposed a query integrity assurance technique that does
not require any modifications in the DBMS software. The
solution first employs a spatial transformation method that
encrypts the spatial data before outsourcing them to the SP.
Then, by probabilistically replicating a portion of the data
and encrypting it with a different encryption key, clients are
able to audit the trustworthiness of the query results. How-
ever, since [12] is not a deterministic solution, attacks may
escape the auditing process.

2.2 Spatial Query Evaluation

In this paper we focus on two spatial query types, namely

k nearest neighbor and range queries, which are the building
blocks of most location-based services. With R-tree [6] based
spatial hierarchical structures, depth-first search (DFS) [23]
and best-first search (BFS) [9] have been the prevalent branch-
and-bound techniques for processing nearest neighbor queries.
Generally, DFS recursively expands the index nodes for search-
ing nearest neighbor candidates. At each newly visited non-
leaf node, DF'S computes the ordering metrics for all its child
nodes, and utilizes pruning strategies to remove unpromising
branches. When a leaf node is reached, the data objects are
retrieved and the nearest neighbor candidates are updated.

On the other hand, BFS employs a priority queue @,
to store all nodes that need to be explored through the
search process. Consequently, it supports incremental re-
trieval of objects when k increases. The nodes in the queue
are sorted according to their minimum distance (MINDIST)
to the query point. Starting from the root, BFS repeat-
edly dequeues the top entry in @), and enqueues its child
nodes with their MINDIST values. When a data entry is
dequeued, it is inserted into the result set and the search
process terminates when k data objects are retrieved. For
range queries that retrieve objects within a user specified
region, R-trees provide efficient query processing algorithms
as well. Specifically, for a given spatial dataset, the R-tree
structure groups objects close to each other into a MBR,
and the algorithm only visits the MBRs that overlap with
the query range.

3. PRELIMINARIES

Section 3.1 introduces Voronoi diagrams and their prop-
erties, while Section 3.2 describes a signature aggregation
technique that we utilize in our methods.

3.1 Voronoi Diagrams

Given a set of distinct objects P = {p1,p2,...,pn} in
R™, the Voronoi diagram of P, denoted as VD(P), par-
titions the space of R™ into n disjoint regions, such that
each object p; in P belongs to only one region and every
point in that region is closer to p; than to any other ob-
ject of P in the Euclidean space. The region around p; is
called the Voronoi cell of p;, denoted as VC(p;), and p; is
the gemerator of the Voronoi cell. Therefore, the Voronoi
diagram of P is the union of all Voronoi cells VD(P) =
{VC(p1),VC(p2),...,VC(pn)}. If two generators share a
common edge, they are Voronoi neighbors. If we connect all
the Voronoi neighbors, we get the Delaunay triangulation
DT(P), which is the dual graph of VD(P). Note that, in
this paper, we utilize Euclidean distance functions in R2.

PROPERTY 1. Given a set of distinct points P = {p1, p2,
., Pn} C R2, the Voronoi diagram VD(P) and the corre-
sponding Delaunay triangulation DT(P) of P are unique.

PROPERTY 2. The average number of Voronoi edges per
Voronoi polygon does not exceed siz. That is, the average
number of Voronoi neighbors per generator does not exceed
SUT.

PROPERTY 3. Given the Voronoi diagram of P, the near-
est neighbor of a query point q is p, if and only if ¢ € VC(p).

PROPERTY 4. Let p1,...,pr be the k (kK > 1) nearest
neighbors in P to a query point q. Then, pi is a Voronoi
neighbor of at least one point p; € {p1,...,Pk-1}-



The proofs of the above properties are omitted here be-
cause of space limit. However, interested readers can refer
to [18] (Properties 1-3) and [11] (Property 4) for more de-
tails.

3.2 Signature Aggregation

In our approach, the DO generates one signature for ev-
ery object in the database, which is computed on the hash
digest of the concatenation of the binary representation of
the object and its Voronoi neighbors. In this way, the client
can verify the authenticity of each individual object and its
neighborhood. Note that, in this work, we utilize RSA sig-
natures [5] that are typically 128 bytes in size. Alternatively,
signatures based on Elliptic Curve Cryptography (ECC) [1]
can be significantly shorter, thus reducing the overall com-
munication and storage cost. However, ECC algorithms are
computationally intensive, and would perform poorly on mo-
bile devices with limited computational capabilities.

The drawback of having one signature per database object
is that it may increase considerably the communication cost
between the SP and the client. Specifically, the SP has to
transmit one 128-byte signature for every object in the result
set, so the overhead can be significant for queries with high
selectivity (especially for mobile clients). To avoid this cost,
we employ a technique called signature aggregation. In par-
ticular, given k digests and their corresponding signatures
(generated by the same signer), the SP can replace them
with a single Condensed-RSA signature. Condensed-RSA
has the same size as the original signatures (128 bytes), and
is computed as the modular multiplication of the k signa-
tures. Aggregate signatures are provably secure [16, 17] and
can be computed by any party that possesses the individual
signatures.

4. DATA TRANSFORMATION

Consider a DO that has compiled a large collection of n
POIs (e.g., restaurants) within a geographic region. Each
POI i is represented as a unique object p; in the database,
which has the form (p;.location, p;.tail). The location at-
tribute stores the spatial coordinates of the object, while
the tail attribute stores some additional information about
the object, such as name, address, phone number, web site,
etc. Before transmitting the database to the SP, the DO
transforms each object by attaching neighborhood and au-
thentication information.

In particular, the DO initially computes the Voronoi di-
agram of the spatial dataset (as shown in Figure 3) and
retrieves the Voronoi neighbors of each POI. Then, it ap-
pends a neighbors attribute to every object in the database
that stores the locations of all its Voronoi neighbors. For
example, the neighbors attribute of ps is equal to:

ps.neighbors = {3, p2.location, p1.location, ps.location}

Note that, as the number of Voronoi neighbors for a POI
is not fixed, the first value of the attribute specifies the ex-
act number of neighbors. Furthermore, we assume that the
DO stores the Voronoi neighbors in a clockwise or counter-
clockwise order, to facilitate the on-the-fly reconstruction of
Voronoi cells at the client (as explained in Section 5.2). The
final step is for the DO to sign each individual object, so
that the client can verify the authenticity of the information
stored therein. Specifically, for an object p;, its signature S

is computed as
S = sign(h(p;.location|p;.tail|p;.neighbors))

where h is a one-way, collision-resistant hash function and
‘|” denotes the concatenation of two binary strings. To sum-
marize, each transformed object p; at the DO’s site has the
form (p;.location, p;.tail, p;.neigbors, p;.S).
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Figure 3: Spatial dataset example.

After the database transformation process completes, the
DO transfers all objects to the SP. Upon receiving the database
objects, the SP builds an appropriate spatial index, and is
then ready for query processing. Note that, the leaf level of
the index only stores pointers to the location of the trans-
formed objects on the disk. There are several advantages
in our approach, compared to the MR-tree variants. First,
the DO is oblivious to the query processing mechanisms at
the SP. Consequently, the SP may utilize any spatial index
(and query processing algorithm) without informing the DO.
Second, the spatial index does not store any authentication
information, and thus remains compact and efficient. Third,
database updates affect only their local regions, and do not
need to propagate to the root of the index. The only draw-
back of VN-Auth is the storage overhead of the transformed
objects. However, according to Property 2 (Section 3.1),
the number of neighbors for each generator in the Voronoi
diagram does not exceed six, on average. Therefore, the ex-
pected overhead per object is 128 + 6 x 16 + 2 = 226 bytes
(16 bytes/point object and 2 bytes/short integer), which is
typically less than the size of the original object.

S. AUTHENTICATING SPATIAL QUERIES

In this section, we introduce the verification algorithms
for typical location-based queries. Section 5.1 describes the
query processing mechanism at the SP, while Sections 5.2
and 5.3 introduce the verification algorithms for NN and
range queries, respectively.

5.1 Query Processing at the SP

As the authentication information is stored only at the
data objects, query processing at the SP is fairly simple.
Assuming that a spatial index (e.g., an R-tree) is built on
the spatial attributes of the objects, query processing can
follow any state-of-the-art algorithm that exists in the liter-
ature. Furthermore, when there are more than one objects
in the result set, the SP employs the signature aggregation



technique to condense the signatures into a single one (as
discussed in Section 3.2). Therefore, for each query, the SP
returns to the client (i) a list L of objects that belong to the
result set, and (ii) an aggregate signature AS.

5.2 kNN Query Verification

Nearest neighbor (NN) queries are the fundamental build-
ing blocks in location-based services. In particular, kNN
queries allow mobile users to retrieve the k closest POls
from the database, i.e., they may issue queries such as “find
the 10 nearest restaurants to my location”. When a client re-
ceives its kNN query result from the SP, it needs to (i) verify
the authenticity of the results that all objects are originated
from the DO, and (ii) verify the correctness and complete-
ness of the result set. The first task is straightforward, since
the client only needs to verify the aggregate signature that
is returned by the SP. Note that, forging or altering a sig-
nature is computationally intractable for a polynomial-time
adversary. For the second task, VN-Auth employs an in-
cremental verification process that is based on Properties 3
and 4. Specifically, according to Property 3, p; is the 15 NN
of the query point g, if and only if ¢ lies inside the Voronoi
cell of p;. Once this geometric test is verified, Property 4
suggests that the 2"¢ NN of ¢ must be one of the Voronoi
neighbors of the 1°* NN (p;). In the general case, the k"
NN of a query point ¢ exists in the union of the Voronoi
neighbors of the first (kK — 1) NNs of q.

Algorithm 1 VerifykNN(q,L,k, AS)

1. if (AS is NotValid) then

2.  return false;{signature validation fails}
3. end if

4. Min-Heap « 0;

5. Verified « 0;

6. VCP «— computeVC(p1);

7

8

9

. if (¢ ¢ VCP) then
return false;{the 1°* NN fails}
. else
10.  Verified « p1;
11. end if
12. fori=1to k—1do
13.  for all (nb € p;.neighbors) do

14. if ((nb ¢ Verified) && (nb ¢ Min-Heap)) then
15. Min-Heap « nb;
16. end if

17.  end for
18.  if (piy1.location # Min-Heap.pop()) then

19. return Verified; {the (i + 1) NN fails}
20. else

21. Verified < pi41;

22.  end if

23. end for

24. return L

The kNN query verification process is shown in Algo-
rithm 1. The inputs to the algorithm are the query point ¢,
the result set L, the parameter k, and the aggregate signa-
ture AS. We assume that L = {p1,p2,...,pr}, where p;1 is
the 1% NN, po the 2"¢ NN, and so on. The algorithm first
checks the aggregate signature (lines 1-3), and if it is valid
an empty min-heap is initiated. Next (lines 6-11), it con-
structs the Voronoi cell of the first object p; and checks if ¢
falls inside VC(p1). If not, p1 is not the 1°* NN and the veri-

fication process fails. Otherwise, p; is verified as the 1°* NN,
and is added to a list of verified objects. Recall that each ob-
ject is augmented with its Voronoi neighbors in a clockwise
(or counter-clockwise) order. Therefore, the Voronoi cell can
be computed on-the-fly by finding the circumcenters of the
surrounding Delaunay triangles of pi, which is not an ex-
pensive computation and can be performed efficiently on a
mobile device.

The subsequent for loop (lines 12-23) iterates through all
the objects in L and performs the following operations: (i)
it inserts the Voronoi neighbors of the last verified object
(p;) into the min-heap, sorted in ascending order of their
distances to g (lines 13-17), and (ii) it compares the next
object in the result set (p;+1) against the object on the top
of the min-heap (lines 18-22). If they are identical, p;t+1
is verified as the next NN and is added to the list of veri-
fied objects. Otherwise, verification fails and the program
returns the first ¢ objects in L that were verified success-
fully. Note that, the capacity of the min-heap is initially
set to (k — 1), i.e., it will only hold the first (k — 1) objects
that are closer to g (we are not interested in objects further
away). Furthermore, the capacity can be decreased by one
after each iteration, in order to minimize the computational
and storage cost at the client.

Figure 4: KNN verification example.

To illustrate the kNN verification algorithm, consider the
3NN query ¢ in Figure 4. First suppose that the SP returns
the correct result set L = {p1,ps,p2}. Once the aggre-
gate signature is verified, the client computes the Voronoi
cell of p1 and checks whether ¢ lies inside VC(p1). Since
this is true, p1 is proven to be the 15 NN of q. Conse-
quently, the algorithm goes through the Voronoi neighbors
of p1 (p2, ps3,p4, Ps, ps) and inserts the two closest objects to
q into the min-heap. Therefore, the min-heap is now equal
to {pa,p2}. Next, the second object in the result set (p4) is
compared against the object at the top of the heap and, as
they are identical, py is verified as the 2"? NN of ¢. In the
next iteration, every neighbor of p4 is examined, but nothing
is inserted into the heap, because p2 is still the closest point
to ¢ (note that the min-heap only contains ps now). Finally,
p2 is compared against the 3"¢ NN reported in L, and L is
verified successfully at the client. Suppose now that the SP
returns the incorrect result L = {p1, ps, ps} to the client, by
replacing ps with ps. The aggregate signature is still valid,
but the client will discover the error on line 18, as the 37
NN derived from the first two neighbors should be p2 rather
than ps.



5.3 Range Query Verification

VN-Auth can also be used to verify arbitrary range queries.

Observe that, kNN query verification essentially verifies all
the objects inside a circular range centered at the query
point ¢ with radius equal to the distance from ¢ to its k"
NN. Therefore, this approach can be easily extended to ver-
ify circular range queries, such as “find all restaurants within
200m of my location”. The client first sorts the objects in
the result set in ascending order of their distances to the
query center, and verifies each object using Algorithm 1. To
minimize the computation at the mobile device, the sorting
process can be performed at the SP. Note that, after the
last object is verified successfully, the client also needs to
verify that none of the Voronoi neighbors of the result set
lies inside the query range.

Unlike kNN queries that always return exactly k results,
circular queries may occasionally return an empty set, i.e.,
no database object may fall inside the query range. We han-
dle such cases by having the SP return the nearest neighbor
of query location, i.e., the generator of the Voronoi cell where
the query point lies. By exploring the neighborhood of that
object, the client can easily verify the absence of objects in
the particular range.

Another interesting variation of the range query is a rect-
angular query. Such queries allow clients to specify a rectan-
gular shape on the map and retrieve all POIs that fall inside
that area. Square shaped queries are handled trivially, by
rewriting the query into a circular one. Figure 5 shows an
example of a square query that is replaced by the circum-
circle of the square. However, the grey region in Figure 5
may produce some false hits, i.e., objects that are returned
by the SP but do not belong to the result set (such as ob-
ject ). We call this region the overhead region. The query
verification process is identical to the one used for circular
queries, with an additional step at the end to filter out the
false hits.

Figure 5: Square query verification.

When rectangular queries are too tall or too wide, the
query rewriting mechanism discussed above produces a large
overhead region. Therefore, false hits may incur a substan-
tial overhead to the VO, leading to an increased commu-
nication and computational cost at the client. Figure 6(a)
illustrates this scenario, where five redundant objects (e,
f, g, h and %) are included in the result set. To address
this drawback, we can rewrite the rectangular query dif-
ferently. Instead of using one circular range to enclose the
whole rectangle, we partition the rectangle into a few squares
and generate one circular query per square. In Figure 6(b),
for instance, the rectangle is divided into two squares, which
eliminates 4 false hits. Note that, the overlapping circular

ranges may cause certain objects to be transmitted multi-
ple times to the client. To avoid this cost, the SP may first
generate the union of all the result sets, and then send it to
the client along with a brief description for each individual
result.

(a) Rectangular query (b) Query rewriting

Figure 6: Minimizing the false hits.

6. DATABASE UPDATES

In this section, we discuss how VN-Auth handles database
updates. We only consider object insertions and deletions,
since an update is simply the combination of the two oper-
ations. As mentioned earlier, one of the drawbacks of the
MR-tree based verification techniques is that all updates
propagate hash digest recomputations from the leaf nodes
to the root. Consequently, frequent updates degrade the
performance of the R-tree index and create a performance
bottleneck at the root node. Our approach overcomes this
problem by separating the authentication information from
the spatial indexes. Verification information is attached only
to the data objects, and updates affect only a specific neigh-
borhood of the dataset. In addition, as neighboring objects
are close to each other, they are often stored on the same
or nearby pages on the disk. Therefore, updates in the VN-
Auth framework are expected to be more efficient than the
MR-tree updates.

(a) Object insertion

(b) Object deletion

Figure 7: Object insertion and deletion.

After inserting a new object in the database, the DO em-
ploys the incremental boundary growing method [18] to com-
pute the updated Voronoi diagram. In Figure 7(a), for in-
stance, to insert a new object ps, we first identify (i) the
Voronoi cell VC(p1) containing ps and (ii) all the Voronoi
neighbors of p;. Then, we draw a bisector between p; and pa,



which intersects VC'(p1) at w1 and ws. Segment wiws be-
comes the first edge of the new Voronoi cell. The next step is
to iterate over all the neighboring objects that share Voronoi
edges with p; in a counter-clockwise fashion (e.g., starting
with p2). Then, we draw the bisector between p2 and ps and
retrieve the next intersection at ws. We repeat this process
until all the edges of the new Voronoi cell (of ps) are com-
puted. The above process can also be performed in a clock-
wise manner. Finally, the new object is augmented with
authentication and neighborhood information, and is trans-
mitted to the SP. In addition to the new object, the owner
also transmits to the SP all the objects whose neighborhood
information was affected by the inserted object (along with
their new signatures). Upon receiving the new object, the
SP simply inserts it in the corresponding spatial index.

Deleting an object (e.g., p1) follows a similar approach, as
shown in Figure 7(b). We first locate p; and its neighbors,
and divide V' C(p1) with the bisectors between the neighbor-
ing pairs of p;. Next, we update the Voronoi neighbors of p;
with new neighboring information, and transmit all affected
objects (with their new signatures) to the SP. Additionally,
the SP removes p; from the corresponding spatial index.

A final remark concerns query freshness, i.e., clients should
be able to verify that the database maintained at the SP
includes all the updates generated by the DO. A malicious
SP may ignore all updates after the database initialization
process, but clients will remain oblivious to this fact as the
verification process will not be affected. In VN-Auth we
follow the methods discussed in [30, 13] that allow signatures
to either expire periodically or be selectively revoked by the
data owner.

7. EXPERIMENTS

In this section, we evaluate experimentally the perfor-
mance of VN-Auth, and compare it against the MR-tree
variants. Our implementation is in Java, with the client-
side application running on a Google Android mobile de-
vice, and the server-side (SP) service hosted on a Windows
Server PC with Intel Core2 Duo 3GHz CPU and 4GB mem-
ory. The DO also runs on a PC with the same configura-
tion. To implement the cryptographic operations, we used
the Java cryptography extension packages [10]. Our exper-
iments were performed on two real-world datasets obtained
from the U.S. Census Bureau [26]: (i) CA which contains
62k data points from California, and (ii) NA which consists
of 556k POIs taken from North America. Each set of the
following experiments was performed on both datasets.

The VN-Auth framework consists of an offline database
transformation part, and an online query evaluation part.
In the offline phase, we perform a Delaunay triangulation
algorithm (Graham scan) to compute the Voronoi neigh-
bors, and then incorporate the verification information into
each object. The SP provides online query evaluation to
clients after indexing the spatial attributes of the objects
with an R*-tree. We also implemented the MR- and MR*-
trees, based on the algorithms described in [30], with the
R*-tree serving as the basis of both index structures. The
page size is set to 4KB for all trees. For both the MR-
and MR*-trees, index nodes and leaf nodes have a fan-out
of 64 and 256, respectively. For the VoR-tree, index nodes
and leaf nodes have a fan-out of 128 and 43 (on average),
respectively.

In the first experiment, we investigate the storage over-
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Figure 8: Statistics on the number of neighbors.

head required by VN-Auth in order to maintain the neigh-
borhood information of the database objects. Specifically,
Figure 8 shows the distribution of the number of Voronoi
neighbors per object. For both real-world datasets, over
95% of the objects have less than 10 neighbors and only
a few objects have more than 10 neighbors. Clearly, these
results confirm Property 2 (see Section 3.1).

Description Symbol | Size (bytes)
Point S, 16
MBR S 32
Digest Sh 32
RSA Signature Ss 128

Table 1: Sizes of object attributes.

Next, we evaluate the communication cost for all methods,
under kNN query processing. In particular, Figure 9 shows
the total size of the VO as a function of k. Additionally, Ta-
ble 1 summarizes the sizes (in bytes) of the various object
attributes included in the VOs of the three authentication
methods. We assume that the outsourced spatial database
contains a set of POIs, each with size of 16 bytes (spatial
coordinates). An MBR is represented by two data points,
and thus, consumes 32 bytes. Every point/MBR in the MR-
and MR*-trees contains a 32-byte digest, which is computed
on a leaf-level object or an MBR. Digests are computed with
the SHA-256 algorithm provided in [10]. Note that we did
not include the size of the tail attribute in our experiments,
as it is common in all three methods. In other words, we
only measure the overhead of the underlying authentication
mechanisms, since tail attributes have to be transmitted to
the clients even when authentication is not implemented. In
the MR*-tree, all the entries of an internal or a leaf node
form a KD-tree, and the digest of each entry is computed
in similar fashion. When a query intersects with a node,
the MR-tree returns all the non-overlapping entries to the
VO, while the MR*-tree only returns the entries that are
necessary for constructing the root digest of the KD-tree.
Therefore, the MR*-tree is more communication-efficient,
but more computationally expensive during query process-
ing and database updates. Figure 9 shows that VN-Auth
outperforms both MR-tree variants in terms of communi-



cation cost, and it is significantly better for queries with
low selectivity (i.e., for k¥ < 32). As an example, for an
8NN query, the MR-tree returns a VO of 22KB while the
MR *-tree returns a VO of 14KB. In contrast, VN-Auth only
returns a VO of 1.3KB, including the signature. This is due
to the fact that the SP only returns the database objects
that belong to the result set. In other words, the size of the
VO in our approach is linear to k.
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Figure 9: VO size vs. k.

In our next experiment, we evaluate the query processing
cost at the SP in terms of I/O accesses. For VN-Auth, we
perform a slight optimization on the R*-tree index, based on
the neighborhood information available at the SP. Specifi-
cally, we keep the internal nodes intact, and modify the leaf
nodes by storing pointers to each Voronoi neighbor of an
object. The pointers facilitate easy navigation to the neigh-
boring objects, and thus, achieve better 1/O efficiency than
the standard BFS algorithm. Note that such improvement
is only possible for VN-Auth, as this information is incorpo-
rated in all database objects. Figure 10 depicts the I/O cost
at the SP as a function of k. VN-Auth results in less I/O
accesses than both MR-tree variants, in all cases. The page
access cost is the same for the MR- and MR*-trees, because
the MR*-tree does not store any additional information in
the nodes. The idea of incorporating Voronoi diagrams into
R*-trees was originally proposed in [24], where each object
stored information about both its Voronoi neighbors and the
corresponding cells. However, in VN-Auth, we only store
Voronoi neighbors, in order to increase the fan-out of the
leaf nodes.
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Figure 10: Page access vs. k.

Next, we investigate the feasibility of implementing com-
plex verification algorithms on mobile devices. As reported
in [21], the cost of cryptographic primitives has become less
expensive as computer hardware gets more advanced and
the corresponding algorithms become more efficient. Sign-
ing an individual message (on a PC) with the RSA algo-
rithm costs 6.06us, while verifying it takes 0.087ms. For

a condensed-RSA signature with 1000 aggregate individual
signatures, the cost of signing is 0.078ms, while the verifi-
cation cost is 0.094ms. On mobile devices, such operations
are also very efficient. The costs of the cryptographic prim-
itives in our implementation are shown in Table 2. The
RSA and SHA algorithms used in our experiments are both
from [10]. Signature generation/aggregation is performed
on a PC, and the verification is done on an Android phone.
Clearly, state-of-the-art mobile devices are more than capa-
ble of performing complex cryptographic operations, thus
allowing the implementation of efficient spatial query verifi-
cation techniques. Note, however, that the hashing operator
is more expensive on large messages, such as the concatena-
tion of entries (index/leaf nodes) on the MR- and MR*-trees.
Therefore, computing the root digest may become more ex-
pensive than verifying a 1024-bit condensed-RSA signature
on the mobile device (which is less than 5ms, as shown in
Table 2). For example, a typical 8NN query on the MR-
tree returns a VO of 20KB. The client needs to perform the
hashing algorithm 7.6 times on messages with average size
of 4.5KB, which costs about 330ms. Transferring the VO to
the client takes an additional 300ms. Therefore, the cost of
the combined operations is much larger than the signature
verification cost.

Mobile PC
(ms) | (ms)

Operations

Individual signature

Signing - 0.02

Verifying 4.12 -
20-signature aggregation

Signing - 0.03

Verifying 4.48 -
Hashing (SHA-256)

20 points/MBRs 0.44 | 0.04

50 points/MBRs 0.81 | 0.13

Table 2: Cost of primitive operations.

The next set of experiments studies the cost of database
updates. Figure 11 shows the response time to complete a
series of updates as a function of the number of objects being
updated. Note that, for the NA dataset the total number of
updates is considerably larger, in order to maintain the per-
centage of objects being updated similar to the CA dataset.
The update cost comprises of the time for locating the ob-
ject, and the time for recomputing digests and signatures as
dictated by the corresponding authentication mechanisms.
As discussed in Section 6, for the MR-tree based approaches,
a database update affects all the nodes from the leaf to the
root, because it triggers a series of hash digest recomputa-
tions in a bottom-up fashion. In VN-Auth, however, only
neighboring objects are modified by the DO during an up-
date. Consequently, VN-Auth completes the update process
2 times faster than the MR-tree, and 3 times faster than the
enhanced MR*-tree approach. The time cost includes both
CPU and I/O cost. We use 4KB page size and 2MB main
memory for buffering tree nodes.

Finally, our last set of experiments investigates the query
cost at the mobile clients. In particular, Figure 12 depicts
the total amount of time required for receiving and verifying
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Figure 11: Response time vs. database updates.

a kNN query result as a function of k. Our experiments are
conducted on Android phones that are connected to the In-
ternet through the built-in Wi-Fi. The total query cost con-
sists of two parts: the data transfer cost (the transmission
time of the VO), and the computational cost at the client
(i-e., for result checking, digest computations, and signature
verification). In other words, the query cost is measured
from the moment the mobile client receives the first byte
of the VO from the SP, until the verification process is fi-
nalized. Again, VN-Auth is superior to the MR-tree based
methods, and its verification cost is significantly lower for
queries that return few results. Figure 13 shows the data
transfer cost for the same experiment. Comparing it with
Figure 12, we conclude that the data transfer cost is a dom-
inant factor in the overall query verification cost. Conse-
quently, minimizing the VO size is an important factor in
designing efficient query verification algorithms. Note that,
for all three approaches, the client can determine the in-
tegrity of a query result only after it receives the complete
result set from the SP. In the following section, we discuss an
alternative progressive verification method that is applicable
to the VN-Auth approach.
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Figure 13: Data transfer cost vs. k.

8. DISCUSSION

For wireless applications, due to limitations such as band-
width constraints, unstable connections, and restricted power
supply, the amount of data communicated between client
and server should be kept as small as possible. Therefore,
the size of the VO plays an important role in designing
an appropriate query verification algorithm for outsourced
databases. kNN queries from mobile clients usually have
low selectivity (i.e., the user is interested in very few re-
sults) but require fast response time. VN-Auth is a novel
approach that successfully meets these requirements in the
location-based services model. However, we are aware of the
fact that, when the query selectivity is high, the Merkle Hash
Tree (MHT) based approaches are more efficient. In the ex-
treme case where the client retrieves the whole database, the
MHT approach would only return the root signature, while
VN-Auth would need to return 6 - n neighbors, where n is
the database cardinality. Consequently, it is important to
first identify the query types and user profiles in the system,
and then choose a solution that accommodates the most im-
portant requirements of the application. For location-based
services on mobile devices, VN-Auth is clearly a better so-
lution.

Another important issue is providing the user with the
ability to verify the query results in a progressive fashion.
This is very useful in cases where decision making is based
on the first few objects in the result. To ensure query in-
tegrity, the application program needs to verify the overall
result before showing any part of it to the end user. For
MHT based approaches, result reporting is blocked until the
root digest is computed and the signature is verified. There-
fore, it is not possible to pre-qualify any object in the result
set, due to the hierarchical structure of the authenticated
index. However, progressive result reporting is feasible un-
der the VN-Auth framework. The result can be returned in
batches, each of which can be verified independently, based
on information that arrived before and not on information
that is expected to arrive later. For example, the SP can
divide the result set of a 20NN query into 4 batches with
5 objects each. The first 5NNs in the first batch contain
the aggregate signature of the five objects. After the first
batch is verified, the five objects can be reported to the end
user before the verification of the second batch starts. The
batches that arrive later depend on preceding ones, but not
vise versa. Therefore, query verification can be performed
in an incremental fashion, and results can be shown to the
end user progressively. In addition, the application may al-
low the user to examine each batch before receiving the next
one. In this way, if the user is satisfied with the current re-
sult set and does not wish to retrieve more objects, query
processing may be terminated early.

9. CONCLUSIONS

In this paper, we introduced the VN-Auth query integrity
assurance framework for outsourced spatial databases. Our
approach separates the authentication information from the
spatial index, thus allowing efficient query processing at the
service provider. Additionally, since the verification infor-
mation depends only on the object and its Voronoi neigh-
bors, database updates can be disseminated quickly to their
local regions, and be performed independently of all other
updates in the database. VN-Auth also produces compact



verification objects, which enables fast query verification on
mobile devices with limited capabilities. Finally, we showed
that our approach facilitates progressive result verification,
which allows a user to retrieve objects in an incremental
fashion, until the results are deemed satisfactory. Our sim-
ulation experiments with real-world datasets confirm that,
compared to the MR-tree variants, VN-Auth produces sig-
nificantly smaller verification objects, and incurs lower query
verification and data update costs, especially for queries with
low selectivity. In our future work, we plan to extend our
methods to handle other important spatial query types, such
as reverse kNN, aggregate kNN, and spatial skyline queries.
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