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Abstract

The Differentiated Services (DiffServ) architecture has been proposed by the Internet Engineering Task Force as a scalable solution for

providing end-to-end Quality of Service (QoS) guarantees over the Internet. While the scalability of the data plane emerges from the

definition of only a small number of different service classes, the issue of a scalable control plane is still an open research problem. The initial

proposal was to use a centralized agent, called Bandwidth Broker, to manage the resources within each DiffServ domain and make local

admission control decisions. In this article, we propose an alternative decentralized approach, which increases significantly the scalability of

both the data and control planes. We discuss in detail all the different aspects of the architecture, and indicate how to provide end-to-end QoS

support for both unicast and multicast flows. Furthermore, we introduce a simple traffic engineering mechanism, which enables the more

efficient utilization of the network resources.
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1. Introduction

In the past few years, the dramatic increase in the

capacity of the Internet core, and the development of

powerful compression techniques, have allowed the

deployment of new applications such as Internet telephony,

video-conferencing, streaming audio/video, etc. These

applications are called real-time, since they require the

periodic and timely delivery of the content from the source

to the destination. Clearly, the traditional best-effort service

that is provided in the current Internet cannot offer

an acceptable level of service quality to this type of

applications. To address this problem, the Internet Engi-

neering Task Force (IETF) has proposed the Differentiated

Services (DiffServ) architecture [1] as a scalable solution for

providing end-to-end Quality of Service (QoS) guarantees

over the Internet. The scalability issue is of outmost

importance, since, in the future, the number of flows that

will require some QoS guarantees is expected to be very

large. Consequently, a core router should be able to

accommodate thousands of QoS-sensitive flows at any

time instant.

The basic idea of the DiffServ architecture is that only

edge routers should manage traffic on a per flow basis. Core

routers should not keep any kind of per flow state, and

should process traffic on a much coarser granularity. At the

data plane this goal is achieved by specifying different Per

Hop Behaviors (PHBs), where packets belonging to the

same PHB form a Behavior Aggregate (BA) and receive

identical service at the core routers. Specifically, the edge

routers will be equipped with flow classifiers, policers, and

markers that will properly mark the incoming packets by

setting a number of bits on the DiffServ Codepoint (DSCP)

[2] field of the IP packet header. The DSCP value will

indicate the corresponding PHB, and the core routers will

forward the packets based on their DSCP value (by utilizing

several scheduling and buffer management techniques).

The IETF has currently specified two different PHBs.

The Expedited Forwarding (EF) PHB [3] offers the

equivalent of a leased line (i.e. low delay, loss, and jitter)

between a source and a destination. This is accomplished

by giving EF traffic strict priority over the traditional best-

effort traffic inside the DiffServ domain. However, each

flow has to specify in advance the required bandwidth so

that the appropriate resources may be reserved inside the

network. In addition, the maximum burst size that is allowed

is equal to two Maximum Transmission Units (MTUs).
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The edge routers will police each flow, and the non-

conforming packets will either be dropped or shaped. The

Assured Forwarding (AF) PHB group [4] does not offer

hard QoS guarantees, but instead defines four different AF

classes with three different levels of drop precedence within

each class. Each AF class is assigned a certain amount of

bandwidth at each node, and when the amount of traffic

exceeds this bandwidth, packets will be dropped according

to their drop precedence value.

While the scalability of the data plane emerges from the

definition of only a small number of PHBs, the issue of a

scalable control plane is still an open research problem. The

initial proposal was to use a centralized agent, called

Bandwidth Broker (BB) [5], to manage the resources within

each DiffServ domain and make local admission control

decisions. The centralized approach removes the burden of

admission control from the core routers, but there might be

some scalability considerations if the BB has to process

thousands of requests per second. Moreover, this approach

has certain disadvantages that are inherent to any centra-

lized architecture.

† The links around the BB will become very congested

when the traffic load from the signaling messages is high.

† The BB must maintain per flow information about every

flow that is currently active inside its domain.

† The BB is a single point of failure (i.e. undesirable in

reliability considerations).

In this article, we propose an alternative decentralized

architecture, where the local admission decisions are made

independently at the edge routers of each domain. The BB in

each domain is only responsible for periodically updating

the allocation of the resources inside the domain, according

to some measurements of the traffic load at the edge routers.

We discuss in detail all the aspects of the proposed

architecture (i.e. intra- and inter-domain routing, admission

control, packet forwarding, etc.), and indicate how to

provide end-to-end QoS support for both unicast and

multicast flows. Furthermore, we introduce a simple traffic

engineering mechanism, which enables the more efficient

utilization of the network resources.

The remainder of this article is organized as follows.

In Section 2 some related work on DiffServ resource

management is presented. In Section 3 we give the details of

the proposed architecture, and also discuss various

implementation issues. In Section 4 the results of the

simulation experiments are presented, while Section 5

concludes our work.

2. Related work

The standardization of the DiffServ architecture by the

IETF triggered the initiation of several projects, which aim

to provide DiffServ-based QoS guarantees over the Internet.

The largest of these projects is the Internet2 project, which

involves over 200 universities, corporations, and other

organizations worldwide. The main objective of the

Internet2 QBone initiative [6] is to build an experimental

testbed for providing end-to-end QoS guarantees in a

scalable manner. Their approach on resource management

follows the initial proposal of a centralized BB, which is

responsible for managing the resources within a DiffServ

domain, and performing intra-domain admission control.

For end-to-end resource reservations, inter-BB signaling is

required between the BBs of adjacent domains.

One direction towards improving the scalability of the

resource management is based on aggregated resource

reservations between DiffServ domains. The BB is still the

centralized agent responsible for resource reservation, but

the scalability is improved by reserving resources for

aggregate traffic between different domains. In Ref. [7] a

two-tier model is introduced, where each domain is assumed

to have long-term bilateral agreements with each of its

neighbors, specifying the amount of traffic that will be

exchanged between them. Whenever there is an increase in

the traffic between two domains, the BBs will re-negotiate

and make new agreements. In Ref. [8] a Clearing House

architecture is proposed, where multiple basic domains are

clustered to form a logical domain. In this way, a

hierarchical tree is created, where the BB of the logical

domain is responsible for resource reservation across the

basic domains. The BBs at the basic domains forward only

aggregation of inter-domain requests to the BB of the

logical domain, thus enhancing the scalability of this

architecture.

Alternatively, an approach based on the Multiprotocol

Label Switching (MPLS) [9] architecture has also been

considered in Refs. [10,11]. In these two architectures,

reservations for aggregate traffic are made between pairs of

edge routers on specific Label Switched Paths (LSPs) inside

the domain. All the QoS-sensitive flows will then follow the

appropriate LSPs, in order to receive the requested QoS.

The work in Ref. [11] is introduced as part of the Traffic

Engineering for Quality of Service in the Internet at Large

Scale (TEQUILA) project.

3. An architecture for end-to-end QoS provisioning

In this section we introduce an architecture for DiffServ-

based networks, which enhances the scalability of both the

data and control planes. The goal is to push most of the

functionality to the edge of the network, and maintain a

simple core, which only performs a standard packet

forwarding function. Our assumption is that the Internet

consists of several independently administered DiffServ

domains that are interconnected in order to provide

global connectivity. One typical example is shown in

Fig. 1, where the sender ðSÞ and the two receivers (R1 and R2)

are interconnected through three different domains.
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Each DiffServ domain consists of a BB (not shown in the

figure), and the core and edge routers. The BB will

periodically exchange control messages with the edge

routers for the purpose of resource management.

3.1. Intra-domain routing

Routing is the process of correctly identifying the next

hop at each node (router) so that a packet will be able to

reach its final destination. In this work we focus on intra-

domain routing, and assume that all the DiffServ domains

use a standard inter-domain routing protocol, such as the

Border Gateway Protocol (BGP) [12], to exchange reach-

ability information with their neighbor domains. All the

edge routers in each domain will participate in this

information exchange.

Routing with QoS guarantees requires the reservation

of enough resources along the path from the source to the

destination. Therefore, unlike best-effort traffic routing, a

path has to be established in advance between the source

and destination nodes, and all the packets should follow

the same path. In our architecture, we adopt a source

routing scheme, where the ingress router of the domain

will identify the complete path towards an egress router.

Specifically, during the initialization of the network, the

BB will pre-compute k different paths to carry the traffic

between each pair of edge routers, and it will distribute

this information to all the routers in its domain. In the

simulation experiments presented in Section 4, we used

the well known k-shortest path algorithm [13] for the

path selection, where the hop count was used as the

link metric.

The source routing approach was adopted for several

reasons: (i) it facilitates fast packet forwarding which will

be further discussed in Section 3.2, (ii) it follows the general

principles of the DiffServ architecture, by completely

isolating the core routers from the admission control

procedure, and (iii) it provides the means for implementing

traffic engineering mechanisms inside the domain.

Finally, we assume that a standard link state routing

protocol, such as OSPF, operates inside each domain, in

order for the edge routers to advertise their routes to other

networks, and also to exchange information with all the core

routers regarding link or node failures. In other words, our

intra-domain routing protocol will operate on top of any link

state protocol, and the ingress routers of the domain will use

the existing link state database to identify the corresponding

egress router where a packet should be forwarded to.

Fig. 1. The Differentiated Services architecture.
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3.2. Packet forwarding with IPv6

The slowest process in the forwarding path of an IP

router is the multi-field classification and routing procedure.

When a packet is received at a router, the next hop is

decided by looking into several fields on the IP header (e.g.

IP addresses, TCP/UDP port numbers, etc.), and then

finding the appropriate entry at the local routing table. This

operation will be even more complicated for QoS-sensitive

flows, since their packets should follow exactly the same

path. Clearly, this procedure will become the bottleneck in a

multi-Gbps router.

The IPv6 packet header contains a new 20-bit field,

which does not exist in the earlier IPv4, called flow label.

Using this field in the context of a source routing

architecture, enables us to increase considerably the speed

of the forwarding path. As we mentioned earlier, for each

pair of edge routers inside a domain, there will be k pre-

computed paths connecting them. We may then assign one

flow label value to each one of these paths, and construct

new (much smaller) routing tables inside the core of the

domain, based only on flow labels. We should emphasize

that the flow label in our approach is not related to the

traditional definition of a flow (i.e. a connection between a

certain source–destination pair). Instead, we use the flow

label field in the IP header, in order to identify a unique path

within an AS domain. As a result, any path within a domain

will be assigned a specific flow label value, and all the

packets (from any packet flow) that have to follow this path

will be marked with that exact flow label value. Therefore,

the unicast routing table within a domain will be static, and

its maximum size will be equal to the total number of paths

that we choose to identify. Furthermore, during the resource

reservation procedure, the ingress router will select one of

the k paths for each new flow, and then mark all the packets

that belong to this flow with the corresponding flow label

value.

An alternative method would be to use the routing header

option in IPv6, since it provides exactly the same

functionality (i.e. source routing). The reason why we did

not choose this option is due to the large overhead that it

introduces. Each IPv6 address entry is 16 bytes, and for a

multi-hop path this approach could increase substantially

the protocol overhead (especially for small packet sizes). In

addition, using the routing header option does not help in the

case of multicast communication. In the following para-

graphs we will indicate how the flow label approach may be

exploited to facilitate multicast routing.

Notice, that our forwarding scheme is similar to the

MPLS architecture, but it does not require inter-router

signaling as in the case of the label distribution protocol

(LDP) in MPLS networks. The BB will be the centralized

agent responsible for distributing the routing tables to the

domain routers. In particular, after the BB has selected the k

paths for each pair of edge routers, it will send the

appropriate routing table entries to all the routers in

the domain. These entries will be in the form of

kflow_id; link_idl; where link_id indicates the outgoing

interface where the packet should be forwarded to. Having a

centralized agent distribute all the routing information does

not affect the scalability of the architecture, since this

information will be distributed only once (at the initializa-

tion of the network) and will be updated only if a new link or

router is introduced in the topology.

One example of how to assign flow labels to the different

paths inside a domain is depicted in Fig. 2. With this

assignment, for instance, we are able to identify a maximum

of 16 different paths between any pair of 256 edge routers.

To further illustrate the concept of flow-based routing,

consider the edge routers B:E1 and B:E3 in domain B

(Fig. 1). Assume that the ID of B:E1 is 0, and the ID of B:E3

is 2. There are exactly two paths connecting these routers

(through B:C2 ! B:C3 or B:C2 ! B:C1 ! B:C3), and

suppose we assign them the IDs 0 and 1, respectively.

These two paths may then be represented by the flow

label values ‘0.2.0’ and ‘0.2.1’. As a result, if B:C2

receives a packet with a flow label value 0.2.1, it will

forward it towards B:C1 and not towards the shortest path

(i.e. through B:C3).

For multicast communication, packet forwarding is

slightly more complicated, but we may still utilize the

above flow-based routing mechanism to maintain a scalable

forwarding path. Let us consider Fig. 1 again, and assume

that receivers R1 and R2 wish to join a multicast group

created by the sender S in domain A: Suppose node R1 joins

the multicast group first. Then, B:E1 will send a control

message to the core routers B:C2 and B:C3 in the form of

kINSERT ;MG; 0:2:0l; or else “if you see a packet destina-

tion address MG; use flow label 0.2.0 to forward it”. This

message will create an entry in a local multicast routing

table inside the core routers. When R2 joins the group, the

message kINSERT ;MG; 0:1:0l will be sent to B:C2; forcing

it to forward the packets towards both B:C3 and B:E2: If a

node decides to leave the multicast group, similar DELETE

messages will be sent, if necessary.

3.3. End-to-end admission control

Resource reservation is an essential part of any network

that provides QoS guarantees, and an appropriate signaling

protocol is necessary in order to perform this function. In

our architecture, the receiver nodes will initiate the

signaling procedure for the resource reservation, while the

intermediate ingress routers will be responsible for admit-

ting or rejecting the reservation requests. In the following

paragraphs we illustrate how admission control may be

Fig. 2. Flow label assignment.
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performed across multiple DiffServ domains for the case of

unicast and multicast flows.

Let us consider unicast flows first, and assume that R1

(Fig. 1) wishes to receive some QoS-sensitive data from the

sender S at domain A: Then, the end-to-end admission

control will be performed as follows (with an RSVP-like

signaling protocol).

(1) R1 will send a PATH message towards S; indicating the

required amount of bandwidth b:

(2) The PATH message will reach B:E1 which will be the

ingress router for that particular flow. Therefore, it will

check whether there are enough resources to carry this

flow towards B:E3: The details of the admission control

decision will be discussed in Section 3.4, where we

introduce the traffic engineering mechanism.

(3) If there are not any sufficient resources, the request will

be rejected. Otherwise one of the k available paths

towards B:E3 will be selected, and the PATH message

will be forwarded towards S:

(4) The PATH message will reach A:E1 which will also

perform the admission control as in steps (2) and (3).

(5) If this request can be accommodated, A:E1 will

forward the PATH message to the source node S:

(6) If S wishes to establish this connection, it will send the

RESV message back to R1:

(7) While the RESV message travels back to the destina-

tion node, all the intermediate edge routers will

configure their traffic shapers, policers, and markers

to account for the new connection.

The signaling procedure for multicast flows is essentially

identical to the one described above, with only a few minor

additions. We assume that a multicast group is identified by

the pair ðS;MGÞ; i.e. the IP address of both the source and

the multicast group. For multicast groups where any

receiver can also be a sender, we assume that only one

node is allowed to create the multicast group, and this node

will be the designated source. This is a very reasonable

assumption, which greatly simplifies the routing of the

signaling messages when new nodes join a multicast group.

Going back to our example, let us consider the case where

node R1 joins the multicast group initiated by node S: The

signaling message flow will then be as follows.

(1) R1 will send a PATH (or join) message towards S;

indicating the required amount of bandwidth b:

(2) If R1 may also be a sender (i.e. in multipoint-to-

multipoint communication), B:E3 will reserve the

appropriate resources towards B:E1; and forward the

PATH message towards S:

(3) Steps (2)–(7) from the unicast case will be performed

in the same manner. In the case of multipoint-to-

multipoint communication, both the ingress and egress

routers will perform admission control, since the

multicast data may flow in both directions.

(4) A:E1; A:E2; B:E1 and B:E3 will send the appropriate

control messages to the core routers of their domains,

in order to set the corresponding entries in the multicast

routing tables (as described in Section 3.2).

If R2 decides to join the multicast group, the same steps

as above will take place. However, as soon as B:E1 receives

the PATH message, it will not forward it to S; since it

already has a reservation entry for that particular multicast

address. Instead, it will send the RESV message back to R2;

given that there are enough resources to carry the multicast

traffic towards B:E2:

Notice, that in the multipoint-to-multipoint scenario we

have assumed that only one member is allowed to send

packets at any given time. If this is not the case (i.e. if all

members are allowed to transmit simultaneously), then the

PATH messages will have to travel always back to the

initiator of the group (node S in our case), in order to reserve

additional bandwidth for each new member. Also, we have

made the implicit assumption that the ingress routers

corresponding to the initiator of the group will act as the

core nodes of the multicast tree inside their own domain. In

our example, since node S initiated the multicast group,

A:E1 will be the core of the tree in domain A; B:E1 will be

the core in domain B; and C:E1 will be the core in domain C:

In other words, if R1 wishes to send a packet to the multicast

group, this packet will be forwarded towards B:E1; and each

router along the path will forward it to all the corresponding

interfaces (based on the local multicast routing table),

except the one that the packet was received from. Clearly,

this is not the optimal way to distribute the multicast traffic,

but it simplifies greatly the multicast routing protocol, since

it avoids the construction of a separate multicast tree for

each member of the group.

It is evident that our model is using the per-flow reservation

paradigm, which is the basis of the IntServ architecture.

However, our approach overcomes the scalability problem of

IntServ, by (i) eliminating the core routers from the resource

reservation procedure, and (ii) decentralizing the resource

reservation procedure. Moreover, the resource reservation

phase is completed by the exchange of only two messages.

The first message ðPATHÞ is sent from the receiver towards

the sender, and is followed by the reply message (RESV or

reject) which is sent back to the receiver. These messages are

only intercepted by the corresponding edge routers (i.e.

ingress and egress) of each domain, and are not processed at

all by any of the core routers. The advantages of this

decentralized architecture may be summarized as follows.

† The signaling overhead for connection set up is spread

across multiple links, avoiding the congestion of the links

around the centralized BB.

† The BB does not need to maintain per flow information

about every flow that is currently active inside its domain.

This information will be distributed across the edge routers

of the domain.
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† It offers a scalable solution for dynamic connection set up

with very fast response time (equal to the round-trip delay

between the source and the destination).

† A temporary failure of the BB does not affect the

functionality of the domain, since the admission control

may be performed based on the current resource allocation

vector. The failure of an edge router has no effect, since no

traffic should be routed through this node.

† The core routers are not involved at all in the resource

reservation procedure.

† The edge routers are able to dynamically route the best-

effort traffic through paths that are possibly not congested,

i.e. paths for which the edge router has reserved only a

small portion of the allocated bandwidth.

Before we continue, let us discuss briefly the amount of

state information that needs to be stored in the different

routers of each domain. First, the ingress routers will

maintain per flow state about all the active QoS flows for

which they have an entry in the reservation database.

Specifically, they will keep the following pieces of

information: (i) the source and destination IP address and

port number, (ii) the corresponding egress router IP address,

(iii) the assigned flow label value, and (iv) the amount of

bandwidth reserved.

The egress routers between two domains (e.g. nodes

A:E2 and B:E2 in Fig. 1) do not need to keep any per flow

state. Instead, they will keep some information about the

aggregate amount of QoS traffic that leaves the domain

through that particular node. This information is important,

since the egress routers will need to shape the QoS traffic so

that it does not exceed the total amount of reserved

bandwidth towards other domains.

Finally, the egress routers located near the clients (i.e.

B:E3 and C:E2), which are often referred to as leaf routers,

will also need to maintain per flow state about all the clients

that are directly connected to them. This is not required for

the provisioning of QoS guarantees, but it is necessary in

order to implement soft state resource reservation. In

particular, the receiver nodes will periodically send refresh

messages to their local leaf router, which will verify the

validity of the reservation. If the leaf router does not receive

a refresh message within a certain timeout period, it will

send a message to the corresponding ingress router to

release the necessary resources.

3.4. Traffic engineering

Traffic engineering is the process where the routes

between any two endpoints of a certain domain are

dynamically selected, according to the current traffic load,

so as to optimize the utilization of the network resources. In

our architecture, the BB will be responsible for periodically

updating the allocation of the resources inside the domain,

according to some measurements of the traffic load at the

edge routers. When the allocation of resources is completed,

all the edge routers will be able to make instantaneous and

independent admission control decisions for new connec-

tion requests.

Let us consider the following model for a generic

DiffServ domain.

† There are M edge routers in the domain.

† Every edge router will maintain the exact information

about the network topology of the domain.

† There are N ¼ MðM 2 1Þ different router pairs to which

we shall refer to as Source-Destination (SD) pairs.

† For each SD pair ði; jÞ there are k pre-computed paths.

The BB will periodically (e.g. every T minutes) allocate

a certain amount of bandwidth on every link of the network

topology to each one of the M edge routers. This

information will be distributed to the corresponding edge

routers, and will enable them to make independent

admission control decisions. In other words, each router

will see the same network topology, but with different link

capacities, which may be used entirely by itself. If a new

reservation request arrives for SD pair ði; jÞ; the ingress

router i will select the shortest of the k available paths

which can satisfy the request. A similar shortest path tree

method may be used for the case of multicast flows.

In order for the BB to allocate the resources in a more

efficient manner, it will need some information regarding

the traffic load requirements between the different SD pairs.

We assume that the source node of each SD pair ði; jÞ will

keep track of the following variables in order to measure the

traffic load towards the destination j :

† Total number of requests, rij:

† Total amount of bandwidth requested, bij:

† Total holding time for completed connections, tij:

† Total number of completed connections, cij:

Whenever a new request arrives at a certain node i; the

corresponding rij will be incremented by one, while the

requested bandwidth b will be added to bij: If a connection is

terminated, its holding time will be added to tij; and cij will

be incremented by one. Every time interval T ; the BB will

poll every edge router i; and it will ask for the following two

pieces of information: (i) the current amount of resources

reserved on each link ðl;mÞ; {xiðl;mÞ}; and (ii) the required

amount of additional bandwidth wij (if any) towards

each destination j: After receiving all the information, the

BB will run an algorithm which will calculate the new

values of {xiðl;mÞ}:

For the calculation of wij we may model each SD pair as

an M/M/m/m queueing system. We assume that new

requests arrive according to a Poisson process with rate l;

and that the system can accommodate up to m concurrent

connections. The service time for each connection is

exponentially distributed with mean 1=m: Using Erlang’s

B formula, we may calculate the blocking probability for
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new requests as follows

pm ¼
ðl=mÞm=m!

Xm

k¼0

ðl=mÞk=k!

In our case, l ¼ rij=T and 1=m ¼ tij=cij: Then, we can

calculate the smallest value of m for which the blocking

probability is less than, for example, 1%. Therefore, the

total traffic load for SD pair ði; jÞ will be equal to mbavg;

where bavg ¼ bij=rij is the average amount of requested

bandwidth. Assuming that the current amount of reserved

resources for SD pair ði; jÞ is sij; wij will be given by wij ¼

max{0;mbavg 2 sij}:

We understand that the M/M/m/m model is not entirely

accurate, but we believe that it provides a very good

approximation for predicting the amount of required

bandwidth between a pair of edge routers. For example, it

is generally acknowledged that the arrival of new requests

from a large population size (e.g. for voice or video) may be

modeled as a Poisson process. Also, the holding times for

voice calls have long been considered as exponential. For

video calls (e.g. video-conference, streaming video) the

exponential assumption is not so accurate, but in the general

case the holding times will consist of many short calls (e.g. a

short video clip, a videophone application) with only a small

percentage of longer calls (e.g. a two-hour movie). In any

case, the exponential holding time assumption provides a

good approximation and, most importantly, allows us to use

a simple formula for calculating the amount of required

resources. Using a more elaborate queueing model would

increase the complexity of the traffic engineering module,

while the return in terms of accuracy would be uncertain.

For the resource reallocation procedure we use a simple

greedy algorithm (Fig. 3) which may be summarized as

follows. We add, in a round-robin manner, a very small

amount of bandwidth dx to each SD pair with wij . 0: This

amount of bandwidth will be added to the path n which

minimizes a certain cost function. The above procedure will

continue until all SD pairs have either wij # 0 or have

become saturated (i.e. no more resources can be allocated to

them). The cost function that we used was the average

number of packets in an M/M/1 system [14], given by

costn ¼
X

ðl;mÞ

Flm

Clm 2 Flm

where ðl;mÞ are the links that belong to path n; Flm is the

flow on link ðl;mÞ; and Clm is the capacity of link ðl;mÞ: This

is a very efficient cost function for spreading the traffic load

among different paths.

After this procedure is terminated there might be some

resources left that have not been allocated to any path. These

unused resources will be allocated equally among all the

non-saturated SD pairs, in a manner similar to the one

described above. We may easily modify this algorithm

to account for other resource allocation policies as well.

For example, two neighbor domains may choose to limit the

amount of traffic that is exchanged between them. This may

be realized by limiting the capacity of the inter-domain link

in the resource management algorithm. Another example is

the more permanent connection set up of a Virtual Private

Network (VPN). This may also be realized by setting up

these connections in advance, and then limiting the capacity

of the corresponding links.

Finally, we should note that our architecture is easily

applied to the Relative DiffServ model as well. Instead of

calculating the values of xiðl;mÞ for the EF class only,

different values may be assigned for other service classes as

well. The edge routers will then be able to reserve resources

for any service class requested by the end-user. In other

words, each additional service class may be treated (from

the resource management point of view) exactly as the EF

class. The relative service (e.g. delay, bandwidth) received

by each class will be determined by the packet scheduling

algorithm that is implemented at the routers, and is beyond

the scope of this work.

4. Simulation results

We simulated the proposed resource allocation algorithm

in the MCI Internet topology of Fig. 4, which has been

widely used in many studies [15]. We assume that all the

links have a capacity of 2.4 Gbps, and that all the capacity

may be allocated to QoS flows. In a real network, though,

Fig. 3. The resource reallocation algorithm.
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the service provider will allocate a portion of the available

bandwidth to QoS-sensitive traffic, according to some

policy. This topology represents an autonomous DiffServ

domain, so we have only simulated the intra-domain

resource management scheme. As we have shown in

Section 3.3, inter-domain admission control is performed

as a series of independent intra-domain admission decisions.

New requests may arrive at any one of the 19 routers,

which means that there are N ¼ 342 different SD pairs. The

new requests arrive at each node i; according to a Poisson

process with mean li: The arrival rates for the different

nodes are chosen from a uniformly distributed random

variable in the interval ½1; lmax�: The value of lmax is

properly adjusted in order to control the average arrival rate

per node. For unicast flows, we randomly select one node as

the destination, while for multicast flows a fixed number of

destinations are selected (either 6 or 9). The duration of each

connection is exponentially distributed with mean 20 min,

and the required bandwidth is uniformly distributed in the

interval ½100; 1000� kbps. In each experiment we simulate

24 h of real time, and collect the results after an initial

warm-up period. The bandwidth blocking rate is used as the

performance metric, i.e. the percentage of actual bandwidth

that is rejected due to insufficient resources inside the

domain.

In the first experiment we investigate the impact of the

number of paths k that are pre-computed for each SD pair.

The results are depicted in Figs. 5 and 6, where we may

observe that setting up more paths per SD pair will generally

result in better performance only in the case of multicast

flows. This result is anticipated, since having a lot of

available paths is important when constructing a shortest

path tree. For unicast flows, the performance is not affected

by the number of paths, since it is always better to route

traffic through shorter paths. Therefore, adding more paths,

which are normally longer, does not reduce the bandwidth

blocking rate.

We then investigate the impact of the reallocation

interval T on the performance of the resource allocation

algorithm. The ‘static’ curve in Figs. 7 and 8 corresponds to

a system where the resource allocation is manually

configured according to some long term traffic measure-

ments. In the simulation experiments, this curve is produced

Fig. 4. The simulated network topology.

Fig. 5. Effect of the number of paths k on the bandwidth blocking rate

(unicast flows).

Fig. 6. Effect of the number of paths k on the bandwidth blocking rate (multicast flows).
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by running the resource allocation algorithm at the start of

each experiment (using the known values of li for each

source), and then using the resulting {xiðl;mÞ} values

for admission control. Notice that for unicast flows,

where the traffic load matrix is relatively stable, the static

and dynamic resource assignment have very similar

performance. On the other hand, for multicast flows,

where every new request is destined for a large number of

receivers, the resource reallocation procedure is essential in

order to keep up with the constantly changing traffic

patterns. Another promising result in Fig. 8 is that the

performance of our scheme is not affected by the length of

the measurement window, as long as it is kept at reasonably

small values. Therefore, the control overhead imposed by

the resource reallocation procedure is very low.

Finally, we compare our proposed traffic engineering

mechanism with traditional centralized shortest path rout-

ing. For unicast flows (Fig. 9) our scheme clearly outper-

forms shortest path routing. Its bandwidth blocking rate is

around 10% lower at high traffic loads, while at the same

time it can maintain the average link utilization at lower

levels. This result is quite normal, since shortest path

routing tends to overload the links that belong to the shortest

paths, and further connections have to be established over

longer paths, which consume a lot of the network resources.

For multicast flows (Figs. 10 and 11) the performance of the

two schemes is almost identical, since the construction of a

shortest path tree is more straightforward and involves a

large portion of the network. Notice, that the ‘unicast’ curve

Fig. 7. Effect of the reallocation period T on the bandwidth blocking rate

(unicast flows).

Fig. 8. Effect of the reallocation period T on the bandwidth blocking rate (multicast flows).

Fig. 9. Traffic engineering vs. shortest path routing (unicast flows).
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corresponds to the case where each multicast request is

served by a number of individual unicast connections. It is

included in these figures for the purpose of comparison.

5. Conclusions

In this article we proposed a scalable architecture for

providing end-to-end QoS guarantees in DiffServ-based

networks. Our approach enhances the scalability of both the

data and control planes, by pushing most of the functionality

to the edge of the network. Furthermore, we introduced a

traffic engineering mechanism, which periodically updates

the allocation of the resources inside a domain, according to

some measurements of the traffic load at the edge of the

domain. We have shown that the proposed resource

allocation algorithm can manage the network resources

very efficiently, leading to lower bandwidth blocking rates

compared to traditional shortest path routing.

We are currently working on the implementation of the

architecture in a small testbed consisting of 19 Linux

routers. Our goal is to test the applicability and performance

of this architecture in an Internet-like environment.

In addition, we will study the impact of QoS-sensitive

flows on the performance of best-effort traffic, and

investigate whether traffic engineering can improve the

average delay experienced by best-effort packets inside a

DiffServ domain.
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