Geoinformatica (2009) 13:57-84
DOI 10.1007/s10707-007-0043-y

Retrieval of Spatial Join Pattern Instances
from Sensor Networks

Man Lung Yiu - Nikos Mamoulis - Spiridon Bakiras

Received: 12 April 2007 / Revised: 10 October 2007/
Accepted: 18 October 2007 / Published online: 8 January 2008
© Springer Science + Business Media, LLC 2007

Abstract We study the continuous evaluation of spatial join queries and extensions
thereof, defined by interesting combinations of sensor readings (events) that co-occur
in a spatial neighborhood. An example of such a pattern is “a high temperature read-
ing in the vicinity of at least four high-pressure readings”. We devise protocols for
‘in-network’ evaluation of this class of queries, aiming at the minimization of power
consumption. In addition, we develop cost models that suggest the appropriateness
of each protocol, based on various factors, including selectivity of query elements,
energy requirements for sensing, and network topology. Finally, we experimentally
compare the effectiveness of the proposed solutions on an experimental platform
that emulates real sensor networks.

Keywords sensor network - spatial join pattern

Work supported by grant HKU 7155/06E from Hong Kong RGC. A preliminary version of this
work appeared in [25], available at http://www.cs.aau.dk/~mly/ssdbm07_senpat.pdf.

M. L. Yiu (X)
Department of Computer Science, Aalborg University, 9220 Aalborg, Denmark
e-mail: mly@cs.aau.dk

N. Mamoulis
Department of Computer Science, University of Hong Kong, Pokfulam Road, Hong Kong
e-mail: nikos@cs.hku.hk

S. Bakiras

Department of Math. and Comp. Science, John Jay College, City University of New York,
New York, NY, USA

e-mail: sbakiras@jjay.cuny.edu

@ Springer

http://www.cs.aau.dk/~mly/ssdbm07_senpat.pdf

58 Geoinformatica (2009) 13:57-84

1 Introduction

Advances in computer hardware have brought to availability small and relatively
cheap devices forming a powerful network that interacts and collects information
from the environment, where it is deployed [27]. Sensor networks have several
applications, including environmental monitoring [15], [13], control/maintenance of
industrial infrastructure [1], military applications [20], structural monitoring [17], etc.
Recently, the problem of evaluating queries over a sensor network has attracted sig-
nificant research interest from the database community, leading to the development
of two research DBMS prototypes [24], [14]. These systems provide to the user an
interface, via which queries are expressed in a declarative way; the user needs not
deal with how queries are evaluated. Suitable extensions of SQL were proposed with
clauses that consider the special features of sensor networks. These features include
the transient, on-demand nature of sampled data, extended lifetime of continuous
(non-transient) queries, sampling rate or compression of sensor readings, event-
triggered queries, etc.

The main focus of existing work on sensor networks has been the minimization of
power consumption at sensor nodes, during query evaluation. Sensors are usually
battery-operated and they are often deployed in hostile environments or rough
terrains, where the network runs unsupervised for long time intervals. Thus, power is
of utmost importance, since it is directly related to the longevity of the network.
Previously studied topics include the energy-efficient retrieval of aggregations or
data summaries [3], [5]-[7], [13], [19], the derivation and maintenance of data models
that describe the data distribution [4], [8], and the optimal in-network placement
of operators or filter predicates on the sensed values [1], [2], [14], [22]. To our
knowledge, there is no prior work for in-network evaluation of queries that spatially
correlate measurements from different sensors. An example of such a query (taken
from [3]) is “generate a notification whenever two sensors within 5 yards from
each other simultaneously measure an abnormal temperature”. A spatial pattern
query retrieves sets of sensors (pairs in this example), whose readings qualify some
selection predicates (e.g., abnormal temperatures) and their locations qualify some
pairwise distance predicates (e.g., within five yards). Data analysts may be interested
in the on-line identification of pattern instances that occur rarely in the environments
where sensors are deployed and may indicate exceptional events. For instance,
an unusually high temperature detected in the vicinity of multiple low-humidity
readings may indicate high chance of a fire break in the local area, where the
pattern is detected. Another application of spatial pattern queries is the prediction
of weather phenomena based on spatial combinations of sensor readings.

A straightforward way to evaluate spatial pattern queries is to program the sensors
to transmit their readings together with their locations to a central basestation (via a
routing tree [10], [14]), where their spatial associations are validated. Although this
approach is easy to implement, it may waste more energy than necessary, as sensor
readings that are not part of query results may be sent all the way up to the root.
Motivated by the lack of effective evaluation protocols for spatial pattern queries, in
this paper, we study this problem in depth, focusing on (1) filtering techniques for
readings that do not participate in the result, (2) in-network computation of query
results. We propose optimized evaluation protocols for binary spatial joins and more

@ Springer

Geoinformatica (2009) 13:57-84 59

complex query patterns and compare them for different problem parameters. Our
solutions are orthogonal to snapshot-based schemes (e.g., [11]), which apply query
evaluation only to a small (self-maintained) sample of the network and to techniques
that summarize sensor readings over long time intervals before applying query
evaluation on them (e.g., [6]). The contributions of this paper can be summarized
as follows:

e We identify the interesting class of spatial pattern queries. We formally define
them and discuss how they can be expressed using the language extensions
of [14].

e We propose energy-efficient protocols for in-network evaluation of spatial pat-
tern queries. In addition, we provide cost models which can be used by a query
optimizer to determine a suitable evaluation method based on query parameters
and data statistics.

e We experimentally evaluate the effectiveness of the proposed techniques by
tuning various parameters, including query selectivity, network size, topology
and density, sampling cost, etc.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 formally defines spatial pattern queries. In Section 4, we describe in
detail the proposed solutions, and analyze their costs in Section 5. Section 6 discusses
the evaluation of variants and extensions of pattern queries, as well as advanced
issues, like multiple query evaluation. Section 7 experimentally demonstrates the
applicability and efficiency of our techniques. Finally, Section 8 concludes the paper.

2 Background and related work

The special characteristics of a sensor network compared to a generic wireless
network are (1) the limited resources of nodes (energy, communication range,
network bandwidth and capacity), (2) unreliable communication with high packet
loss rates and frequent node failures, and (3) unsupervised nature with nodes placed
at hostile environments (e.g., remote areas, war fields, etc.). Thus, query evaluation
techniques for sensor networks aim at minimizing the energy cost, subject to the
constraints of the network (e.g., communication range, maximum data volume that
can be sent by a node at a cycle, etc.). Besides, sensor networks are inherently
redundant (i.e., dense), in order to keep the network connected after node failures
and increase the reliability of sensed information.

Query evaluation in sensor networks is performed in two steps [10], [14], [24].
Suppose that the query should collect the readings from all sensors. The query is
registered at a basestation, which is connected to a root node r. In the first step, the
query is disseminated to the sensors, and a spanning tree of the network, rooted at
r is dynamically constructed. If a node receives the query for the first time, it selects
one of the senders as its parent in the tree and broadcasts the query. Otherwise,
the message is ignored. The resulting communication (or routing) tree is used to
acquire sensor readings related to the query, up to the basestation. Delivery of sensor

@ Springer

60 Geoinformatica (2009) 13:57-84

readings (or query results) to the root is performed in multiple phases. During a
specific phase, a level of the tree sends and the level above listens and receives
information addressed for it. Finally, the root collects all readings and sends them
to the basestation.

Queries over sensor networks are usually continuous, i.e., they remain active for
a lengthy time interval (e.g., minutes, hours). Otherwise, the cost for disseminat-
ing the query may not be compensated. Frequent instantaneous queries are best
processed if the network operates in a push-based manner; sensors periodically and
unconditionally collect measurements and route them to a basestation, where queries
are registered and evaluated as queries over streaming data. For example, in the
work of [9], efficient algorithms are developed for processing continuous constraint
queries at a centralized basestation, without considering communication cost in the
underlying infrastructure (e.g., sensor network). In this paper, we exploit in-network
evaluation techniques in order to minimize power consumption of the sensor net-
work for processing continuous queries. Next, we review work on (continuous) query
evaluation on sensor networks.

2.1 Aggregation and summarization

Madden et al. [13] proposed a simple, but powerful protocol for computing com-
mon aggregate functions (e.g., count, sum, max, min). Each sensor combines the
information received by its children with its own measurement to derive and send
data of constant size, capturing a partial computation of the aggregate function.
In [5], a multi-path algorithm for computing aggregates is presented to reduce
communication errors as multiple parents may hear and aggregate the information
broadcast by a single child. [16] proposes a hybrid method that combines the tree
topology of [13] with the ring network topology of [S]. Besides, [7] describes a method
for pushing error tolerance in network nodes, in order to avoid sending information
if the aggregate is within some error bound. The problem of redistributing the
error tolerance among nodes in order to minimize the overall error at dynamic
environments is also studied. A similar approach was independently proposed in [19].
To minimize network communication, [6] presents a methodology for in-network
compression of multiple (time-series) signals generated by sensors (e.g., one for
temperature, one for humidity, etc.). The rationale is that measurements observed
at the same node are likely to follow similar trends. Soheili et al. [21] focused
on the processing of spatial aggregation query, which derives the aggregate (e.g.,
average) of sensor values (e.g., temperatures) in a user-defined spatial window W.
They developed a distributed and hierarchical structure on the sensor network such
that each node maintains the enclosing rectangle of its descendants in the routing
tree. Energy consumption reduction is achieved by keeping irrelevant nodes (for
query processing of W) asleep.

2.2 Data models, snapshots, and filters

An alternative to continuously collecting and processing sensor data (which drains
the network energy resources), is to define and maintain simple data models (e.g.,
mixtures of Gaussians) for the data distribution [4], [8]. These models, potentially
combined with exact readings, provide query answers with some approximation

@ Springer

Geoinformatica (2009) 13:57-84 61

confidence. Besides, [11] describes a framework for dynamically selecting and main-
taining representatives in a redundant sensor network. The set of representatives
(snapshot) plays the role of a dynamic sample that can answer queries cheaply and
approximately.

Another class of problems is the distribution of filters or database operators in
the routing tree of a sensor network. [22] studies the optimal placement of query
operators (e.g., selection predicates), in order to minimize (1) the communication
cost for information that does not end up in the query result and (2) the compu-
tational burden at lower tree levels (assuming that lower-level nodes have reduced
computational capabilities). [2] focuses on the assignment of operators that correlate
measurements from two (a priori defined) spatial regions. [26] examines a similar
problem and applies synopses of sensor values to eliminate unqualified readings that
cannot lead to results. Assuming that tuples originated from sensors in two different
spatial regions, [18] develops solutions for routing and joining those tuples in the
sensor network. On the other hand, our problem searches for rare spatial associations
of (instantaneous) events, anywhere in the network map.

In another direction, [1] studies continuous joining a table of predicates (e.g.,
‘humidity>50°C’) with the sensed values. If the table is small enough to be stored
at each node, it acts a filter that prevents non-qualifying readings to be sent to
the basestation. If the table cannot fit in a node’s local memory, it is placed at
neighboring nodes and the predicates are evaluated in a distributed fashion. Yang
et al. [23] examine continuous self-join processing on the tuples generated from the
sensor network; two tuples are joined together if they satisfy the join predicate and
stay in the same time window. In contrast to [1], [23], the queries we study do not
simply consider sensor values; they also have to satisfy a spatial pattern, which will
be defined formally in the next section.

The closest work to ours is [12], which reports pairs of sensor events located within
a given distance range, and reduces communication cost by a distributed routing
index. The sensors record past events in their neighborhood which help to predict
future occurrences of them at other locations of the map. Messages are then routed
based on these predictions. As the author suggests, the index is appropriate for
applications where events correspond to moving objects with well-estimated future
locations. Our focus, on the other hand is on arbitrary, instantaneous, ad-hoc events.
In addition, the methodology of [12] relies heavily on the regular grid networks and
may not be applicable to arbitrary network topologies.

3 Problem formulation

Let SN be a network of N sensors. Each sensor s € SN is associated with a
spatial location' s.loc, and can produce a set s.m of measurements (e.g., temperature,
humidity, etc.) for the spatial region around it (different sensors might produce
different sets of readings, in general).

We adopt the framework described in Section 2, where users register continuous
queries at a basestation and a routing tree is created to acquire results (or readings

I'We assume that the locations of sensors are known to them. They could be constant and apriori
defined (for stationary, manually placed sensors), or detected by GPS devices placed on the sensors.

@ Springer

62 Geoinformatica (2009) 13:57-84

that are processed at the base). Each registered query is associated with: (1) a lifetime
(e.g., 2 hours), during which it is active and continuously produces results from the
sampled measurements, and (2) an epoch duration (e.g., 10 seconds), every which
the network samples measurements. In other words, queries apply to instances of
the network at different timestamps (for every epoch).

A binary spatial pattern query identifies pairs of sensors, for which (1) the
readings qualify some particular selection predicates and (2) the locations are no
further than a particular distance from each other. An example of such a query is
“find pairs of sensors (s, s2), such that s,.temperature>50°C, s,.humidity<40%, and
distance(sy, s;)<10m”. A generalized spatial pattern query (formally defined below)
returns sets of sensors, whose values and locations qualify some selection predicates
and binary distance predicates, respectively.

Definition 1 A spatial pattern query Q consists of a set 0.V of variables, a set Q. P
of selection predicates, and a set Q.58 of binary constraints. Each variable v; € V is
associated to a selection predicate P;. A pair (v;, v;) of variables v;, v; € V, i # jmay
be associated with a binary spatial predicate B;;. A result of Q is set of assignments
{Yv; € V : v; < 53, 5; € SN}, such that (1) for all v;, P;(v;.m) is satisfied and (2) for all
variable pairs (v;, vj) with a binary predicate, B;;(v;.loc, v.loc) is satisfied.

Figure 1 shows an example of a spatial pattern query g modeled by a graph.
Each node in the graph corresponds to a variable, whose values are constrained by
a selection predicate. Edges correspond to binary spatial predicates (i.e., distance
constraints). In natural language, g could be expressed as “a high-temperature
reading (>50°C) in the vicinity of four low-humidity readings (<40%)”. A local
group of sensors whose readings satisfy this query could indicate an area that requires
special attention (e.g., high chances of fire, if a forest).

Spatial pattern queries can be easily expressed in the extended SQL of [14],
assuming that the language supports spatial functions (i.e., distance). The query
variables (defined in the FROM clause) are instantiated by tuples of the Sensors table
and the selection while join predicates (i.e., distance constraints) are connected by
AND in the WHERE clause. Although Definition 1 is generic enough to define queries of
arbitrary graphs and constraints, we confine our attention mainly to binary joins and
to extended patterns that form “star” graphs (like the one in Fig. 1), where a centric
feature (e.g., high temperature) is correlated to a number of other features (e.g.,

Fig. 1 A spatial pattern query Vo.humidity<40% vz.humidity<40%

dist(v1.loc,v2.loc<10) dist(v1.loc,v3.loc<10)
vy.temperature>50

dist(v1.loc,v4.loc<10) dist(v1.loc,v5.loc<10)
va.humidity<40% vs.humidity<40%

@ Springer

Geoinformatica (2009) 13:57-84 63

low humidity) in its surrounding environment. Such patterns were shown important
in spatial analysis applications and are more intuitive than queries that combine
variables in an arbitrary graph. The centric feature models a point of interest (e.g.,
high fire risk area, expensive equipment) which should trigger an alert whenever its
local measurements and the conditions in the region around it form an abnormal
combination.

4 Proposed methods

In this section, we explore the applicability of several methods for computing spatial
pattern queries in a sensor network. We divide the evaluating protocols in two
classes. The class of acquisitional protocols collect sensor measurements via the
communication tree and apply query evaluation at the basestation. Filters are placed
at nodes that generate or relay data to minimize the transferred volume. The second
class of distributed protocols apply in-network query evaluation and send the results
to the basestation (again using the tree). We start by discussing the simple case of a
binary spatial join with distance constraint smaller than the communication range of
the nodes. Then, we extend the suggested protocols for more complex queries and
multi-hop distance constraints.

4.1 Single-hop binary joins

We first focus on binary join patterns that are sensor pairs (s;, s;), such that P;(s;.m),
P, (s;.m) are satisfied, and distance(s;.loc, sj.loc) < ¢, where c is smaller than the radio
communication range’ between two nodes. For the ease of exposition, we denote a
binary join query in our context by the triplet (P;, P, c).

4.1.1 Brute-force acquisitional protocol

The straightforward way to evaluate the query is to program all sensors to sense the
measurements relative to selection predicates P; and P,, at every epoch, and send
this information to the basestation, which evaluates the spatial join locally. A simple
optimization that reduces the number of unnecessary values transmitted to the base
is to “push-down” the selection predicates at the nodes (as suggested in [1], [14]).
In our example, temperature and humidity are sensed by all sensors but only high
temperature and low humidity values (i.e., those that qualify the selection predicates)
are sent to the base. In order to minimize the transferred data, we only transmit the
location of a qualifying node (or its identifier, if nodes have fixed locations) and two
bits that indicate which predicate(s) the node qualifies (e.g., 10 implies that P; is
qualified, but P, is not). Sensors are synchronized such that only two consecutive
levels of the tree are active at the same phase (while the remaining nodes are

ZWithout loss of generality, we assume that all sensors have the same communication range. Our
protocols and filtering techniques can be easily adjusted for the generic case.

@ Springer

64 Geoinformatica (2009) 13:57-84

sleeping), as discussed in Section 2. When a lower-level node senses and transmits
data (if not filtered by P; or P,) to its parent, its parent listens, reads and combines
its readings with those of its children; the combined readings are then sent to the
upper level during the next phase. We denote this simple, but generic protocol by
AQB (i.e., the first ‘acquisitional’ protocol).

As an example, consider the sensor network depicted in Fig. 2. Nodes within
communication range from each other are connected by edges. Solid edges denote
the structure of the communication tree (rooted at node s3). The values next to the
nodes denote the (current) local temperature (T) and humidity (H) conditions. Let
P=T>50", P,="H<40’, and ¢ equals the sensor communication range (one hop).
Nodes s; and s, qualify P, whereas s¢ and s; qualify P,. The only join result is (s, s¢).
In the first phase of the cycle, sy, s4, and s7 (level-3 nodes) sense their values, apply
the predicates and s; sends (s1./oc, 10) (i.e., only P; is satisfied) to its parent (i.e., ss).
Similarly, (s7.loc, 01) is sent to se. In the second phase, (s».loc, 10), (s;.loc, 10), and
{(s7.loc, 01), (s¢.loc, 01)} are sent to the root, by s>, §5, and s¢, respectively. Finally, s3
forwards all these tuples to the base, where the join result is computed.

4.1.2 Pruner-based acquisitional protocol

Protocol AQB may send more information than necessary to the base, as many
tuples (e.g., (s1.loc, 10) in Fig. 2) are likely not to participate in the spatial join.
In this section, we propose AQP, a protocol that improves upon AQB, by adding
more sophisticated filters in the intermediate nodes of the tree. AQP is based on
the observation that a sensed value (e.g., m) of a node s; which satisfies a selection
predicate (e.g., P;) can be pruned by an ancestor a(s;) of s;, if (1) a(s;) collects all
information about the spatial neighborhood of s; and (2) no matching tuple (e.g.,
one that qualifies P,) for the measurement has been collected by a(s;). For example,
(s1.loc, 10) in Fig. 2 can be pruned by ss, since any measurements that qualify P,
within one hop from s, should have been collected or generated by ss.

Formally, let (P;, P>, ¢) be a join query registered over a sensor network SN/
For each sensor s € SN, we define its neighborhood sensor set L(s) as L(s) = {s' €
SN |dist(s, s') < c}, and its descendant sensor set B(s) as the set of sensors in its

Fig. 2 Join evaluation T:40
example S :

T:46
H:38

H:47 T2
H:35
S7

@ Springer

Geoinformatica (2009) 13:57-84 65

subtree (of the routing tree). The pruning technique applied in AQP is based on
the Lemma 1 (with trivial proof):

Lemma 1 Let s; be a sensor satisfying Pi(s;.m). Let a(s;) be an ancestor of s;, such
that L(s;) € Bl(a(sy)). If there is no s; € B(a(s;)) satisfying P»(s;.m), then s;.m cannot
participate in an output tuple of (P, Py, c). A symmetric argument holds for the
measurements which qualify P,.

For any sensor s, there is at least one ancestor (the root) for which L(s) € B(a(s)),
thus we can apply this idea to prune measurements acquired from the network that
do not participate in query results. The goal is to find the closest ancestor of s to
apply the filter, since, in this way, filtering effectiveness is maximized. For each node
s, the pruner of s (with respect to a query) is the nearest ancestor of s, whose subtree
contains L(s). In Fig. 2, s5 is the pruner of s; and s4.

We design the following technique for determining pruners efficiently. It is applied
only once while the query is disseminated and the routing tree is constructed. When
a sensor node s broadcasts the query, at the same time it collects ids/locations of its
neighbors and determines | L(s)| (the cardinality of L(s)), which is then broadcasted
to all nodes in L(s). Starting from the leaf nodes, each sensor s sends up the
communication tree a table consisting of (s;, | L(s;)|, 1) tuples for all s; € L(s) plus
a (s, |L(s)], 1) tuple for itself. Intermediate tree nodes merge the tables they receive
from their children by summing their counters (the last field of the tuples). The first
node which, after the aggregation, has a (s, | L(s)|, | L(s)|) tuple becomes the pruner
for s and does not forward the tuple to its parent node.

After this process, each node s keeps a list of its prunees (i.e., nodes for which s is
the pruner). The difference between our improved acquisitional protocol AQP and
the baseline AQB is that, in AQP, whenever s retrieves information from its subtree
regarding the join query, for each prunee that transmits a tuple t qualifying P (P»),
s checks whether there is a matching tuple for P, (P) in its acquired table, which
also qualifies the distance predicate with 7. If there is no such tuple, then t is pruned
from the data sent to the parent of s. AQP manages to filter early some node readings
(e.g., (s1.loc, 10)) that do not qualify the join predicate.

4.1.3 Distributed evaluation

The class of distributed protocols aim at computing query results locally around
network nodes and sending them to the basestation. Such a technique is expected to
pay-off for low-selectivity® joins, where many measurements that satisfy predicates
P, or P, do not qualify the join condition. During the first stage of distributed
evaluation, nodes that qualify P, and P, communicate and determine the join results.
During the second stage, the routing tree is used to send the join results to the base.

Initially, all nodes sense the measurements related to P; and P,. If a node s;
qualifies Py, it broadcasts its location to its neighborhood. If a node s; qualifies P, it
listens for potential messages from nodes that qualify P,. For each received message,
s; produces a join result. Nodes that qualify neither P, nor P, remain asleep until the

3Low-selectivity joins output few results while high-selectivity joins produce many results.

@ Springer

66 Geoinformatica (2009) 13:57-84

first stage terminates (they may have to wake and forward join results, during the
second stage). Note that the roles of P; and P, could be interchanged; we denote by
DS1 (DS2) the distributed protocol, where nodes qualifying P, (P,) send messages
and those qualifying P, (P;) receive them and compute join results. Intuitively,
DS1 should be preferred to DS2 when nodes that qualify P; are fewer than those
qualifying P,, since transmission is more expensive than listening and receiving [15].

As an example, consider again the network of Fig. 2. In the first stage of the
distributed protocol, measurements are collected, and (1) nodes s; and s, (qualifying
Py) broadcast their locations, (2) nodes s¢ and s7 (qualifying P,) listen for potential
messages, (3) nodes s3, 54, and ss stay asleep. After node s¢ reads the transmission of
52, the join result (s,, s¢) is formulated. This is the only tuple that will be forwarded
to the root at the second stage (result acquisition).

So far we have ignored the cost for sensing measurements at nodes, which is
usually small compared to communication costs. For some measurements, however,
this cost may be significant [14]. For cases where sensing for P, is significantly
expensive, it might be beneficial to defer sensing and instruct all nodes to listen for P,
messages. Only if a listener receives a message from a P, node, it performs expensive
sensing for P, measurements. We denote this protocol by DS1".

4.2 Complex join queries

We now consider more complex pattern queries, as described in Section 3. Queries
correspond to star graphs, where the center sensor node should satisfy selection
predicate P¢ and there are k border nodes that should qualify Pz within distance ¢
from the center. A star pattern query is simply denoted by a quadruple (Pc, Pg, ¢, k).
As in Section 4.1, we assume that c is at most equal to the radio range of the sensors.

Acquisitional protocols We can directly apply the brute-force acquisitional pro-
tocol AQB. Sensor readings that qualify Pc or Pg are unconditionally sent to the
basestation, where the pattern is evaluated. In addition, we can adapt protocol AQP
as follows. A tuple qualifying Pc which has been generated by a node s; is filtered
at node pr(s;) (pruner of s;) if there are less than k tuples that qualify Pg and reach
pr(s;) (otherwise, we know that there may be a query result that contains the tuple).
A tuple qualifying Pp, which has been generated by a node s; is filtered at pr(s;) if
there is no tuple satisfying P that reaches pr(s;) (i.e., similar to binary join queries).

Distributed protocols A simple way to extend the distributed protocols for complex
queries is to ask ‘border’ nodes (those qualifying Pg) broadcast their locations. At
the same time ‘centric’ nodes (those qualifying Pc) listen for potential messages. If
a centric node s;, receives at least k messages, we know that there is a query result
centered at s;.* The query result is sent to the base station through the routing tree,
at the second stage of the protocol. We denote this protocol by DSB. An alternative
protocol aims at minimizing the messages broadcast from border nodes; presumably
more sensors qualify Pp than Pc for the pattern query to have small selectivity and

“In fact, if 5; receives m > k messages, we have multiple query results, one for each (/) combination
of border nodes. Nonetheless all these results can be compressed to a single tuple containing s; and
all qualifying border nodes.

@ Springer

Geoinformatica (2009) 13:57-84 67

correspond to an interesting, exceptional event. Protocol DSC asks nodes that qualify
P¢ (center nodes) to send a message and nodes that qualify Pp (border nodes) to
listen. If a border node receives a message it sends a response with its location to its
neighbors. Finally, center nodes listen for messages and those that hear from at least
k nodes send the query result to the base.

4.3 Multi-hop queries

Distance constraints longer than the radio range 4 impose difficulties for distributed
evaluation protocols. Given a node s, there is no bound for the number of hops
required to find the nodes within distance ¢ (>#) from s. Nonetheless, for a relatively
dense and uniform network, we could set an approximate upper bound A for this
number. Let coverage(c,A) be the probability that two sensor nodes within distance
¢ are reachable within A hops. Figure 3 plots the coverage as a function of A on a
typical random network (with the default parameter values discussed in Section 7).
For instance, for the curve of “c = 3h”, cis set to 3 times of the radio range 4. Observe
that the coverage increases rapidly when 2 increases. In order to balance the coverage

and energy consumption, we suggest to set A = (Chﬁ-‘ for multi-hop communication.

We now discuss in more detail the protocols that can be applied for queries that
involve multi-hop distances.

Acquisitional protocols Since AQB does not apply any filtering or in-network
evaluation, there is no difference than the method described in Section 4.1 for multi-
hop queries. For AQP, the only difference is in the initialization of the query, at the
stage when pruners are defined. Each node needs to determine the number of its
A-hop neighbors before sending it up the communication tree. This process requires
flooding a large number of messages and it is more expensive than the simple 1-hop
communication. However, it is performed only once, during the initialization of the
routing tree and it is expected to pay off if the query has long lifetime.

Fig. 3 Coverage in multi-hop 100
communication

80

60 |

40 +

20 1

Accumulative percentile (%)

@ Springer

68 Geoinformatica (2009) 13:57-84

Distributed protocols The distributed protocols described so far can be easily
adapted for multi-hop queries, at the expense of higher communication cost, since the
whole network may need to stay up in order to listen and relay potential messages,
during the first stage (computation of query results). If A is large, the cost of flooding
may be too high for distributed evaluation to pay-off. In such cases, the acquisitional
protocols are expected to dominate.

A bi-directional distributed protocol For queries that are simple binary joins, we
can apply a bi-directional distributed protocol (BD) in order to reduce message
flooding during the first (computation) stage. Instead of asking nodes that qualify
P, to flood their locations up to A hops (which are then received by listeners that
qualify P, and converted to query results), we ask all nodes that qualify either P,
or P, to send their locations and a pair of bits indicating the qualified predicates
(i.e., the information sent by nodes to the base according to AQB/AQP). However,
the flooding range is now reduced. Nodes that qualify P, send their messages up to
x hops (x < 1) and nodes that qualify P, up to A — x hops.’ During this process all
nodes of the network are up in order to listen and relay messages. If a node receives a
message from both a P node and a P, node, it formulates and caches the join result.
In the second stage of the algorithm, nodes send the computed results up the tree to
the basestation. Note that duplicate results could be computed, since the same pair
of messages may be received by the same node. For instance, consider a query that
seeks for high-temperature/low-humidity readings within A = 2 hops in the network
of Fig. 2. When BD is applied, all nodes that sense either high temperature (>50)
or low humidity (<40) transmit their readings up to 1 hop (i.e., x =1, A —x = 1).
Both ss5 and s¢ then identify (s;, s7)) as a result. Duplicate results are eliminated by
merging operations at the second stage of the protocol, when all results are sent up
the communication tree.

An interesting problem is to pick a value of x such that the communication cost
is minimized. In general, x can take A + 1 values (the extreme cases x = 0,x = A
correspond to the uni-directional distributed protocols DS1 and DS2). Intuitively,
x should be chosen to minimize the expected expansion area m(Sel(P;)- x>+
Sel(P>) - (. — x)?), where Sel(P;) corresponds to the probability that a node qualifies
P; (for i = {1, 2}). In other words, if P; has low selectivity (few nodes qualify it)
compared to P, nodes that qualify it should transmit far and nodes that qualify P,
should transmit close in order to minimize network traffic.

5 Cost analysis

In this section, we analyze the costs of the proposed protocols. We assume that the
basestation maintains statistics about the sensed measurements. These statistics can
be used to estimate the selectivity of selection and/or join predicates. They could
either be collected by sampling readings from the whole network regularly, or by
asking the sensors to compute and maintain local summaries, which are consolidated
and sent to the base periodically (as in [6]). To provide examples throughout the

3 A node that qualifies both predicates sends its message up to max{x, A — x} hops.

@ Springer

Geoinformatica (2009) 13:57-84 69

QP Q) o—=
d D d D
d @ D e&—
d D d D
&) &—=o©
random grid ladder

Fig. 4 Three network topologies

analysis, we consider three network topologies, which simulate cases of randomly or
manually placed sensors.

Figure 4 shows graphically the RANDOM, GRID, and LADDER networks.
RANDOM represents the most common case with randomly deployed sensors,
GRID network models the situation where sensors are distributed regularly, and
LADDER corresponds to the scenario where sensors are placed along a road/track.
In each network, the lines connect node pairs within 1-hop distance, assuming that
the radio range equals the distance between two consecutive nodes in a row of the
grid. The solid lines show potential routing trees, assuming that the root nodes are
central to each network. Due to space constraints, we confine our discussion to single-
hop binary join queries.

Protocol AQB We start by analyzing the cost of protocol AQB, which is the sim-
plest. Recall that each node s generates a tuple if it qualifies either of P, and P,. Let
Sel(Py) and Sel(P,) be the selectivities of the two predicates (i.e., the probabilities to
be satisfied). Let E be the probability that a node generates a message. Assuming that
the two predicates are independent, E =1 — (1 — Sel(P;))(1 — Sel(P,)). Every node
forwards tuples from itself and all its descendants to its parent in the routing tree.
Let | B(s)| be the number of nodes in the subtree B(s) rooted at node s. Then, s has
1 — (1 — E)!B9I probability to transmit and when it does, it sends | B(s)| - E messages
to its parent. Let C be the maximum number of tuples that can fit in a packet. The
total number of transmitted packets is expected to be:

Taos= Y (1—(1—E)PO) [IB(SgE_‘ "
seSN

The number of received packets by sensor nodes is Raop = TaoB — [%1 , since
the root’s packets are received by the base. After adding the costs for sampling two
measurements per node, we derive the following formula:

Cost(AQB) = CrTaagB + CrRags + N(Cs1 + Csp) ()

In Eq. 2, Cr (Cg) and Cg; (Csy) are the costs for transmitting (receiving) a packet
and sensing for P; (P;). Note that we ignore the processing cost, which is insignificant

@ Springer

70 Geoinformatica (2009) 13:57-84

(only few calculations are performed at each node). We assume that | B(s)|, for each s
is known by the optimizer. For random networks, this information can be forwarded
to the base after query dissemination.

Protocol AQP Protocol AQP is similar to AQB, except that tuples may be filtered
out at pruner nodes. Let E; be the probability that a node satisfies P; and no
node within distance ¢ from it satisfies P,. We can compute E; if we know the
average size of a neighborhood. Let ¢ be the join distance. In a random network,
the expected number of nodes within distance ¢ from a random node (excluding
itself) is given by p = N - m¢?/ A, where N is the number of nodes, and A is the area
of the workspace. Then, E| = Sel(P;) - (1 — Sel(P,))"*!. Similarly, we can derive
E, = Sel(P,) - (1 — Sel(Py))**!. The probability that a node satisfying either P; or
P, does not participate in a join result is E; + E, since the two events are mutually
exclusive (a node is within distance ¢ from itself). Thus, the probability that a
generated tuple will be pruned is % and this will happen once it reaches the
corresponding pruner node.

In order to estimate the cost of AQP, we need to know, for each node s, the
number ®(s) of nodes s" for which the pruners pr(s’) appear in the subtree rooted at
s (i.e., pr(s’) € B(s)). The basestation can derive ®(s) (similarly to the derivation of
| B(s)|). For random topologies, during the process of determining the prunees (see
Section 4.1.2), nodes compute and forward this number to the base. The expected
number of nodes in a subtree B(s) rooted at s not pruned by a pruner which is also
in B(s) is:

K(s) = 1Bl - o) - 72 3)
The number Tagp of transmitted packets during AQP can be estimated after
replacing | B(s)| by K(s) in Eq. 1. Finally, the cost of AQP becomes:

Cost(AQP) = CrTagp + CrRagp + N(Csi + Csp) 4)

Distributed protocols Consider the distributed protocol DS1. In the first stage,
nodes that qualify P, broadcast messages and nodes that qualify P, listen, potentially
receive them, and formulate query results. Thus, T11351 = N - Sel(P;) packets are sent.
In addition, there is a listening cost for L11351 = N - Sel(P,) packets and a reading cost
for R11351 = (N - Sel(P,)) - (p - Sel(Py)) packets. Thus the total cost of DS1 in the first
stage (including sampling) is:

Cost'(DS1) = C7Thg, + Cr Lhg + CrRLg, + N(Cs) + Csp) 5)

The corresponding cost of DS2 can be derived by swapping P; and P, in Eq. 5.
Observe that the reading costs of DS1 and DS2 are identical. Since transmitting
a message is much more expensive than listening® (i.e., Cz > C), DS1 should be
preferred to DS2 if Sel(P;) < Sel(P,) (and vice-versa).

The second stage of all distributed protocols is similar to AQB; join results are
sent up the routing tree and no filtering is performed. Therefore, to compute the

®We employ low-power idle listening [15], where a node listens only for a short time interval for
potential messages. See Table 1 for some typical operation costs.

@ Springer

Geoinformatica (2009) 13:57-84 71

packet transmissions 73, during the second stage of DS, it suffices to adjust Eq. 1,
substituting E by E’; the expected query results generated by a node. £’ equals
Sel(P,) - (p - Sel(Py)) (i.e., component of R11)s1)~ In addition, C becomes C’, since
the capacity of packets now changes (join results are transmitted instead of single
node locations, as in AQB/AQP). The reading cost R%SP during the second stage is
derived by removing from le)$1 the root’s transmissions. Overall, the cost of DS1 is
given below:

Cost(DS1) = Cost'(DS1) + CrTg; + CrRhg; (6)

We conclude the analysis by considering the cost of the protocol DS1’, which is
described at the end of Section 4.1.3. This protocol asks nodes that qualify P,
to transmit messages and all nodes in the network to listen and receive messages
unconditionally. Only nodes that receive messages sense and verify P,. In this
case, T, = Thsy» but LE,, = N and Rl = N - (p - Sel(P))); i.e., the listening
and reading costs increase. On the other hand, the sampling cost is reduced to
SA})Sl, = N(Cgsy + (p - Sel(P1))Cs;) and the overall cost of the first stage is:

Cost'(DS1') = CrThgy + Cr. Ly + CrRhg + SAhgy (7)

By comparing the first-stage costs of DS1,DS2,DS1’, and DS2’ (i.e., the symmetric of
DSY’), the optimizer can determine the most appropriate distributed protocol based
on the selectivities of the predicates and the sampling costs.

6 Extensibility

In this section, we discuss extensions of spatial pattern queries and the issue of
multiple query processing.

6.1 Queries with temporal predicates

The queries that we have seen so far apply to a particular time-snapshot of the
network (i.e., a single epoch), looking for sensor combinations that qualify unary
selections and binary spatial predicates. Analysts may also be interested in patterns
that include temporal predicates between sensor readings. For example, consider
the spatio-temporal join pattern query: “report cases, where a high temperature is
sensed at most 5 seconds after a nearby low-humidity reading”. In addition to the
spatial constraint (nearby), qualifying pairs of readings should also satisfy a temporal
constraint. Formally, Definition 1 of Section 3 can be enriched to include constraints
T;; between pairs of variables (v;, vj). The temporal constraint can be in the form of
an interval (e.g., [0, 5]) of the allowed time difference vj.t — v;.t, where v.t denotes
the time instant the sensor value that instantiates variable v was sampled. Note that
the spatial-only queries we have seen so far in fact hide a temporal constraint; in a
qualifying combination of sensor readings, all readings should be taken within the
same epoch.

The acquisitional and distributed protocols discussed in Section 4 can easily be
extended for handling queries with temporal constraints. For AQB, we only need
to maintain (at the basestation) a window of recent readings (defined by the longest
time difference between query variables). In AQP, pruner nodes should keep track,

@ Springer

72 Geoinformatica (2009) 13:57-84

for every prunee s the last time a value that qualifies P, or P, was last seen in their
neighborhood. Based on this information, a reading from s can be pruned, if we know
that there is no tuple that can potentially join with it. Finally, in the distributed
protocols, the sensor nodes must keep in their memory a window of last sensed
values qualifying the ‘oldest’ predicate (e.g., low humidity in the example query
above). Readings that qualify the ‘most recent’ predicate (e.g., high temperature)
are broadcast and joined with the buffers of their neighbors, where query results are
computed and sent to the base.

6.2 Monitoring the validity of query results

There are cases, where query results remain valid for long time. For instance,
once a high-temperature/low-humidity combination is being detected, it could stay
valid for a long period. For such cases, continuously reporting the same result
wastes resources. The only interesting information for long-lasting patterns is when
they cease to be valid. Thus, an interesting problem is to monitor the validity of
query results, while minimizing energy consumption. The distributed protocols are
especially suitable for this purpose. As soon as a query result is identified by a node
s, all other participant nodes are notified (by a simple broadcast from s). At the same
time, s becomes responsible of notifying the basestation for the invalidation of the
pattern at some future time instant. While the values of the participant nodes satisfy
the corresponding selections, the result remains valid. If a node s; violates its local
selection P;, it sends a message to s, which notifies the base.

6.3 Multiple query optimization

Multiple query optimization is an important issue for sensor networks, due to the
high evaluation cost. For simplicity, assume that queries have a common routing
tree. For extending protocol AQB, we can apply the techniques of [1] that push down
tables with all selection predicates that appear in the patterns. A simple adaptation
of AQP is to compute and use at every node a set of prunees for each distance
value which is a multiple of the radio range (i.e., one-hop prunees, two-hop prunees,
etc.). Tuples that qualify selections are enriched with a bitmap indicating the set
of queries for the selections of which they are valid. A pruner keeps track of the
queries that apply in each prunee list and uses it to potentially filter tuples, relevant to
these queries. The distributed protocols can be effective only when multiple queries
share common predicates. On the other hand, (as suggested in [14]), in-network
distributed evaluation of multiple queries may not be appropriate if their types
and predicates vary greatly. A promising idea is to adopt a hybrid approach, where
common selection predicates and low-selectivity joins are pushed in the network and
expensive queries are left for evaluation at the basestation. In the future, we plan to
study the optimization of multiple spatial pattern queries extensively.

7 Experimental evaluation

In this section, we evaluate the efficiency of the proposed protocols on an experimen-
tal platform that simulates real sensor networks. Table 1 shows the components we

@ Springer

Geoinformatica (2009) 13:57-84 73

Table 1 Costs of MICA

operations Operation Cost (nAh)

Transmitting a packet 20

Receiving a packet 8

Idle listening (for 1 ms) 1.25
Thermistor sample 0.35
Barometric pressure sample 1.39
Photoresistor sample 343
Infrared sample 9.44
I>CTemperature sample 20.83

consider when measuring query cost (taken from [15]). In all (but one) experiments,
the selection predicates are applied on the cheapest to sense measurements, thus
the sensing cost is negligible compared to communication/listening costs. We do not
count the computational cost, since the operations involved in our protocols are
cheap filters or distance checks. The packet size (excluding the header) was set to 30
bytes (typical for MICA motes [13]). Our protocols pack multiple events/messages
in one packet, before transmitting them. The acquisitional protocols use 18-bit
messages (node-id or coordinates plus 2 bits for indicating qualified predicates). The
distributed protocols use 32-bit messages for sending pairs of node ids/coordinates
to the root. As in REED [1], we assume long-running queries and do not count the
one-time cost of initializing the query in the sensor network. In each experiment, we
run a protocol for 100 epochs and record the average cost per epoch.

We experimented with the three network types described in Section 5, denoted
by RANDOM, GRID, and LADDER. The default network size is N = 1,024 nodes.
For all topologies, the root node of the routing/aggregation tree is chosen as the
center of the network [5], [13]. To generate the RANDOM network, we randomly
placed nodes inside a square area of side +/N and set the radio range to 1.5. These
settings result in a network that is fully connected and not extremely dense, as
shown in Fig. 5. The average degree of a sensor node is 6.8, 4, and 3 in RANDOM,
GRID, and LADDER topologies, respectively. The corresponding routing trees
have heights 24, 33, and 258, respectively. Unless otherwise stated, the selectivities
of unary predicates (i.e., Py, P,) are set to 0.05. For a single-hop binary join, these
settings return 10-20 join results on average (depending on the network topology).

7.1 Single-hop binary joins

We first study the performance of the proposed protocols for low-selectivity single-
hop binary join queries (with two selection predicates P; and P;). Protocols AQB,
AQP, and the distributed protocol (described in Section 4.1) are compared. By
default, the selectivities of P, and P, are equal, so DS1 is equivalent to DS2; we
simply denote either of them by DS.

Figure 6a—c shows the averaged costs (with error bars) of the three protocols
as a function of the join selectivity. The join output size was controlled by tuning
Sel(Py) (=Sel(P,)). For joins with few results, Protocol DS is more efficient than
AQB and AQP because pruner nodes (in AQP) are located several levels above their
prunees and measurements that qualify the selections participate in very few or no
join results. In GRID, the effectiveness of AQP is low because pruner nodes appear

@ Springer

74 Geoinformatica (2009) 13:57-84

N/
¥ PN ,
v‘ = /]
O T e
AT / & 7
=) i ‘ "(
_ ‘ o
Er P ’ \
| 0 ANYA
a network b brouting tree

Fig. 5 RANDOM topology

at high levels of the tree. On the other hand, in LADDER, pruning effectiveness is
maximized, since each node has its pruner only 1-2 hops away. As the join output
size increases, the energy consumption increases for all protocols, as more tuples are
transferred to the base, but the relative performance of DS compared to AQB/AQP
decreases, as the number of join results compared to the tuples that qualify either P,
or P, increases. Eventually, DS becomes worse than the acquisitional protocols, since
all readings that qualify the selections participate join result and the join output size
well exceeds number of tuples that qualify either selection. Figure 6d validates the
accuracy of the cost models, presented in Section 5. We applied equations in Section 5
to estimate the costs of the protocols for each query Q on the RANDOM network
and averaged the error % for all queries having the same join selectivity
(est(Q) and act(Q) are the estimated and actual costs, respectively). Observe that the
error is quite low (less than 10%) and decreases with the output size, since queries
with more result have less randomness. We note that error for GRID and LADDER
(not shown) is even smaller.

Table 2 provides statistics about the effectiveness of pruner nodes in AQP and
sheds some light to the unstable performance of the protocol at different network
topologies. The table distributes the 1,024 nodes of each network into classes based
on the percentage of hops saved if their tuples are pruned by AQP. For instance,

if a node s falls into the 80-100% class, then the quantity holll’s beéween pr(s) and the base
ops between s and the base

Table 2 Number of nodes for

each hops-saving class Ratio (%) RANDOM GRID LADDER
(protocol AQP)

80-100 414 179 994

60-80 250 280 16

40-60 165 243 9

20-40 105 190 5

0-20 90 132 0

@ Springer

Geoinformatica (2009) 13:57-84 75

120000 AT 100000 TTer
giyes e
100000 4] 80000
— 80000 / =
Z £ 60000
< £
= 60000 b=
7] / /
Q / Q
8 8 40000
40000
20000 20000
0 At 0
1 10 100 1000 1 10 100 1000
Result cardinality Result cardinality
a RANDOM topology b GRID topology
500000 R 0 -
DS &~ =, ASE
400000 DS =
8
8,
= / i
< 300000 S 6 “ .
- 7 et *\+—‘K\
3 s ~
S 200000 / G a AN ©
*\\
-~
100000 2
0 mwm-‘@"‘*ﬂ”'”@y 0
1 10 100 1000 1 10 100 1000
Result cardinality Result cardinality
¢ LADDER topology d estimation accuracy

Fig. 6 Effect of join output size

(i.e., the path ratio saved if a tuple from s was pruned by pr(s)) is between 0.8 and
1. As explained, pruner nodes are close to their prunees in the LADDER network,
resulting in large cost savings. On the other hand, in the GRID network, the chances
that a message is not pruned until it travels a long way are high. Nodes in GRID
are not clustered thus there is a high probability that a neighborhood is split into
different subtrees. The effectiveness of pruners in RANDOM is in-between the two
other topologies.

Next, we verify the assertion that AQP and DS achieve better cost balancing
than AQB among different nodes. Figure 7 shows the average cost per node as a
function of node’s level in the routing tree, in the RANDOM and GRID topologies
(the plot for the LADDER network is similar). In general, sensor nodes at higher
levels receive and forward more data so they have larger burden. DS and AQP have
better balancing, since they manage to eliminate tuples that do not participate in join
results early, either by computation of the exact join results (DS) or by filtering tuples
at pruner nodes (AQP).

We also tested the effect of the network density to the relative performance of
the protocols. We gradually increased the communication range in the GRID and
LADDER networks and measured the costs of the three protocols. Figure 8 plots
the average energy consumption as a function of the average node degree in the two
networks. In this experiment, we keep P; and P, constant and set ¢ to the increasing
communication range, thus the join results increase with the density. As the network

@ Springer

76 Geoinformatica (2009) 13:57-84

100 AQB 80
AQP
DS 70
80 =60
= <
< T
o 60 3 50
g <]
2 < 40
) [}
a 40 ; 30
a o]
Q \
o © 20
20
10
0 Ol T R
0 5 10 15 20 25 1 4 7 10 13 16 19 22 25 28 31 34
Sensor node level Sensor node level
a RANDOM topology b GRID topology

Fig. 7 Cost balancing of sensor nodes

density increases, the height of the routing tree decreases and AQB becomes more
efficient. The cost of AQP follows a similar trend in GRID networks, since the
effectiveness of pruners is low. In LADDER networks, on the other hand, the cost
of AQP increases initially with the density, as the effectiveness of pruners drops (due
to the increase of neighborhood sizes and join results), and then drops (due to the
high impact of the tree’s height decrease) With the increase of density, protocol DS
spends more energy in the distributed stage as more nodes receive messages from
their neighbors. In addition, it generates and forwards more join results in the second
stage. The additional costs are compensated by the tree height decrease, thus, the
performance of DS stabilizes.

In the next set of experiments, we test the performance of the protocols on
the RANDOM topology. Figure 9a shows the cost of the protocols as a function
of number of nodes, while keeping the network density fixed. Note that the cost
difference between the protocols is not greatly affected by the network size. So
far, we have assumed that P, and P, have the same selectivity. We now test

AQB —o— AQB——
14000 AQE 1 35000 AR
fg 12000 £ 30000
> 10000 o 25000
8 K]
S 8000 < 20000 e —
g 3 e B T
= 00O e 4 = 15000 - [= S a
8 4 8 B 8
© 4000 © 10000
2000 5000
0 0
0 10 20 30 40 50 60 2 4 6 8 10 12 14 16 18 20
Node degree Node degree
a GRID topology b LADDER topology

Fig. 8 Effect of network density
@ Springer

Geoinformatica (2009) 13:57-84 77

35000 25000
30000 20000
25000
= 15000
< 20000 <
z 3
§ 15000 & 10000
10000
5000
5000
0 0
0 500 1000 1500 2000 2500 0 4 8 12 16
Number of nodes Ratio of predicate selectivity
a scalability b effect of Sel(P2)

Sel(Py)

Fig. 9 Net. size/predicate skew (RANDOM)

the effect of unbalanced selectivities at the selection predicates (Fig. 9b). For this
experiment, we kept the product of the two selectivities fixed and varied the ratio
r = Sel(P,)/Sel(P;). For various values of r we plot the energy consumption by
the different protocols. Since Sel(P) # Sel(P,), we split protocol DS to DS1 and
DS2. DS1 is more efficient than DS2 for r > 1 and its cost decreases with r. As r
increases, the number of sensors that qualify P; decreases, and so do the transmitted
messages by DS1. Although the number of listeners (i.e., nodes that qualify P,)
increases, the listening (and reading) cost is significantly lower than the transmission
cost (see Table 1), thus the overall cost of DS1 drops. On the other hand, the cost
of DS2 (slightly) increases with r, due to the increased number of transmissions.
Acquisitional protocols become more expensive with 7, since the number of sensors
that qualify either P, or P, increases.’

A natural question for advanced sensor network protocols is whether any addi-
tional operations performed by them affect the data loss rate, due to communication
errors. We first evaluate the effect the packet loss rate has on the performance of the
algorithms (Fig. 10a). As the plot shows, the relative performance of the methods
is not affected by this factor. Figure 10b shows the join output size as a function of
packet loss rate. Observe that similar number of results are detected by different
protocols. Thus, the functionality of the protocols does not affect the result loss rate
in lossy networks. On the other hand, even with relatively low packet loss rates (10%)
a large percentage of results is not detected. This is expected, as the probability of a
join result (or a component tuple in a join result) to reach the basestation decreases
exponentially with the number of hops the message needs to travel. The reliability
of the network can be increased if during the acquisition phase nodes request an
acknowledgment from their parents when they sent data to them. Alternatively,
multi-path routing techniques paired with duplicate elimination mechanisms (e.g.,
[5], [16]) could be applied. Intuitively, protocol DS is more appropriate for multi-path
routing than AQB (or AQP), since (1) the amount of transferred data is low as only
(rare) join results are routed and (2) the pruner nodes of AQP will be less effective,

"For a fixed product Sel(P,) - Sel(P)), the probability for a sensor to qualify either P; or P, (i.e.,
1 — (1 — Sel(P1))(1 — Sel(P,))) is minimized when Sel(P,) = Sel(P;) and increases with r.

@ Springer

78 Geoinformatica (2009) 13:57-84

12000
10000
2
80001 £
< C
) S
< 6000 @
5 [&]
8 =
4000 3
[an
2000
0
0 5 10 15 20 0 5 10 15 20
Packet loss rate (%) Packet loss rate (%)
a cost b result cardinality

Fig. 10 Effect of packet loss rate (RANDOM)

since tuples from prunees may find other paths to the root. A natural technique for
improving network reliability is to introduce redundancy in message transmission.®

We now examine a case where sampling data is significantly expensive. We
consider a query, where P, applies on barometric pressure, P, applies on I°C
temperatures and the selectivity of each predicate is 0.05. We compare the original
protocol DS, with the variant of it, described in Section 4.1, which asks all nodes
to unconditionally listen to messages from nodes that qualify P;. Only nodes that
receive messages apply sampling to verify the selection condition of P,. We denote
this protocol by DS’. Table 3 displays the cost-breakdown of the join for DS and
DS’. Observe that protocol DS’ has higher packet receiving cost and idle listening
cost, but it has a much lower cost on sensing the expensive measurement. In total,
protocol DS’ outperforms protocol DS. In general, DS’ should be preferred to DS
when (1) sampling for either P or P, is very expensive and should not be performed
unconditionally or (2) either Sel/(P;) or Sel(P,) is close to 100%; the majority of
nodes qualify the predicate, so sensing should follow listening.

7.2 Complex joins

In this section, we evaluate the effectiveness of the protocols described in Section 4.2
for spatial pattern queries with variables forming a star graph topology. Figure 11
shows the cost of the protocols as a function of number of border nodes, after fixing

8Let p be the packet loss rate of each sensor node. Consider a fixed retransmission scheme,
where each sensor node repeats z times its transmitting/receiving/idle listening operation. Thus,
the probability of successfully transmitting a packet (between neighbors) increases rapidly from
(1 — p) to (1 — p*). For example, suppose that the original packet loss rate is p = 0.2 (i.e., successful
transmission probability of 0.8). At z =2 (z = 3), we double (triple) the energy consumption of
sensors and the successful transmission probability (between neighbors) rises to 0.96 (0.992). Thus,
we are able to achieve a very high successful transmission probability, with only a small factor z in
energy consumption.

@ Springer

Geoinformatica (2009) 13:57-84 79

Table 3 Cost breakdown ;

for a query with expensive Operation Average nodes/epoch

predicates (RANDOM)

Protocol DS Protocol DS’

Transmitting a packet 162.8 162.8
Receiving a packet 126.6 461.9
Idle listening 49.9 1,024
Sensing barom. pressure 1,024 1,024
Sensing I>C temp. 1,024 16.2
Total cost (nAh) 27,084.5 9,992.0

the selectivities of both predicates Pc and Pp to 0.1. When the number of border
nodes increases, only DSB and DSC achieve significant cost reduction. For queries
with many border nodes, very few results are generated and the level-off costs of
DSB and DSC indicate the cost of the distributed phase. DSB is slightly cheaper
than DSC, because DSC requires more nodes to transmit packets in the distributed
phase.

The next experiment evaluates the protocols by varying the selectivities of P¢
and Pp. Figure 12a shows the cost of the protocols as a function of P¢’s selectivity,
with three border nodes and Sel(Pp) = 0.05. DSC has the best performance at very
small values of Sel/(Pc). DSB starts outperforming the other protocols as Sel(P¢)
increases. Figure 12b shows the cost of the protocols as a function of Se/(Pg), for
queries with three border nodes and Se/(P¢) = 0.05. The situation is reversed in this
case. DSB has the best performance at low values of Se/(Pg), while DSC becomes
the best protocol as the number of border nodes increases.

7.3 Multi-hop queries

We now study the performance of the protocols for multi-hop binary join queries. In
protocol BD, x is set to 1 /2. Figure 13 plots the costs as a function of join distance,

Fig. 11 Cost as a function of 20000
number of border nodes, ﬁgg ﬁ
RANDOM topology psg -
DSC -x-
15000F
. T A]
=10000|
[%2]
§ ko
B Tl
5000 | A O 1
R
i e —— |
0 ‘ ‘
2 3 4 5

Number of border nodes

@ Springer

80 Geoinformatica (2009) 13:57-84

30000 30000

25000 25000

20000 20000
< <
< <

= 15000 = 15000
[%] %]
Q Q
]]

10000 10000

5000 5000

ols==
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Center predicate selectivity Border predicate selectivity
a varying Sel(Pc) b varying Sel(Ppg)

Fig. 12 Effect of selectivity (RANDOM)

on all three network topologies. In the RANDOM network, acquisitional protocols
outperform distributed protocols for join distances greater than one hop. The result
for GRID topology is similar except that acquisitional protocols start outperforming
the distributed ones at a longer join distance. In the LADDER network, although the

100000 70000

AQB —— AQB ——
ABs ABS
8- | 60000 8-
80000 BD > BD -%- .
’ 50000 -
< 60000 <"1 Z 40000 s
g 2z .
B 3
8 40000 § 30000 P
20000 o
20000 I g -~
ol
3 4 1 2 3 4
Join distance (hops) Join distance (hops)
a RANDOM topology b GRID topology
60000
50000
__40000
K
<
c
= 30000
0
o
O
20000
i
10000
0

Join distance (hops)

¢ LADDER topology

Fig. 13 Cost as a function of join distance

@ Springer

Geoinformatica (2009) 13:57-84 81

Table 4 Cost for query dissemination

Base cost by AQB/AQP/DS Extra cost by AQP
RANDOM GRID LADDER #hops RANDOM GRID LADDER
(nAh) (nAh) (pAh) (nAh) (nAh) (nAh)
76 53 45 1 181 165 27
2 673 612 116
3 1,508 1,429 270
4 2,767 2,690 503

distributed protocols perform better than AQB, protocol AQP maintains the good
performance it has at single-hop joins for multi-hop queries and greatly outperforms
the distributed methods. The effectiveness of pruners remains high due to the
linearity of the topology. Note that the bidirectional protocol (BD) does not have
large performance difference than the purely distributed protocol. It turns out that
BD has high packet reading cost, since intermediate nodes collect messages uncon-
ditionally. In addition, BD generates many duplicate join results which increase the
cost of transmitting them to the basestation. In summary, acquisitional protocols are
favorable for multi-hop queries, due to the extreme cost of flooding the selection
results at long ranges.

Finally, we verify the trade-off of disseminating continuous queries in a sensor
network and applying in-network filtering or evaluation, as opposed to continuously
and unconditionally acquiring measurements, and evaluating queries at the bases-
tation. Table 4 shows the costs of the various protocols for disseminating queries,
creating the routing tree, and determining non-trivial filters (i.e., prunee information
by AQP). Observe that the base dissemination cost of the protocols (excluding
prunee computation by AQP) is relatively low and can be compensated if the query
runs for a long enough period (e.g, > 10 epochs), especially when Sel(P,) and Sel(P;)
are small. On the other hand, the cost for computing the pruner/prunee information
by AQP can be very high (especially for multi-hop queries). LADDER is the only
type of network that especially favors AQP, not only in terms of query performance,
but also due to its low initialization cost. Although GRID has a smaller fanout (i.e.
smaller neighbors), pruners have larger distance from prunees (when compared to
RANDOM). Thus, the one-time dissemination cost of GRID is not low.

8 Conclusions

In this paper, we studied the evaluation of spatial pattern queries, which output
combinations of sensor readings qualifying unary selection predicates and pairwise
distance constraints. We proposed protocols that can achieve significant performance
savings compared to a simple acquisitional approach that performs filtering based
only on the unary selections. An improved acquisitional protocol places join filters
in the routing tree that eliminate sensor readings that do not qualify the distance
constraints. A distributed protocol (with variants for multi-way or multi-hop queries)
performs in-network computation of the results, before sending them to the user. We

@ Springer

82 Geoinformatica (2009) 13:57-84

presented cost models that accurately estimate the costs of all evaluation protocols.
Experimental studies suggest that the distributed techniques perform best for low-
selectivity queries with single-hop distance predicates, whereas acquisitional proto-
cols should be preferred for multi-hop or high-selectivity queries. In the future, we
plan to study alternative spatial pattern queries that capture advanced characteristics
such as the shape and distribution of sensor values. Regarding continuous query
evaluation, we will continue to explore the approach in Section 6.2 for reducing
energy consumption by saving notifications of identical spatial patterns in consec-
utive epochs.

References

1. D.J. Abadi, S. Madden, and W. Lindner. “REED: Robust, Efficient filtering and event detection
in sensor networks,” in Proc. of VLDB, 2005.
2. B.J. Bonfils and P. Bonnet. “Adaptive and decentralized operator placement for in-network
query processing,” in Proc. of IPSN, 2003.
3. P. Bonnet, J. Gehrke, and P. Seshadri. “Towards sensor database systems,” in Proc. of MDM,
2001.
4. D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. “Approximate data collection in sensor
networks using probabilistic models,” in Proc. of ICDE, 2006.
5. J. Considine, F. Li, G. Kollios, and J.W. Byers. “Approximate aggregation techniques for sensor
databases,” in Proc. of ICDE, 2004.
6. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. “Compressing historical information in
sensor networks,” in Proc. of ACM SIGMOD, 2004.
7. A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. “Hierarchical in-network data aggregation
with quality guarantees,” in Proc. of EDBT, 2004.
8. A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and W. Hong. “Model-driven data
acquisition in sensor networks,” in Proc. of VLDB, 2004.
9. M. Hadjieleftheriou, N. Mamoulis, and Y. Tao. “Continuous constraint query evaluation for
spatiotemporal streams,” in Proc. of SSTD, 2007.
10. C. Intanagonwiwat, R. Govindan, and D. Estrin. “Directed diffusion: A scalable and robust
communication paradigm for sensor networks,” in Proc. of MOBICOM, 2000.
11. Y. Kotidis. “Snapshot queries: Towards data-centric sensor networks,” in Proc. of ICDE, 2005.
12. Y. Kotidis. “Processing proximity queries in sensor networks,” in International Workshop on
Data Management for Sensor Networks, 2006.
13. S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. “TAG: A tiny aGgregation service for
Ad-hoc sensor networks,” in Proc. of OSDI, 2002.
14. S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. “TinyDB: An acquisitional query
processing system for sensor networks,” ACM TODS, Vol. 30(1):122-173, 2005.
15. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. “Wireless sensor networks
for habitat monitoring,” in Proc. of WSNA, 2002.
16. A. Manjhi, S. Nath, and P.B. Gibbons. “Tributaries and deltas: Efficient and robust aggregation
in sensor network streams,” in Proc. of ACM SIGMOD, 2005.
17. 1. Paek, K. Chintalapudi, J. Cafferey, R. Govindan, and S. Masri. “A wireless sensor network for
structural health monitoring: Performance and experience,” in Proc. of the 2nd IEEE Workshop
on Embedded Networked Sensors, 2005.
18. A. Pandit and H. Gupta. “Communication-efficient implementation of range-joins in sensor
networks,” in Proc. of DASFAA, 2006.
19. M.A. Sharaf, J. Beaver, A. Labrinidis, and P.K. Chrysanthis. “Balancing energy efficiency and
quality of aggregate data in sensor networks,” VLDB Journal, Vol. 13(4):384-403, 2004.
20. G. Simon, M. Mardéti, A. Lédeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, and
K. Frampton. “Sensor network-based countersniper system,” in Proc. of SenSys, 2004.

@ Springer

Geoinformatica (2009) 13:57-84 83

21.

22.

23.

24.

25.

26.

217.

A. Soheili, V. Kalogeraki, and D. Gunopulos. “Spatial queries in sensor networks,” in Proc. of
ACM GIS, 2005.

U. Srivastava, K. Munagala, and J. Widom. “Operator placement for in-network stream query
processing,” in Proc. of ACM PODS, 2005.

X. Yang, H.-B. Lim, M. Tamer Ozsu, K.-L. Tan. “In-network execution of monitoring queries in
sensor networks,” in Proc. of ACM SIGMOD, 2007.

Y. Yao and J. Gehrke. “The cougar approach to In-network query processing in sensor
networks,” SIGMOD Record, Vol. 31(3):9-18, 2002.

M.L. Yiu, N. Mamoulis, and S. Bakiras. “Retrieval of spatial join pattern instances from sensor
networks,” in Proc. of SSDBM, 2007.

H. Yu, E.-P. Lim, and J. Zhang. “On in-network synopsis join processing for sensor networks,”
in MDM,2006.

F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing Approach.
Elsevier/Morgan Kaufmann, 2004.

Man Lung Yiu received the Bachelor Degree in Computer Engineering and the Ph.D. Degree
in Computer Science from the University of Hong Kong in 2002 and 2006 respectively. He is
currently an assistant professor at Department of Computer Science, Aalborg University. His
research interests include databases and data mining, especially advanced query processing and
mining techniques for complex types of data.

@ Springer

84 Geoinformatica (2009) 13:57-84

Nikos Mamoulis received the diploma in Computer Engineering and Informatics in 1995 from the
University of Patras, Greece, and the Ph.D. degree in computer science in 2000 from the Hong
Kong University of Science and Technology. Since September 2001, he has been a faculty member
of the Department of Computer Science at the University of Hong Kong, currently an associate
professor. In the past, he has worked as a postdoctoral researcher at the Centrum voor Wiskunde
en Informatica (CWI), The Netherlands. His research interests include complex data management,
data mining, advanced indexing and query processing, and constraint satisfaction problems. He has
published more than 75 articles in reputable international conferences and journals and served in the
program committees of numerous database and data mining conferences.

Spiridon Bakiras received his B.S. degree (1993) in Electrical and Computer Engineering from the
National Technical University of Athens, his MS degree (1994) in Telematics from the University
of Surrey, and his Ph.D. degree (2000) in Electrical Engineering from the University of Southern
California. Currently, he is an Assistant Professor in the Department of Mathematics and Computer
Science at John Jay College, CUNY. Before that, he held teaching and research positions at
the University of Hong Kong and the Hong Kong University of Science and Technology. His
research interests include high-speed networks, peer-to-peer systems, mobile computing, and spatial
databases. He is a member of the ACM and the IEEE.

@ Springer

	Retrieval of Spatial Join Pattern Instances from Sensor Networks
	Abstract
	Introduction
	Background and related work
	Aggregation and summarization
	Data models, snapshots, and filters

	Problem formulation
	Proposed methods
	Single-hop binary joins
	Brute-force acquisitional protocol
	Pruner-based acquisitional protocol
	Distributed evaluation

	Complex join queries
	Multi-hop queries

	Cost analysis
	Extensibility
	Queries with temporal predicates
	Monitoring the validity of query results
	Multiple query optimization

	Experimental evaluation
	Single-hop binary joins
	Complex joins
	Multi-hop queries

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

