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Abstract. Multiple target tracking (MTT) is a well-studied technique in the �eld
of radar technology, which associates anonymized measurements with the ap-
propriate object trajectories. This technique, however, suffers from combinatorial
explosion, since each new measurement may potentially be associated with any
of the existing tracks. Consequently, the complexity of existing MTT algorithms
grows exponentially with the number of objects, rendering them inapplicable to
large databases. In this paper, we investigate the feasibility of applying the MTT
framework in the context of large trajectory databases. Given a history of object
movements, where the corresponding object ids have been removed, our goal is to
track the trajectory of every object in the database in successive timestamps. Our
main contribution lies in the transition from an exponential solution to a polyno-
mial one. We introduce a novel method that transforms the tracking problem into
a min-cost max-�ow problem. We then utilize well-known graph algorithms that
work in polynomial time with respect to the number of objects. The experimental
results indicate that the proposed methods produce high quality results that are
comparable with the state-of-the-art MTT algorithms. In addition, our methods
reduce signi�cantly the computational cost and scale to a large number of objects.

1 Introduction
Recent advances in wireless communications and positioning devices have generated
signi�cant interest in the collection of spatio-temporal (i.e., trajectory) data from mov-
ing objects. Any GPS-enabled mobile device with suf�cient storage and computational
capabilities can bene�t from a wide variety of location-based services. Such services
maintain (at a centralized server) the locations of a large number of moving objects
over a long period of time. As an example, consider a traf�c monitoring system where
each car periodically transmits its exact location to a database server. The resulting tra-
jectories can be queried by a user to retrieve important information regarding current or
predicted traf�c conditions at various parts of the road network.

Nevertheless, the availability of such data at a centralized location raises concerns
regarding the privacy of the mobile clients, especially if the data is distributed to other
parties. A simple solution that partially solves this problem is to anonymize the trajec-
tory data, by not publishing the user id1. In the traf�c monitoring system, for instance,

1 Assigning a fake id does not guarantee anonymity, since a user may be linked to a speci�c
trajectory using background knowledge (e.g., known home address as starting point).
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the ids of the individual users are not essential for measuring the traf�c level on a road
segment. Therefore, the mobile users may not be willing to identify themselves, and
may choose to transmit only their location, but not their id. Furthermore, anonymous
data collection may be the only option in certain environments. For instance, in the traf-
�c monitoring system the trajectory data may be collected by sensors that are deployed
throughout a city. In this scenario, every vehicle that passes in front of a sensor auto-
matically generates a measurement that contains no information regarding its identity.

Even though anonymization is important for protecting the privacy of mobile users,
detailed trajectory data (i.e., coupled with object identi�ers) are valuable in numerous
situations. For example, a law enforcement agency trying to track a suspect that was
seen in a car at a speci�c time, can certainly bene�t from stored trajectory informa-
tion. In this scenario, anonymization severely hinders the tracking process, since there
is no information to link successive measurements to the same trajectory. A straightfor-
ward solution, given the similarity of the two problems, is to leverage existing methods
that are used in radar tracking applications. Multiple target tracking (MTT) [1, 2] is a
well-studied technique in the �eld of radar technology, which associates anonymized
measurements with the appropriate object trajectories. This technique, however, is not
practical. The reason is that every possible combination of measurements must be con-
sidered, in order to minimize the overall error across all trajectories. Consequently, the
complexity of existing MTT algorithms grows exponentially with the number of ob-
jects, rendering them inapplicable to large databases.

In this paper, we investigate the feasibility of applying the MTT framework in the
context of large trajectory databases. Given a history of object movements, where the
corresponding object ids have been removed, our goal is to track the trajectory of ev-
ery object in the database in successive timestamps. Our main contribution lies in the
transition from an exponential solution to a polynomial one. To this end, we introduce a
novel method that transforms the tracking problem into a min-cost max-�ow problem.
We then utilize well-known graph algorithms that work in polynomial time with respect
to the number of objects. To further reduce the computational cost, we also implement
a pruning step prior to the construction of the �ow network. The objective is to remove
all the measurement associations that are not feasible (e.g., due to a maximum veloc-
ity constraint). We perform an extensive experimental evaluation of our approach, and
show that the proposed methods produce high quality results that are comparable with
the state-of-the-art MTT algorithms. In addition, our methods reduce signi�cantly the
computational cost and scale well to a large object population.

The rest of the paper is organized as follows: Section 2 de�nes formally the problem,
whereas Section 3 surveys the related work. A detailed description and analysis of our
algorithm is given in Section 4. In Section 5 we evaluate experimentally our method.
Finally, Section 6 summarizes the results and presents directions for future work.

2 Problem Formulation

Let H = {S1, S2, . . . , SM} be a long, timestamped history. A snapshot Si of H is
a set of locations (measurements) at time ti; the time difference ti+1 − ti between
consecutive timestamps is not constant. Each snapshot contains measurements from
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S1 S3S2
(x3,y3)(x1,y1)(x2,y2) (x9,y9)(x8,y8)(x7,y7)(x6,y6)(x5,y5)(x4,y4)

Fig. 1. Multiple target tracking (MTT) example

exactly N objects, i.e., we assume that (1) an existing object may not disappear and
new objects may not appear during the interval [t1, tM ] and (2) the measurements are
complete (there are no missing values). These assumptions may not hold in some cases,
but our goal in this paper is to solve a restricted version of the problem. We plan to
relax these constraints as part of our future work. Finally, we assume that the locations
are anonymized, meaning that there is no object id that matches a certain location; any
location measurement may correspond to any of the N objects.

Given N objects and a history H spanning M timestamps, an MTT query returns a
set of N trajectories, where each trajectory i has the form {(xi1 , yi1 , t1), (xi2 , yi2 , t2),
. . . , (xiM

, yiM
, tM )}. Each triple in the above set corresponds to the location of the

object at each of the M timestamps. To illustrate the signi�cance of this result, consider
the following scenario: A suspect was seen driving in the vicinity of his home address
at time t1. What a data analyst may want to do, is issue a range query and retrieve a
set of points (i.e., measurements) that may be associated with the suspect (at time t1).
After the MTT query is resolved, each of these points will be the source of a unique
trajectory that will identify possible locations of the suspect at subsequent timestamps.

Figure 1 shows an example MTT query with M = N = 3. Each line connecting two
measurements in successive timestamps indicates that the two measurements belong to
the same trajectory. The three trajectories are disjoint and are formed such that the
overall error is minimized (the details of the error function are discussed in Section 4).
Given the illustrated associations in Figure 1, the topmost trajectory is represented as
{(x1, y1, t1), (x4, y4, t2), (x7, y7, t3)}.

3 Related Work

Multiple target tracking has been studied extensively for several decades, and a variety
of algorithms have been proposed that offer different levels of complexity and tracking
quality. They can be classi�ed into three major categories: nearest neighbor (NN), joint
probabilistic data association (JPDA), and multiple hypotheses tracking (MHT).

NN techniques [2] require a single scan of the dataset; for every set of measure-
ments (i.e., from one timestamp), each sample is associated with a single track. The
objective is to minimize the sum of all distances, where the distance is de�ned as a
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(a) Reid's MHT (b) GNN (c) Our algorithm

Fig. 2. Trajectory reconstruction for different methods

function of the difference between the actual and predicted values. Among existing
NN algorithms, the best is the global nearest neighbor (GNN) approach [3]. JPDA al-
gorithms [1] also require a single scan and, for every pair of measurement-track, the
probability of their association is calculated as the sum of the probabilities of all joint
events. An experimental evaluation of several NN and JPDA algorithms can be found
in [3]. Even though some of these methods run in polynomial time (due to their greedy
nature that minimizes the error at each timestamp independently), their tracking quality
is not good, leading to many false associations.

Reid's algorithm [4] is the most representative of the MHT methods. Instead of as-
sociating each measurement with a single track, multiple hypotheses are maintained,
whose joint probabilities are calculated recursively when new measurements are re-
ceived. Consequently, each measurement is associated with its source based on both
previous and subsequent data (multiple scans). During this process unfeasible hypothe-
ses are eliminated and similar ones are combined. Reid's algorithm produces high qual-
ity results, but its complexity grows exponentially with the number of measurements.

An example that illustrates the superiority of multiple scan techniques over their
single scan counterparts is presented in Figure 2. In this example, two objects move
towards each other, until they �meet�; then, they suddenly change their trajectories and
move at opposite directions. GNN makes the wrong track assignments when the objects
are close to each other, just because these assignments happened to minimize the error
at some particular timestamp. On the other hand, Reid's algorithm tracks the two objects
successfully, since it minimizes the error across all timestamps. This �gure also shows
the output of our method, which exhibits an accuracy that is similar to Reid's algorithm
but is able to run in polynomial time (as we will illustrate in the following sections).
The slight differences in the output between Reid's algorithm and ours, are due to the
�lters that are used to smooth the trajectories (Kalman �lter for Reid, as opposed to a
simpler �lter for our method).

To reduce the complexity of the tracking process, [5, 6] employ clustering. They
group the set of measurements before forming the candidate tree, in order to remove
unlikely associations. In this way, the problem is partitioned into smaller sub-problems
that are solved more ef�ciently. Although this approach reduces the complexity, it still
utilizes single scan techniques that are not accurate.
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Another interesting application of multiple target tracking is investigated in [7],
where the objective is to discover associations among asteroid observations that cor-
respond to the same asteroid. The authors introduce an ef�cient tree-based algorithm,
which utilizes a pruning methodology that reduces signi�cantly the search space. How-
ever, their problem settings are different from ours, since (1) they assume that there is a
given motion model that has to be obeyed, and (2) they are interested in returning those
sets of observations that conform to the motion model.

Finally, the idea of applying MTT techniques for the reconstruction of trajectories
from anonymized data, was introduced in [8]. The authors use �ve real paths and show
that Reid's algorithm is able to associate the majority of the measurements with the cor-
rect objects. However, their objective is not how to ef�ciently track multiple targets, but
rather how to enhance the privacy of the users through path perturbation. In particular,
they modify the original dataset in such a way that Reid's algorithm is confused.

4 Tracking Algorithm

This section discusses the details of our MTT algorithm. First, we present a brief
overview of the min-cost max-�ow problem. Then, we explain how to construct the
graph from the history of location measurements and present a pruning mechanism that
reduces signi�cantly the graph size. Finally, we discuss the implementation details of
our algorithm and analyze its computational complexity.

4.1 Preliminaries

A �ow network [9] is a directed graph G = (V,E), where V is a set of vertices, E is a
set of edges, and each edge (u, v) ∈ E has a capacity c(u, v) ≥ 0. If (u, v) /∈ E, it is
assumed that c(u, v) = 0. There are two special vertices in a �ow network: a source s
and a destination t. A �ow in G is a real-valued function f : V × V → R, satisfying
the following properties:

1. Capacity constraint: For all u, v ∈ V , we require f(u, v) ≤ c(u, v).
2. Skew symmetry: For all u, v ∈ V , we require f(u, v) = −f(v, u).
3. Flow conservation: For all u ∈ V�{s, t}, we require

∑
v∈V f(u, v) = 0. In other

words, only s can produce units of �ow, and only t can consume them.

The max-�ow problem is formulated as follows: given a �ow network G, �nd a �ow of
maximum value between s and t.

The min-cost max-�ow problem is a generalization of max-�ow, where:

1. For every u, v ∈ V the edge (u, v) has a cost w(u, v), and we require w(u, v) =
−w(v, u).

2. The �ow conservation property of the �ow network is replaced by the following
balance constraint property: For all u ∈ V , b(u) =

∑
v∈V f(u, v). Note that, b(u)

may have non-zero values for vertices other than the source or the sink. In other
words, every node in the network may be a producer or consumer of �ow units, as
long as the following �ow conservation condition is satis�ed:

∑
u∈V b(u) = 0.
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Fig. 3. Multi-target tracking (MTT) �ow network

The cost of a �ow f is de�ned as

cost(f) =
∑

(u,v)∈E

w(u, v)f(u, v)

and the objective of the min-cost max-�ow problem is to �nd the max-�ow with the
minimum cost.

4.2 Problem Transformation

A straightforward transformation of the MTT problem into a �ow network is shown
in Figure 3. Flow units are produced at the source s and consumed at the sink t; our
objective is to send a total of N �ow units from s to t, each one identifying a single
object trajectory. All edges have capacity 1 in the forward direction, and 0 in the reverse
direction. Also, every edge (u, v) in the middle of the network (as shown in the �gure)
has cost value w(u, v) in the forward direction, and −w(u, v) in the reverse direction.
The rest of the edges have zero cost.

The N vertices that are directly connected to s correspond to the �rst snapshot
of measurements (one vertex for each location). Following these vertices are series of
columns containing N2 nodes each. Every node in these columns is identi�ed by a
triplet (ti, pi, pj), which has the following meaning: if a positive amount of �ow runs
through this node, then the underlying object moves from location pi in timestamp
ti to location pj in timestamp ti+1. Consequently, edge (ti, pi, pj) → (ti+1, pj , pk)
represents a partial trajectory from three consecutive timestamps (pi → pj → pk),
where pi, pj , pk ∈ [1..N ].

The cost for the aforementioned edge is equal to the association error of the third
measurement. As shown in Figure 4, if the �rst two measurements (pi and pj) belong to
the same track, their values can be used to predict the next location of the object, based
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on the assumption that objects move on a straight line with constant speed. Therefore,
for every possible location pk, we can calculate the error of associating this measure-
ment with any of the existing tracks. This de�nition of error is also used in [4]. Note
that our method minimizes the sum of errors across all trajectories (similar to multiple
hypotheses tracking), as opposed to methods that work in a single scan. Finally, the N
nodes connected to the sink t correspond to the last set of measurements, and indicate
the �nal positions of the moving objects.

Observe that the above �ow network may lead to incorrect trajectories, by asso-
ciating a single measurement with multiple tracks. For instance, if in the �nal so-
lution we allow a positive amount of �ow through edges (1, 1, 1) → (2, 1, 1) and
(1, 2, 1) → (2, 1, 2) (Figure 3), then location 1 in timestamp 2 belongs to two dif-
ferent trajectories. One way to overcome this limitation is to create a bottleneck edge
(with capacity 1) for each measurement that only allows a single unit of �ow (i.e., track)
to go through. We call this structure a block. Figure 5(a) illustrates the (m, k)�block,
i.e., the block associated with the kth measurement of the mth timestamp. Let us use
the notation pm,k to identify that particular point location. Then, this block represents
all partial tracks pm−1,i → pm,k → pm+1,j , ∀i, j ∈ [1..N ]. Since the capacity of the
middle edge is equal to 1, only one of these tracks can be selected.

Every (m, k)�block, where 1 < m < M and 1 ≤ k ≤ N , is characterized by the
following matrix:

C =




c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...
...

...
...

cN,1 cN,2 · · · cN,N




where ci,j is the error in track pm−1,i → pm,k → pm+1,j , i.e., the distance between the
predicted location (based on the values of pm−1,i and pm,k), and pm+1,j . However, the
block structure consists of only (2N +1) edges, which are not suf�cient to represent the
N2 error values that are included in matrix C. Therefore, we modify the aforementioned
block structure, and replace the middle part of the block with 2N vertices and N2 edges.
The result is shown in Figure 5(b). The N2 edges connecting the two middle columns
have the cost values associated with matrix C, while the remaining edges have cost
equal to zero, i.e., they do not affect the process of the min-cost max-�ow calculation.

The difference of the modi�ed block structure compared to the rest of the �ow net-
work, is that we need to manually route the �ows inside the block in order to guarantee
that only one �ow unit goes through. Speci�cally, when a positive amount of �ow runs
through a certain block, that block is automatically marked as active and the identi�er of
the edge occupying the block is recorded. An active block may only output a single �ow
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Fig. 5. Block structure for measurement pm,k

unit, so an additional incoming �ow has to be redirected backward in order to cancel the
existing �ow (hence the negative weight values on the reverse edges). In particular, a
new �ow is forced back through the reverse path of the existing �ow, in order to select a
new location in the previous timestamp. This is depicted in Figure 6(a), where the block
is occupied by the �ow with cost c1,1. When a new �ow enters from vertex (2, 2, 1), it
is only allowed to follow the path indicated by the arrows, which takes the �ow in the
reverse direction towards vertex (2, 1, 1) and cancels the original �ow. Next, as shown
in Figure 6(b), the incoming �ow enters the block of the previous timestamp, where it
also cancels the �ow with cost c1,1 and then follows the path to vertex (2, 1, 2). Con-
sequently, it selects measurement 2 at timestamp 3 (instead of measurement 1), which
results in two distinct trajectories.

There are N blocks in every timestamp, each one contributing O(N) vertices and
O(N2) edges to the overall network. Therefore, the total number of vertices in the �ow
network is |V | = O(MN2), whereas the total number of edges is |E| = O(MN3).

4.3 Improving the Running Time

Solving the min-cost max-�ow problem requires multiple shortest path calculations
on the MTT �ow network (discussed in the next section). Therefore, the size of the
network is crucial for maintaining a reasonable running time. In its current form, how-
ever, the size of the �ow network becomes prohibitively large when the number of
measurements increases. To this end, we propose a pruning technique that may reduce
signi�cantly the size of the network. Observe that any object can travel at most Rmax

distance between two consecutive timestamps. The actual value of Rmax depends on
(i) the maximum speed of the objects and (ii) the time interval between the two times-
tamps. Consequently, every measurement pm,k can only be associated with those mea-
surements pm+1,i, ∀i ∈ [1..N ], such that the distance between the two points is less
than Rmax. We can leverage this constraint in order to reduce the number of vertices
and edges inside each block. Speci�cally, if we assume that there are, on average, K
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feasible associations for any measurement pm,k, the number of vertices in the �ow net-
work is reduced to |V | = O(MNK), while the total number of edges is reduced to
|E| = O(MNK2). This may result in signi�cant savings when K ¿ N .

4.4 The MTT Algorithm

We have a single source s that needs to send N units of �ow towards the destination
t. Among all feasible max-�ows, we are interested in �nding the one with the mini-
mum cost. A very ef�cient method for solving the min-cost max-�ow problem is the
Successive Shortest Path Algorithm [10]. It leverages the Ford-Fulkerson algorithm [9]
that solves the max-�ow version of the problem. The Ford-Fulkerson algorithm starts
with f(u, v) = 0 for all u, v ∈ V , and works iteratively by �nding an augmenting
path where more �ow can be sent. The augmenting paths are derived from the residual
network Gf that is constructed during each iteration. Formally, Gf = (V,Ef ), where
Ef = {u, v ∈ V : cf (u, v) > 0}. cf (u, v) is called the residual capacity and is equal
to c(u, v)− f(u, v). Note that when an edge (u, v) carries a positive amount of �ow in
the �ow network, it will be replaced by edge (v, u) in the residual network (as shown
in Figure 6). This means that the residual network may contain edges with negative
weights, since w(v, u) = −w(u, v).

In the Successive Shortest Path Algorithm, instead of �nding an augmenting path,
we �nd the path with the minimum cost (given the weight values of the edges on the
residual graph). Since the �ow network may contain weights with negative values, we
need to utilize the Bellman-Ford algorithm [11] for the shortest path calculations. This
is not very ef�cient, as the Bellman-Ford algorithm has worst-case complexity O(|V | ·
|E|). In our MTT network, this translates to O(M2N2K3).

Instead, we use a well-known technique called vertex potentials, which transforms
the network into one with non-negative costs (provided that there are no negative cost
cycles). For every edge (u, v) ∈ E, where vertices u, v have potential p(u) and p(v), re-
spectively, the reduced cost of the edge is given by: wp(u, v) = w(u, v)+p(u)−p(v) ≥
0. It can be proved that the min-cost max-�ow problems with edge costs w(u, v) or
wp(u, v) have the same optimal solutions. Therefore, by updating the node potentials,
we can utilize a more ef�cient shortest-path algorithm during the iterations of the Ford-
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Algorithm MTT(H, M, N)
1. Construct �ow network from H
2. for each (u, v) ∈ E // Initialize �ows
3. f(u, v) = 0
4. f(v, u) = 0
5. for each u ∈ V // Initialize node potentials
6. p(u) = 0
7. for i = 1 to N
8. Find shortest path p from s to t in Gf

9. for each u ∈ V // Update node potentials
10. p(u) = p(u) + d(s, u)
11. for each (u, v) ∈ p // Augment �ow across path p
12. f(u, v) = f(u, v) + 1
13. f(v, u) = −f(u, v)
14. return N trajectories

Fig. 7. The MTT algorithm

Fulkerson algorithm. Node potentials are initially set to zero2, and are updated as fol-
lows: after the calculation of the shortest path, for every u ∈ V , p(u) = p(u) + d(s, u),
where d(s, u) is the length of the shortest path from s to u.

The pseudo-code of our MTT algorithm is shown in Figure 7. It begins by con-
structing the �ow network (as explained in Sections 4.2 and 4.3) from the history of
measurements H . Then (lines 2-6), it initializes the �ows and node potentials. At each
iteration of the Successive Shortest Path Algorithm (lines 8-13), a single unit of �ow is
added to the network; the algorithm terminates after N iterations. The resulting trajec-
tories are returned by following each �ow unit from s to t through the �ow network.

Before analyzing the computational complexity of our algorithm, we should brie�y
discuss a common problem that may occur in min-cost max-�ow calculations. Due to
the negative weights of some edges in the residual network, there is a possibility that
negative cost cycles exist (we actually encountered this problem in our experiments).
In this case, the shortest-path calculations can not be performed and the algorithm fails.
Instead of terminating the algorithm when a negative cost cycle is detected, we imple-
ment a greedy approach that may generate non-optimal solutions. In particular, we (1)
output all the tracks that are discovered so far (which might not be optimal), (2) remove
all the vertices and edges associated with these tracks from the �ow network, and (3)
start a new min-cost max �ow calculation on the reduced graph.

4.5 Complexity

The computational complexity of the MTT algorithm shown in Figure 7, is directly
related to the complexity of the underlying shortest-path algorithm3. Theoretically,

2 If prior to the �rst iteration of the algorithm there exist negative costs, Bellman-Ford must be
invoked to remove them. In our case, however, we do not have negative costs before the �rst
iteration, since the total �ow inside the network is zero.

3 The complexity of graph construction is O(MN2 + MNK2) and can be ignored.
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the fastest running time is achieved with Dijkstra's algorithm [12], using a Fibonacci
heap implementation for the priority queue. The complexity of Dijkstra's algorithm is
O(|V | log |V | + |E|) = O(MNK log(MNK) + MNK2). Thus, the total running
time (due to N iterations) is O(MN2K(log(MNK) + K)). This corresponds to the
main contribution of our work, i.e., a multiple hypotheses tracking algorithm that works
in polynomial time, instead of exponential.

We have also experimented with other implementations of shortest-path algorithms,
which produced similar, and in some cases better, running times compared to the afore-
mentioned method. For instance, the computational complexity of the Fibonacci heap
structure has a large hidden constant; therefore, a simple binary heap is often more ef�-
cient. The overall complexity is O(N(|V |+|E|) log |V |) ≈ O(MN2K2 log(MNK)).
An interesting approach, which works surprisingly well, is to utilize Bellman-Ford's al-
gorithm for �nding the shortest paths. Even though the complexity of Bellman-Ford is
O(M2N2K3), in practice it runs much faster for our �ow network due to the �left-
to-right� structure of the graph4. Furthermore, Bellman-Ford's algorithm works with
negative costs as well, meaning that we do not have to maintain node potentials.

The space complexity of our method is dominated by the amount of storage required
to store the |E| edges of the �ow network (around 20 bytes for each edge). Therefore,
the worst-case space complexity of our MTT algorithm is O(MNK2).

5 Experimental Evaluation

In this section, we evaluate the performance of the proposed MTT algorithm, and com-
pare it with a GNN implementation (using clustering) that is described in [6]. This
approach works in low polynomial time with a complexity of O(MNC2) (where C
is the average cluster size), and was shown to have the best performance among other
MTT techniques in the detailed experimental evaluation of [3]. We do not include Reid's
MHT algorithm [4] in this comparison, since it could not produce any results within a
reasonable time limit. In the following plots, we use �GNN� to label the curves corre-
sponding to the GNN approach, and �MCMF� to label our own algorithm.

We experimented on a real road map of the city of San Francisco [13], containing
174,956 nodes and 223,001 edges5. The original map was scaled to �t in a [0, 10000]2

workspace. The trajectories are generated as follows: (1) We randomly select a starting
node and a destination node (from the map) for each object. (2) Each object then travels
on the shortest-path between the two points. At the �rst timestamp, the distance di cov-
ered by each object i is randomly selected between 0 and Rmax (as de�ned in Section
4.3). At subsequent timestamps, the distance is adjusted randomly by ±10% · Rmax,
while ensuring that it neither becomes negative nor exceeds Rmax. (3) Upon reaching
the endpoint, a new random destination is selected and the same process is repeated.

In each experiment we generate N random trajectories that are sampled for a period
of M timestamps. We then run the corresponding MTT algorithms (without the object

4 Actually, we also enhanced the functionality of Bellman-Ford's algorithm with a processing
queue (for vertices), which reduces the O(|V | · |E|) complexity.

5 This �network� corresponded to the map topology on which the objects move, and it has
nothing to do with the ��ow network� of our algorithm.
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Parameter Range
Number of objects (N ) 50, 100, 300, 500

Number of timestamps (M ) 500, 1000, 1500, 2000
Object speed (Rmax) 20, 40, 80, 160

Table 1. System parameters
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Fig. 8. Performance vs. object cardinality

ids) and collect the resulting trajectories. These trajectories are compared to the original
ones, where we measure the success rate, i.e., the percentage of successive triplets (as
shown in Figure 4) that are associated with the correct trajectory. We use the CPU time
and the success rate as the performance metrics. Table 1 summarizes the parameters
under investigation, along with their ranges. Their default values are typeset in boldface.
In each experiment we vary a single parameter, while setting the remaining ones to their
default values. The total number of measurements varies from 50,000 to 500,000.

Figure 8(a) shows the running time of the two methods as a function of the object
cardinality. As expected, MCMF is slower than GNN, but it improves considerably over
Reid's algorithm, which is exponential to the size of the input and fails to terminate even
in the simplest of cases. We expect that by employing �divide-and-conquer� techniques
(e.g., by forming clusters that are solved independently of each other, similar to the
methods used in [5, 6]) our algorithm will scale to much larger datasets.

The main advantage of our approach over single scan methods is depicted in Figure
8(b). This plot shows the accuracy of the trajectory reconstruction process, in terms of
the percentage of correct associations. Even though GNN achieves lower running time,
its accuracy deteriorates rapidly with increasing number of objects. This is due to the
fact that more objects exhibit crossing trajectories, which confuses GNN (as shown in
Figure 2). Therefore, the results of GNN may be of little value in practice. On the other
hand, MCMF is very accurate and maintains a success rate of over 87%.

Figure 9 shows the CPU time for GNN and MCMF, as a function of the history
length M . GNN scales linearly with M , while the slope of the curve for MCMF exhibits
some variations. This behavior can be explained by the approximation that is discussed
in the last paragraph of Section 4.4. When negative cost cycles are detected, the size
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of the graph is reduced and subsequent iterations are executed faster. Consequently,
the running time of our algorithm is also affected by the appearance of negative cost
cycles. Note that the complexity analysis in Section 4.5 corresponds to the worst-case,
i.e., when negative cost cycles never form. Regarding accuracy, both algorithms are
unaffected by the number of timestamps.

Next, we investigate the effect of the object speed on the CPU time. As shown in
Figure 10(a), both algorithms become slower as the speed increases. For GNN, this is
due to the fact that clustering is less effective when the objects move faster. MCMF is
also affected by the object speed, since the average number of feasible associations K
for each measurement increases. Finally, Figure 10(b) depicts accuracy as a function
of the speed of the moving objects. As the speed of an object increases, the successive
locations of its trajectory move further apart from each other. Therefore, within a snap-
shot there may be many measurements that are closer to the object's previous location
than the correct one. The greedy nature of GNN is not able to deal with that and, for
high speeds, only 55% of the associations are correct. MCMF, on the other hand, is
clearly superior; its success rate is always over 83%.

6 Conclusions

In this paper, we investigate the feasibility of applying multiple target tracking tech-
niques in the context of anonymized trajectory databases. Existing methods are either
very slow (i.e., the complexity is exponential to the number of measurements), or very
inaccurate. The main contribution of our work lies in the novel transformation of the
MTT problem into an instance of the min-cost max-�ow problem. This transformation
allows for a polynomial time solution in O(MN2K(log(MNK) + K)), where M is
the number of timestamps, N is the number of measurements in each timestamp, and K
is the average number of feasible associations for each measurement. Our initial results
indicate that the proposed method produces very accurate results.

In the future, we plan to extend our work in a number of directions. First, we will
investigate the feasibility of our method in complex scenarios where (1) new tracks may
be initiated at random timestamps, and (2) location measurements may be lost due to
errors on the wireless channel. Second, we will combine our methods with clustering,
in order to further reduce the computational and space complexity. Speci�cally, through
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clustering, we will partition the tracking problem into a number of smaller sub-problems
that can be solved more ef�ciently.
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