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ABSTRACT Due to their ease-of-use, biometric verification methods to control access to digital devices
have become ubiquitous. Many rely on supervised machine learning, a process that is notoriously data-
hungry. At the same time, biometric data is sensitive from a privacy perspective, and a comprehensive review
from a data set perspective is lacking. In this survey, we present a comprehensive review of multimodal
face data sets (e.g., data sets containing RGB color plus other channels such as infrared or depth). This
follows a trend in both industry and academia to use such additional modalities to improve the robustness
and reliability of the resulting biometric verification systems. Furthermore, such data sets open the path to
a plethora of additional applications, such as 3D face reconstruction (e.g., to create avatars for VR and
AR environments), face detection, registration, alignment, and recognition systems, emotion detection,
anti-spoofing, etc. We also provide information regarding the data acquisition setup and data attributes
(ethnicities, poses, facial expressions, age, population size, etc.) as well as a thorough discussion of related
applications. Readers may thus use this survey as a tool to navigate the existing data sets both from the
application and data set perspective. To existing surveys we contribute, to the best of our knowledge, the
first exhaustive review of multimodalities in these data sets.

INDEX TERMS Anti-spoofing, Face detection, Face verification, Face verification systems, Multimodal

face data sets.

. INTRODUCTION

WED to their ease of use and difficulty to replicate,
biometrics are nowadays ubiquitously used for access
management of digital devices. As of this writing, all major
device manufacturers (e.g., Microsoft, Apple, Google, etc.)
have adopted fingerprint readers, face scanners, or a combi-
nation of both to provide users with an easy and quick way
to verify their access rights to devices. This mass adoption of
biometric verification was made possible, in large parts, due
to advances in imaging technology and artificial intelligence,
with methodologies such as manifold learning paving the
way for scalable and discriminative biometric verification.
From a technical perspective, a biometric verification sys-
tem is presented with a sample that is then compared to a data
base of biometric samples obtained during a sign up phase. If
a positive match between the presented sample and the data
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base can be established, access is granted, otherwise, it is
denied. A popular variant of this verification task is to use
images of faces. The reason is that the mere presence of an
authorized user in front of a device is sufficient to unlock and
access the device, making this form of biometric verification
arguably the easiest to use.

However, technical challenges include the robust identifi-
cation of the user’s face under a variety of lighting condi-
tions (e.g., near darkness or sharp highlights), under facial
poses, and from different viewing angles. Typical modern
face recognition systems overcome low light conditions using
infrared or near-infrared sensors to illuminate the scene,
albeit at the disadvantage that successful systems must be
able to process both color (RGB) and grayscale images.

Many systems tackle this task by using machine learn-
ing [1], and deep learning, in particular. The process usually
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FIGURE 1: Taxonomy of the multimodal data sets based on modality type.

consists of image acquisition, often adding modalities other
than visible-spectrum (VIS) RGB color channels (e.g., depth
or infrared) followed by face detection, feature alignment or
funneling, computing an embedding in a high-dimensional
latent space, before a typically simple thresholding is applied
(e.g., cosine metric or squared distances between the data
obtained during sign up and the authentication attempt).

Such verification systems are often trained in a supervised
fashion, requiring vast amounts of training data. However,
images of faces are sensitive from a privacy perspective, and,
as a result, such data often requires licensing, if available in
the first place.

2

In this survey, we present a review of facial data sets
currently available. The purpose is twofold—not only to
present a comprehensive overview of existing data sets in-
cluding a thorough discussion of their features/attributes, but
also to review the eligibility of the data for different tasks
such as face detection, alignment, registration, verification,
and recognition, as well as 3D face recognition, liveness
detection, and emotion recognition. Following recent trends
in both industry and academia to develop biometric ver-
ification systems that are robust against various forms of
anti-spoofing, lighting conditions, and facial expressions, we
place particular emphasis on multimodal data sets that com-
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bine RGB color channels with additional data such as depth,
(near-)infrared or even geometry. We explicitly exclude pure
RGB data from this survey and refer the reader to recent
reviews instead [2]-[5].

Il. SURVEY METHODOLOGY

Our focus is on multimodal data sets designed for facial
analysis applications. Our primary aim is to compile the most
widely used data sets accessible to the research community,
thus simplifying the process of selecting the most suitable
data set for various types of applications. To achieve this
goal, we emphasize four key criteria: scanning technologies,
modalities, demographics, and applications. Throughout this
survey, we analyze and categorize data sets considering these
four criteria.

In this study, we include peer-reviewed articles spanning
from 1990 to 2023. We exclude extended abstracts and papers
written in languages other than English. Our paper selection
process involved gathering articles from both Scopus and
Google Scholar using specific search queries, such as “multi-
modal data sets for facial analysis,” “RGB Depth Thermal 3D
2.5D data sets for facial analysis,” “face data set modalities,”
and “facial scanning and analysis databases/data sets.” We
considered only the initial search results until the titles and
keywords indicated a lack of relevance. This initial phase
yielded approximately 1,000 papers.

Subsequently, we conducted a thorough review, elimi-
nating duplicate papers and screening the remaining ones
based on their abstracts, adhering to our exclusion criteria.
Following this review, we engaged in extensive forward and
backward referencing to identify the most pertinent publi-
cations. This meticulous process led us to retain more than
200 papers. While we cite all these remaining papers in this
survey, our focus then shifted to identifying about 150 data
sets that encompass two or more modalities. It is essential to
highlight that we excluded plain RGB data sets, since there
are numerous surveys available that provide comprehensive
coverage of this specific type of data sets.

lll. TAXONOMY

We focus on multimodal data sets that comprise one or
more types of data sources. Following our search criteria,
we have gathered data from four distinct modalities for
facial scanning and analysis: RGB, Depth, 3D, and thermal
data (e.g., infrared and near-infrared). These data sets are
categorized based on these four modalities, as illustrated
in Figure 1. Furthermore, we have compiled and compared
various demographic attributes for each of these data sets,
as detailed in Table 1. These attributes include age, gender,
ethnicity, the number of data collection sessions, and the
time intervals between these sessions. We would like to
emphasize that if the demographic information is not readily
available in the primary data set documentation, we exclude
the publication from our demographic analysis. Furthermore,
in Section IV, we explore and compare various facial scan-
ning technologies. These technologies are categorized into
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three groups: Visible, 3D/Depth, and thermal. To facilitate
organization, we classify the collected data sets based on
the respective scanning technologies, and this classification
can be found in Tables 3 and 4. Subsequently, in Section V,
we delve into a detailed analysis of these data sets based
on attributes associated with the scanning technology and
data source. These attributes include the number of sam-
ples, camera specifications, data resolution, and wavelength
characteristics. Finally, we approach the collected data sets
from the perspective of their applicability in facial analysis,
as discussed in Section VI. In this context, we identify the
specific types of applications each data set is most suitable
for.

IV. FACIAL SCANNING TECHNOLOGIES

The previous few decades have seen a surge in the use of fa-
cial scanning technologies. These technologies play a pivotal
role in applications ranging from biometric authentication to
entertainment and medical diagnostics. The array of facial
scanning techniques encompasses various approaches, each
leveraging distinct principles to achieve accurate and detailed
3D representations of facial features. The huge amount of
data generated daily paired with a marked increase in com-
putational capacity has presented researchers with an exciting
chance to use these technologies to record and analyze human
bahavior and visual characteristics.

Structured light scanning projects controlled patterns of
light to capture facial contours, allowing for precise measure-
ments. Time-of-Flight (ToF) cameras emit light and measure
its return time, enabling rapid depth sensing. Stereo vision
systems use multiple cameras to triangulate facial geometry,
while photometric stereo analyzes lighting variations to in-
fer depth information. Additionally, passive techniques rely
on natural light and image analysis to create 3D models
without emitting light actively. This section delves into the
spectrum of facial scanning technologies, shedding light on
their unique attributes and applications.

A. VISIBLE LIGHT SCANNING

A visible camera sensor is a specialized scanner designed
to capture visible light within the 400 to 700 nanometers
spectrum. It seamlessly converts this light into an electrical
signal to form images and video streams. These cameras aim
to render images similar to human perception by capturing
light in the red, green, and blue (RGB) wavelengths. This
approach facilitates a true representation of colors, resulting
in realistic imagery. In contemporary contexts, advanced
security and surveillance cameras offer the ability to identify
targets and objects within the scene using high-definition
(HD) resolution or greater. These cameras come equipped
with a range of lens options, further enhancing their versa-
tility.

Similar to the human eye, visible light cameras require
lighting to operate effectively. Environmental factors like fog,
haze, smoke, heat waves, and smog exert notable influence
on their performance. As a result, their practical use is con-
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TABLE 1: Demographic information of the multimodal data sets included in this study.

Data Set Year bj Male Female 1 Modaliti Age Range  Sessi Time-lap: Ethnicities Application
MPIBC [6] 1996 200 100 100 1,400 RGB/Mesh 2040 Caucasian Reconstruction, Recognition
3DRMA [7] 1998 120 106 14 360 PointCloud 20-60 European Verification
CMU-HSFD (8] 2002 45 147 Hyperspectral 1-5 Several Weeks Recognition
ND-Collection-C [9] 2002 240 Gray/LWIR 10 10 Weeks Recognition
ND-Collection-D [10] 2003 275 953 RGB/Depth 2 6-13 Weeks Matching, Recognition
CASIA-3D FaceV1 [11] 2004 123 4,624 RGB/Mesh East-Asian Expressions
FRGCv2 [12] 2004 466 266 200 50,000 RGB/Depth/Mesh 18-28 Asian, White, Others Detection, Recognition
GavabDB [13] 2004 61 45 16 427 RGB/PointCloud 18-40 Caucasian Detection, Recognition
FRAV3D [14] 2005 106 79 27 1,696 RGB/Depth/Mesh Verification
BU-3DFE [15] 2006 100 2,500 RGB/Mesh 5 Ethnicities Expressions
IRIS-M3 [16] 2006 82 62 20 2,624 Multispectral Caucasian, Asian, African Recognition
BU-4DFE [17] 2008 101 60,600 RGB/Mesh 4 Ethnicities Expressions
Bosphorus [18] 2008 105 60 45 4,652 RGB/PointCloud 25-35 Caucasian Expressions
BJUT-3D [19] 2009 500 250 250 46,500 RGB/Mesh 16-49 East-Asian Pose Estimation, Recognition
Polikovsky [20] 2009 10 13 Gray/HS Asian, Caucasian Expressions
CASIA HFB [21] 2009 100 57 43 992 RGB/NIR/Depth Matching, Recognition
ADSIP [22] 2009 10 2 8 210 RGB/Mesh Expressions
Texas 3D [23] 2010 118 2,298 RGB/PointCloud 2275 Caucasian, African, Detection, Recognition
Asian, Hispanic
PolyU-HSFD [24] 2010 25 17 8 300 Hyperspectral 21-33 4 3-10 Months East-Asian Recognition
B3D(AC) [25] 2010 14 6 8 1,109 RGB/Mesh 21-53 Expressions
NVIE [26] 2010 215 157 58 436 Mono/LWIR 17-31 ‘White, Black, Asian, Latino Expressions
Carl [27] 2010 41 32 9 7,380 RGB/Thermal 6 Weeks Recognition
Photoface [28] 2011 261 227 34 7,356 RGB/Depth/Albedo 1-20 1-5 Weeks Caucasian Recognition, Verification
NFRAD-DB [29] 2011 50 37 13 600 RGB/NIR East-Asian Recognition
D3DFACS [30] 2011 10 4 6 534 2D/Mesh 23-41 Caucasian Expressions
Hi4D-ADSIP [31] 2012 80 32 48 3,360 2D/Mesh 18-60 Variable Expressions
CASIA NIR-VIS [32] 2013 725 17,580 RGB/NIR 4 4 Years East-Asian Matching, Recognition
SMIC [33] 2013 20 14 6 306 RGB/NIR 22-34 Asian, Caucasian, African Expressions
3DMAD [34], [35] 2013 17 10 7 255 RGB/Depth 3 2 Weeks Anti-Spoofing
LDHF-DB [36] 2013 100 70 30 1,600 RGB/NIR Matching, Recognition
I°’BVSD [37] 2013 75 60 15 1,362 RGB/LWIR Asian Verification
Sober Drunk [38], [39] 2013 41 31 10 4,100 LWIR Pose Estimation, Expressions
Caucasian, Middle East,
KinectFaceDB [40] 2014 52 38 14 RGB/IR/PointCloud 25-32 5-14 Days Maghreb, East-Asian, Indian, Detection, Recognition
Hispanic, African-American
KTFE [41] 2014 26 16 10 RGB/NIR/LWIR 11-32 7 Ethnicities Expressions
Liu et al. [42] 2015 77 181 RGB/LWIR White, Black, Asian, Latino Expressions
Lock3DFace [43] 2015 499 377 122 5,711 RGB/Depth Detection, Recognition
ND-NIVL [44] 2015 574 22,264 RGB/NIR 6 Months Recognition
MelIn3D [45] 2016 9,603 | 4,638 5,025 12,000 RGB/Mesh 1-83 Morphable Models
IST-EURECOM LFFD [46] | 2017 100 4,000 RGB/Depth 19 Ethnicities Expressions
Pandora [47] 2017 22 10 12 110 RGB/Depth Pose Estimation
UHDB3I [48] 2017 77 53 24 25,872 2D/Mesh Recognition
ESRC3D [49] 2018 9 45 54 RGB/Mesh Expressions
FIDENTIS [50] 2018 2,476 | 1,154 1322 RGB/Mesh 6-60 53 Ethnicities Recognition, Reconstruction,
4DFAB [51] 2018 180 120 60 | 1,800,000 RGB/3D/Depth 5-50 5 Years 30 Ethnicities Expressions
UL-FMTV [52] 2018 134 86 48 Multispectral 4 Years Pose Estimation, Expression
Eurocom [53] 2018 50 4,200 RGB/Thermal 3—4 Months Expressions
PUCV-DTF [54] 2018 46 40 6 11,500 Thermal 18-29 Pose Estimation, Expressions
SDFD [55] 2018 54 54 0 6,480 RGB/NIR 20-50 Recognition
MAVEFER [56] 2020 17 7 10 17 RGB/Depth/LWIR 21-38 Korean Expressions
HeadSpace [57] 2020 1,519 1,519 RGB/Mesh 1-89 White, Asian, Black Morphable Models
Tuft [58] 2020 113 39 74 10,000 | RGB/NIR/LWIR/PointCloud 4-70 15 Ethnicities Recognition
. Russian, African, Caucasian . .
Sejong-A [59] 2021 30 16 14 1,500 RGB/SWIR/NIR 2 Weeks Southeast- & Southcenter-Asian Verification
. Russian, African, Caucasian . .
Sejong-B [59] 2021 70 44 26 23,000 RGB/SWIR/NIR 2 Weeks Southeast- & Southcenter-Asian Verification
UNCC-ThermalFace [60] 2022 10 5 5 10,000 LWIR Recognition

strained to daylight hours and clear weather conditions. To
avoid these limitations, visible light cameras are often cou-
pled with illumination or thermal infrared counterparts. This
combination can function during nighttime or in low-light
scenarios, as well as in situations involving haze, fog, smoke,
or sandstorms—conditions that can otherwise compromise
the functionality of cameras capturing the visible spectrum.
Due to these distinct advantages, Infiniti Electro-Optics, a
leader in the surveillance industry, strongly advocates the
adoption of multi-sensor EO/IR systems for tasks demanding
long-range surveillance and mission-critical applications.

B. 3D AND DEPTH FACIAL SCANNING

The rapid advancement of 3D sensors presents a good oppor-
tunity for facial analysis, potentially bypassing the inherent
constraints of 2D technologies. The sophisticated geometric
details within 3D facial data hold the potential to signifi-
cantly enhance facial analysis output, especially in scenarios

4

where 2D technologies are found to be inefficient. While
advances have been made in 2D face recognition research in
recent years, its precision remains heavily reliant on lighting
conditions and the alignment of human poses [61]. The
accuracy of 2D facial analysis output tends to decrease when
facing low light or improperly aligned facial poses within
the camera’s field of view [62]. This has prompted numerous
researchers to shift their attention toward 3D facial analysis.
Various types of 3D scanning technologies are utilized to
capture detailed and accurate representations of the human
face. These technologies enable the extraction of geometric
and textural information, which are essential for tasks such
as face recognition, expression analysis, and virtual avatar
creation [63].

Passive and active 3D facial acquisition systems are two
categories of technologies used to capture three-dimensional
representations of human faces. They differ in their approach
to acquiring depth information and the type of interaction
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with the subject being scanned [64].

1) Active Acquisition Systems

Active systems involve the emission of external stimuli,
typically light or infrared radiation, onto the subject’s face.
These emitted signals are then measured after being reflected
or scattered off the face’s surface to calculate the distances
and to create a 3D representation [65]. The system actively
engages with the subject through the emission and detection
of these signals, where an active light source rotates around
an item or face to scan the full object surface. These sensors
provide comprehensive 3D readings, although the majority
of them are restricted to static situations [66]. Examples
of these technologies include structured light scanners, ToF
scanners, and laser triangulation scanners. This type of scan-
ning technology operates in varying lighting conditions and
is suitable for various facial analysis applications, including
biometrics and medical diagnostics [67]. In the following, we
discuss some of the prominent types of 3D active scanning
technologies used in facial analysis applications.

Structured Light Scanning. Structured light scanners
project a known pattern of light onto the subject’s face and
then capture how the pattern is distorted by the surface.
The pattern’s deformation is then recorded using a CCD
(charge-coupled device). The depth data is derived from the
way the camera’s sensor interprets the pattern within the
environment. As an illustration, when a sequence of stripes
is projected onto a spherical object, these stripes exhibit
a specific distortion and curvature as they conform to the
contours of the object’s surface. The reconstruction of the 3D
image is accomplished through sophisticated software [66].
Recent advances in structured light scanning make it a
practical approach for 3D facial capturing [68]. There are
several structured light scanning devices that are commonly
used for facial scanning. For instance, the Kinect v1, a depth
sensor developed by Microsoft and introduced in 2010, is
based on structured light technology. This device is equipped
with a visible light camera and a depth sensor that consists
of an IR projector and detector. The projector emits a pattern
of infrared light in the form of a grid or speckle pattern onto
the scene. This pattern is carefully designed and controlled,
with distinct features that can be easily tracked. The infrared
pattern gets distorted by objects and surfaces in the envi-
ronment. The distortion of the pattern is due to the varying
distances of different points on the objects from the sensor.
The infrared camera observes and captures the distorted
pattern as it is reflected back by the objects. By analyzing
the observed distortion of the pattern, the Kinect software
calculates a relatively sparse depth information for object
points covered by the speckle pattern, and interpolates this
information into a full depth frame. This scanning technology
was used for facial scanning in several data sets [69]—[72].
The Intel RealSense depth camera can also be categorized
as a structured light scanning technology since it employs
coded light to capture images [73]. This technology relies on
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the precise interpretation of a projected light pattern. Coded
and structured light cameras excel when used indoors and
within relatively limited ranges, which can vary depending
on the camera’s light intensity. The Intel RealSense depth
camera is used by many researchers to collect facial data
sets for many applications, such as face spoofing attack
detection [74]-[79], facial expression recognition [80], and
face recognition [81].

However, a challenge with such systems is their sus-
ceptibility to interference from environmental factors like
direct sun light, other cameras, or devices emitting infrared
signals. Moreover, a sophisticated algorithm is required to
compute the distance at every point within the pattern. Many
earlier structured light scanning systems lack modularity.
This implies that a subject’s entire facial data, spanning
from ear to ear, cannot be captured from multiple viewpoints
simultaneously. Consequently, a secondary capture from an
alternative angle is required. Although KinectFusion cite-
Newcombe:2011:Fusion addresses this problem, such move-
ments introduce potential discrepancies in the resulting 3D
data, as both the system and the subject may need to adjust
positions [67].

Time-of-Flight (ToF). ToF sensors operate similarly to other
laser scanners, yet their distinctive advantage lies in their
ability to capture entire scenes instantaneously, making them
well suited for dynamic environments. ToF offers full-range,
full-frame distance data at impressive frame rates which po-
sitions these sensors as potential alternatives to conventional
3D acquisition systems. The distance calculation depends
on measuring the phase difference between emitted near-
infrared light from a LED, and the subsequently received
near-infrared signal [67].

Microsoft Kinect v2, introduced by Microsoft in 2013,
is one of the most common ToF sensors used for depth
estimation in many applications, including facial scanning. It
is equipped with a laser IR transmitter and a depth sensor.
The emitter projects modulated IR light into the observed
area. The depth sensor then captures the light that is reflected
back. A timing generator is utilized to ensure precise syn-
chronization between the IR emitter and the depth sensor. By
analyzing the phase shift between the emitted and reflected
light, Kinect v2 can accurately calculate the depth for each
individual pixel. Several facial analysis data sets employ
this device to capture the depth and 3D shape of human
faces [56], [82]-[84]. The quality of the generated models
shows higher accuracy, quality, and resolution compared to
Microsoft Kinect v1.

Because of their compact design, ToF sensors can seam-
lessly integrate into real-time facial analysis systems similar
to standard 2D cameras. Nevertheless, these sensors are not
devoid of limitations. Challenges encompass restricted reso-
lution, susceptibility to noise in the data, exclusive grayscale
outputs, high cost, and inherent limitations in resolution [68].

Laser Triangulation Scanners. A triangulation-based 3D
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TABLE 2: Comparison of the most common 3D and depth scanning technologies.

ToF Structured Light Stereo Vision Laser Triangulation
Type Active Active Passive Active
Distance 0.4-5m 0.5-1.2m <2m <2.5m
Environment Indoor/Outdoor Indoor Controlled lighting Indoor/Outdoor
Software Overhead Low Medium High Medium
Accuracy Medium High Low High
Resolution High High Low High
Response Time High Low Medium High
Cost Low Medium Low High
Depth Range Scalable Scalable Limited Scalable
Compactness High High Low High
Advantages * Depth scalability. Captures a large Copes well with * Less sensitive to
* Suitable for area of the object at long distances and environmental
scanning large once. moving objects. lighting conditions
objects. Provides higher The hardware and mechanical
detail levels implementation cost alignment.
compared to ToF is very low. * Suitable for
and Stereo Vision Well-suited for scanning large
and higher safety capturing images objects.
compared to Laser for intuitive * Compact-sized and
Triangulation presentation to portable.
technology. humans.
Disadvantages * Trade accuracy for Struggles with dark, Scan quality * Not safe.
speed and depth transparent, or shiny can be affected  Sensitive to ambient
scalability. objects. by the lighting light.

Not suitable for very
large objects.
Sensitive to optical
interference.
Requires to remain
still when taking the
scan of an object.

environment, the
quality of cameras,
and the software.
Less effective in
measuring distance.
Requires careful
calibration.
Requires sufficient
intensity and color
variation.

scanning technology, such as the Minolta Vivid scanner [85],
detects the laser beam’s emitting and receiving angles before
using triangulation methods to establish the exact point of
reflection. A precise map is generated by calculating and
grouping multiple reflection locations as the laser beam
scans through the face. The scanning speed of triangulation-
based devices is sacrificed for precision. The target individual
would have to remain still for several minutes before a 3D
facial map can be obtained. As a result, this method is
impractical for 3D video recording [63]. Laser triangulation
scanners are commonly used for industrial and precision
applications, but they may not be the primary choice for
capturing facial data due to their nature and the need for
precise positioning. As a result, there are fewer face data sets
captured using laser triangulation scanners compared to other

6

3D scanning technologies [86].

2) Passive Acquisition Systems

The second type of 3D system used for capturing human
faces are passive vision systems, which contain solely
cameras using only the ambient light [64]. Because pas-
sive vision systems for 3D data acquisition relies on
2D images, it suffers from a correspondence problem—
it is difficult to discover a set of correct corresponding
points in different images captured using multiple cam-
eras for the same object at the same moment. The prob-
lem is normally addressed using sparse matching of fea-
ture points, e.g., by using SIFT citeLowe:1999:SIFT and
RANSAC citeFischler:1981:RANSAC, followed by bundle
adjustment citeTriggs:1999:Bundle to refine the reconstruc-
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TABLE 3: 3D and depth scanning technologies with corresponding data sets.

Structred Light Stereo Vision ToF Laser Triangulation
Kinect vl Intel RealSense other | 3dMD DI3D DI4D other | Kinect v2 | Minolta Vivid CyberWare 3030

CASIA-3D FaceV1 [11] v
RGB-D Face (VAP) [69] v
FRGCV2 [12] v
BU-3DFE [15] v
BU-4DFE [17] v
3D-TEC [87] v
UMB-DB [88] v
SuperFaces [89]
CurtainFaces [70], [90]
FaceWarehouse [71]
Lock3DFace [43]
IIT-D RGB-D [72]
UHDBI1 [91] v
CAS(ME)® [92]
3DMAD [34], [35]
CASIA-SURF [79]
WMCA [74]
HQ-WMCA [93]
CASIA-SURF CeFA [94]
ND-2006 [95] v
GavabDB [13] v
UoY [96] v
BJUT-3D [19] v
FRAV3D [14] v
Pandora [47] v
MPIBC [6] v
BIWI [97]
ICT-3DHP [98]
KaspaAROV [82]
HRRFaceD [83] v
IST-EURECOM LFFD [46] v
FaceVerse-Detailed [99] v
FaceVerse-Coarse [99] v
Cuietal. [100] v
ESRC3D [49] v
SURREY [101] v
JNU [101] v
3DWF [102] v
Intellifusion [103], [104]
Lietal [105] v
SeetaFace [106] v
MotorMark [107] v
Sun et al. [108] v
TAS-Lab [109] v
RGBDFaces [110] v
MICC (Florence2D/3D) [111] v
Face-Emotion [112]
Florence3D-Re-1d [84]
IKFDB [113]

MMFD [114] v
RGB-D-T [115] v
FIDENTIS [50] v
FaceScape [116] v
CASIA HFB [21] v
4DFAB [51] v v
ND-Collection-D [10] v
3DFACE-XMU [117] v
ZJU-3DFED [118] v
FSU [119] v
B3D(AC) [25] v v
D3DFACS [30] v
Hi4D-ADSIP [31] v
ADSIP [22] v
MAVFER [56] v
HeadSpace [57] v
Meln3D [45] v
Tuft [58] v
UHDB31 [48] v
Bechman [120] v
Eurocom [53] v

Data Set

SNENENENEN

<

~

ANENENEN

ENENEN

INENEN
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tion. Still, the reconstructed 3D data resulting from these
systems may be exceedingly noisy, incomplete, and incon-
sistent [65]. In the following, we discuss various types of 3D
passive scanning technologies used in the context of facial
analysis.

Stereo Vision Systems. Stereo vision utilizes two or more
cameras placed slightly apart to capture images of the same
scene from different angles. By analyzing the disparities
between these images, the system can calculate depth in-
formation. This method is suitable for capturing dynamic
facial expressions and subtle depth changes due to move-
ment [121]. The 3DMD corporation sells various types of
stereo-vision scanners. The 3dMDface system is one of the
stereo scanners that are specifically developed by 3DMD
for facial scanning [122]. In this system, multiple cameras
are used to generate a high-quality color texture map that
is registered with the 3D data. Typically, the collected shape
and texture data capture the whole face, resulting in a texture-
mapped mesh with high coverage and precision. This system
is used in many facial analysis data sets [15], [45], [89],
[91], [101], [111]. Similarly, 3dMDhead is another capturing
system developed by 3DMD, based on Stereo Vision tech-
nology to capture the whole space of the head. It is used by
Dai et al. [57] to generate a shape-and-texture 3D morphable
model of the full head. The DI3D imaging is another stereo
vision system that uses two or more readily available digital
SLR cameras, making it easily accessible [123]. What sets it
apart is its freedom from the need for intense white lighting,
intricate pattern projections, or lasers. Instead, it employs
the technique of triangulating, whereby the high-resolution
images captured by these paired cameras are used to generate
real-time 3D surfaces. This system is used by Zhang et
al. [17] to capture 3D spatio-temporal features in subtle facial
expressions to understand the relation between pose and
motion dynamics in facial action units. The Stirling ESRC
data set was also captured using the DI3D scanning system
to collect 3D face scans of 100 subjects under seven different
expression variations. This data set was used by Feng et
al. [49] to develop an approach for dense 3D reconstruction
from 2D face images in the wild. The DI3D system was also
used by Bogdan et al. [31] to collect the Hi4D-ADSIP data
set, which consists of 3,360 facial scans captured from 80
subjects. As technology advances, this method extends into
capturing dynamic motion over time. By employing three or
more industrial-grade video cameras, another scanning tech-
nology, named DI4D, can create complete 3D color video
sequences of moving surfaces. Each frame in the sequence
is treated as an individual stereo pair of images which are
then automatically processed to produce detailed 3D color
surfaces. The resulting data streams are seamlessly merged to
craft a series of high-resolution 3D polygonal images that can
be played back as a dynamic movie sequence. The frame rate
can vary depending on the hardware, but the system readily
achieves a smooth capture of at least 25 frames per second. In
practical terms, the DI4D Capture System is well-suited for
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applications where capturing not only the static 3D shape but
also the motion and changes in the object’s surface over time
is crucial. This could be particularly valuable in fields such as
facial animation, biomechanics, and medical imaging, where
capturing and analyzing dynamic facial expressions, body
movements, or deformations are essential for research and
creative endeavors. This dynamic scanning system was used
by Cheng et al. [51] to collect the 4DFAB data set, which
includes 4D facial scanning of 180 subjects for both posed
and spontaneous facial behaviors collected over a period of
five years under multiple sessions.

Shape from Shading (Photoclinometry). Shape-from-
Shading (SFS) estimates surface orientation by using shading
from a single image. It is a popular topic of research because
of its obvious uses and ease of capture—the goal is to rebuild
an accurate 3D model from a 2D snapshot, which eliminates
the need for expensive and/or complex capture hardware. Be-
cause it is extremely difficult to separate gradient information
from color or texture information in a single image, there will
always be ambiguity as to whether an intensity gradient is due
to a slope or some color, pattern shift, or shadowing [124].

Photometric Stereo (PS). PS is an improved SFS method
that aims to eliminate the ambiguities associated with the
standard SFS methodology of estimating 3D shape from a
single image by separating the 3D morphology from the 2D
texture. It creates a 3D form from three or more photos of the
same item, each light from a different and known direction,
and estimates surface normals at each pixel [28], [125].

C. THERMAL AND MULTISPECTRAL SCANNING
Most conventional image-based algorithms have an excel-
lent performance in terms of accuracy when the face im-
age is recorded under controlled conditions. However, these
methods fail when presented with images captured under
an uncontrolled environment with high distortions resulting
from changes in illumination. A nighttime situation is an
example of a condition where human recognition, based
exclusively on visible spectrum pictures, may be impractical.
Infrared imaging can be used to overcome these challenges
by capturing the temperature of the skin [143]. On the
other hand, multispectral and hyperspectral camera sensors
excel in capturing both spatial and spectral data from hu-
man faces. Progress in imaging technologies has led to the
emergence of multispectral imaging devices boasting broader
technology options, enhanced quality, and reduced cost.
Among the spectrum-recording apparatuses are UV-visible,
near-infrared (NIR), short-wave IR (SWIR), mid-wave IR
(MWIR), and long-wave IR (LWIR) devices. Despite sub-
stantial variation in their price points, a trend of decreasing
costs persists as technological advancements drive higher
pixel densities, improved pixel yields, and increasing demand
by applications [144].

Infrared thermal sensors facilitate the imaging of scenes
and objects through two methods: IR light reflectance and
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TABLE 4: Thermal infrared and multispectral/hyperspectral scanning with corresponding data sets.

Data Set

VIS NIR SWIR MWIR LWIR

other Multi-/Hyperspectral

SMIC [33] v

I2BVSD [37] v

Msspoof [126] v

SWIR [127]

ANENENENEN

BRSU [128]

EMSPAD [129]

MLFP [130]

AN

CASIA-SUREF [79]

ANENEN

\

CIGIT-PPM [131]

PolyU-HSFD [24]

CMU-HSFD [8]

ND-Collection-C [9]

ND-NIVL [44]

CASIA HFB [21]

CASIA NIR-VIS [32]

LDHE-DB [36]

NFRAD [29]

SSENENENENEN

PolyU-NIRFD [132]

NVIE [26]

Liu et al. [42]

ANENENENENENENENENEN

IRIS [133]

SNESEN

UH [134]

Carl [27]

ARL-MMFD1 [135]

NESEN

ASEN

ARL-MMFD2 [136]

UL-FMTYV [52]

Eurocom [53]

Tuft [58]

Sejong-A [59]

ANENENEN
SNESEN

Sejong-B [59]

Sober Drunk [38], [39]

PUCV-DTF [54]

NENENENEN

TFW [137]

SpeakingFaces [138]

KTEFE [41]

RN

ANENENEN

NIST/Equinox [139]

SDFD [55]

CBSR-NIR [140]

AN
\

RWTH [141]

UNCC-ThermalFace [60]

IRIS-M3 [16]

UWA-HSFD [142]

IR radiation emittance. This utilization of IR radiation stems
from its correlation with the heat generated or reflected by
an object, a concept known as thermal imaging. Since IR
radiation wavelengths are longer than those of visible light,
it falls outside the spectrum of human vision. The infrared
(IR) spectrum can be categorized based on wavelength into
the following bands [145] (for reference, the visible spectrum
ranges approximately from 0.4 to 0.7 pm):

« NIR: Spanning from 0.7 to 1 pm.
o SWIR: Including the range of 1 to 3 um.
« MWIR: Covering wavelengths from 3 to 5 um.
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o LWIR: Extending between 8 to 14 ym.
o FWIR: Comprising far wavelengths greater than 14 pm.

The NIR and SWIR bands are commonly termed “reflected
infrared radiation,” while the MWIR and LWIR bands are
referred to as “thermal infrared radiation.” Notably, the latter
bands do not require an additional light or heat source; ther-
mal radiation sensors can create images of the environment
or objects solely by detecting the thermal energy emitted by
observed elements in the scene [143].

NIR cameras exhibit heightened sensitivity to temperature
changes but offer less detailed information than visible light
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cameras. This is because the amount of colors captured in
the visible spectrum delivers more comprehensive data and is
easier to interpret [144]. Variations in facial images between
the visible and infrared bands increase as wavelength in-
creases. Therefore, the LWIR band is frequently employed to
achieve complete lighting condition invariance since lighter
areas in infrared images indicate higher temperatures.

V. MODALITIES

Facial analysis is a critical domain in biometrics and
computer vision, offering applications in security, human-
computer interaction, and emotional analysis. Understanding
the diversity of modalities used for this purpose is fundamen-
tal. These modalities provide various ways to capture and
interpret facial data. In this section, we explore five distinct
modalities: RGB, Depth, 3D, Thermal, and Multispectral
imaging, and their roles in facial recognition, expressions
analysis, and verification.

A. RGB DATA

RGB imaging captures the color information of the face
using red, green, and blue channels. It is the most commonly
used modality and provides valuable visual appearance de-
tails. Modern RGB-based facial analysis systems have indeed
achieved remarkable results in various applications, such as
face recognition and authentication. However, they primarily
rely on the visual appearance of faces captured through stan-
dard RGB cameras. This dependence on visual appearance
poses a significant challenge in scenarios where lighting
conditions are less than ideal, like poorly lit rooms, outdoor
environments during nighttime, or overcast days. In such
situations, the quality of the RGB images can deteriorate,
leading to decreased accuracy and reliability in facial anal-
ysis tasks. Therefore, the fusion of RGB images with other
modalities such as depth, thermal, and 3D meshes, represents
a significant advancement in facial analysis technology. It not
only mitigates the challenges posed by variable lighting con-
ditions but also opens up new possibilities for applications in
security, entertainment, healthcare, etc., where accurate facial
analysis is paramount. For example, the output of applica-
tions such as face anti-spoofing, can be highly improved by
augmenting the RGB images with other modalities, such as
depth and thermal channels, to acquire more geometric and
biometric features that can help detect several attacks.

There are several RGB data sets that are widely used for
facial analysis applications, such as MS-Celeb-1M [146], one
of the most common data sets with one million celebrity
face images collected from the web. It covers a wide range
of poses, ages, and ethnicities. VGGFace2 [147] is a data
set with over 3 million face images from 9,000 individu-
als. It provides diverse poses, lighting conditions, and ages.
CASIA-WebFace [148], [149] contains over 490,000 im-
ages from 10,575 subjects, including images captured in
uncontrolled conditions from the web. The MEVIEW (Mi-
cro ExpressionsVIdEos in the Wild) data set [150] contains
40 micro-expression video clips at 25 fps with an image
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resolution of 1280x720. The average length of the video
clips in the data set is 3 seconds, and the camera shot is
often switched. The emotion types in MEVIEW are divided
into seven classes: happiness, contempt, disgust, surprise,
fear, anger, and ambiguous/unclear emotions. IJB-A [151] is
an RGB in the wild data set containing 500 subjects with
manually localized face images. In our survey, we target
multimodal data sets that incorporate multiple modalities for
facial analysis applications. Data sets that are composed of
plain RGB data sets are not covered by this survey. For more
details about such data sets, we refer the reader to Castaneda
et al. [4] and Chihaoui et al. [5], which provide a more
comprehensive discussion of this type of data sets.

B. 3D DATA

3D data sets specifically focus on capturing the 3D shape of
the face. These data sets typically consist of 3D facial scans
or point clouds that represent the facial geometry. Instead of
using RGB images, they directly capture the facial structure
in a three-dimensional space. This allows for precise analysis
of facial features and more robust face recognition algorithms
that can handle pose variations and other geometric defor-
mations. Therefore, the field of facial analysis has seen a
significant shift towards 3D face recognition techniques [10].
This shift is primarily driven by the need to address the
limitations and challenges posed by conventional 2D face
analysis systems. One of the key advantages of 3D face
recognition is the wealth of geometric information it offers.
By capturing the three-dimensional structure of the face,
including the contours, shape, and spatial relationships of
facial features, 3D systems can create a more accurate and
unique facial signature for each individual. When comparing
2D and 3D facial analysis accuracy under identical pose and
lighting conditions, 3D face recognition often outperforms
its 2D counterpart [159]. Table 5 summarizes 3D data sets
whereas Table refRGB-D-3D presents data sets that include
both depth and 3D facial scanning.

The point cloud representation is the most fundamental
way to depict the facial surface. It is also the most com-
mon output generated by 3D scanners. It encompasses an
unorganized collection of 3D coordinates corresponding to
points on the facial surface [160]. In the past, it was viewed
as a sparse approximation of the actual surface, but with the
advent of point-based rendering and increases in storage and
processing capabilities this perception is diminishing. Nowa-
days, facial analysis can delve into increasingly finer levels
of detail without concerns about memory limitations. This
ease of use has also recently accelerated the development of
point cloud algorithms. Additionally, there are suggestions to
employ sparser representations of the complete point cloud,
such as contour and profile curves, to approximate the facial
shape [161].

On the other hand, mesh representations are achieved by
tesselating 3D point clouds, typically using triangular facets.
This connectivity or topology data eases the retrieval of
neighboring points and, thus, enables the measurement of
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TABLE 5: RGB-3D data sets.

Data set Year Subjects (M/F) Camera Modaliti RGB Resoluti Demographics 3D Resoluti Applicati
MPIBC [6] 1996 200 (100/100) 1,400 CyberWare TM RGB/Mesh Age, Gender 70,000 vertices Reconstruction, Recognition
3DRMA [7] 1998 120 (106/14) 360 | Structured Light PointCloud Age, Gender 4,000 vertices Recognition, Verification
CASIA-3D FaceV1 [11] | 2004 123 4,624 | Minolta Vivid 910 RGB/Mesh Expressions
GavabDB [13] 2004 61 (45/16) 427 | Minolta Vivid 700 | RGB/PointCloud Age, Gender 10k-20k vertices Detection, Recognition
BU-3DFE [15] 2006 100 2,500 3DMD RGB/Mesh 512 x 512 Age, Gender, Ethnicity Micro Expressions
Structured Light 2,000 vertices, Recognition,
ZJU-3DFED [118] 2006 40 360 System RGB/Mesh 4,000 triangles Posed Expressions
Bechman [120] 2007 Cyberware 3030 RGB/Mesh Dynamic Expressions
BU-4DFE [17] 2008 101 60,600 Di3D RGB/Mesh | 1,040 x 1,329 | Age. Gender, Ethnicity Alighment, _
Dynamic Expressions
. ) Inspeck Mega . N - s Detection,
Bosphorus [18] 2008 105 (60745) 4,652 Capturor IT RGB/PointCloud 1,600 x 1,200 Age, Gender 35,000 vertices Recognition, Verification
ADSIP [22] 2009 10 (2/8) 210 3dMD RGB/Mesh 640 x 480 Anti-Spoofing
BJUT-3D [19] 2009 | 500 (250/250) 46,500 Cyb}e;(\;»gi;;;oso RGB/Mesh Age, Gender Recognition
Texas 3D [23] 2010 118 2,298 MU-2 stereo RGB/PointCloud 751 x 501 Age, Gender Detection, Recognition
B3D(AC) [25] 2010 14 (6/8) 1,109 | Structured light, RGB/Mesh Age, Gender Micro Expressions
Stereo vision
MICC . 40,000 vertices, o
(Florence2D/3D) [111] 2011 53 3dMD RGB/Mesh 3,341 x 2,027 80,000 triangles Recognition
3D-TEC [87] 2011 214 428 Vivid 910 RGB/PointCloud 480 x 640 Age, Gender Matching, Recognition
UMB-DB [88] 2011 143 1,473 Vivid 900 RGB/PointCloud 640 x 480 Age, Gender Detection, Recognition
D3DFACS [30] 2011 10 (4/6) 534 3DMD RGB/Mesh 1,024 x 1,280 Age, Gender 30,000 vertices Dynamic Expressions
Hi4D-ADSIP [31] 02| 80(3248) 3,360 pI3D RGB/Mesh | 2,352 x 1,728 A Dynamic Expressions
IIIT-D RGB-D [72] 2013 106 4,605 Kinect v1 RGB/PointCloud 640 x 480 Age, Gender Detection, Recognition
- 60,000 vertices, Recognition,
Meln3D [45] 2016 | 9,663 (4,638/5,025) 12,000 3dMD RGB/Mesh Age, Gender, Ethnicity 120,000 triangles 3D Morphable Models
Registration,
BFM-2017 [152] 2017 200 360 ABW-3D RGB/Mesh 3D Morphable Models
KF-ITW [153] 2017 17 Kinect v1 RGB/Mesh 3D Morphable Models,
Recognition
. 25,000 vertices, ..
UHDB31 [48] 2017 77 (5324) 25,872 3dMD RGB/Mesh Multiple 49,500 triangles Recognition
ESRC3D [49] 2018 99 (45/54) DI3D RGB/Mesh Recognition, Expressions
SURREY [101] 2018 168 168 3dMD RGB/Mesh AgEet’hSieC’i‘ge“ 3D Morphable Models
JNU [101] 2018 774 774 3dMD RGB/Mesh Age, Gender 3D Morphable Models
FIDENTIS [50] 2018 | 2,476 (1,154/1,322) Vectra M1/XT/H1 RGB/Mesh Age, Gender, Ethnicity | 20k-60k vertices Recognition, Verification
FaceScape [116] 2020 938 18,760 | DSLR System RGB/Mesh Age, Gender m t‘f;:zle; 3D Morphable Model
HeadSpace [57] 2020 1,519 1,519 3dMD RGB/Mesh Age, Gender, 180,000 vertices 3D Morphable Models,
Ethnicity Reconstruction
FaceVerse-Detailed [99] | 2022 128 2,688 DSLR System RGB/Mesh Age, Gender Posed Expressions
FaceVerse-Coarse [99] 2022 60,000 | Structured Light RGB/Mesh Age, Gender Posed Expressions

geodesic distances between facial locations and simplifies
rendering for viewing. Numerous techniques can be used
to create a mesh consisting of triangles, quadrilaterals, or
other simple convex polygons from a point cloud, with the
power crust algorithm standing out as the most effective.
Furthermore, Dharavath et al. [162] describe a technique
for constructing a regular facial mesh model based on the
scattered point cloud.

The exploration of 3D facial surface acquisition began
approximately two decades ago, marking a significant mile-
stone in computer vision research. One of the earliest data
sets in 3D facial scanning is MPIBC [6]. This data set was
collected using a CyberWare scanning system. It includes
seven views of 200 laser-scanned faces taken with differ-
ent poses. Among the pioneering data sets in this field,
the 3DRMA data set [7] stands out as one of the earliest
endeavors to capture and represent human facial shapes as
point clouds. Employing structured light technology, this
data set was meticulously compiled from 120 individuals,
each posing twice in front of the scanning system. Another
noteworthy contribution, the GavabDB data set [13], emerged
during the same era and was captured using the Minolta
VI-700 device. The FRAV3D [14] data set is also captured
using a Minolta VI-700 3D laser light-stripe triangulation
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range-finder, which provides a polygonal 3D mesh model.
It contains around 1696 images from 106 subjects. Every
face was scanned several times. Frontal views were preferred,
although little turns were allowed in the acquisition process.
Due to these changes in the face pose, normalization has to
be done [14].

It is important to note that, given the nascent stage of 3D
face scanning technologies at that time, the data collected
often exhibited various imperfections, including artifacts,
noise, and missing regions. Consequently, extensive pre-
processing became a necessity to rectify these imperfec-
tions and attain satisfactory results [163]. The landscape of
3D face scanning evolved with the introduction of more
advanced scanners such as the Vivid 910 3D, which is
renowned for its superior scanning capabilities, subsequently
leading to the creation of several high-quality data sets. No-
table data sets generated using this advanced device include
CASIA-3D [11], ND-Collection-D [10], ND-2006 [95], 3D-
TEC [87], and UMB-DB [88].

The 3dMD system stands out as one of the most widely
used devices for acquiring 3D human facial data. Early data
sets like BU-3DFE [15] were among the first to be cap-
tured using this system, and it continues to be the preferred
choice for generating 3D data sets. This system is notably
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TABLE 6: RGB-Depth data sets.

Resolution

Data Set | Year | Subjects (M/F) | Samples | Camera RGB | Depth | Demographics Application
ND-Collection-D [10] 2003 275 953 | Minolta Vivid 900 640 x 480 640 x 480 Matching, Recognition
FSU [119] 2003 37 222 | Minolta Vivid 700 242 x 347 242 x 347 Recognition
ETH [154] 2008 26 10,545 Stmcctz;fgr?ght 640 x 480 | 150 x 200 Gender Pose Estimation
Photoface [28] 2011 261 (227/34) 7,356 | Photometric Stereo | 1,280 x 1,024 Gender Recognition, Verification
3DFACE-XMU [117] 2011 15 118 Stereo Vision Recognition
RGB-D Face (VAP) [69] 2012 31 1,581 Kinect 1,280 x 960 640 x 480 Detection, Recognition
ICT-3DHP [98] 2012 10 Kinect v1 640 x 480 Pose Estimation
3DMAD [34], [35] 2013 17 (10/7) 255 VIS/Kinect v1 640 x 480 640 x 480 Gender Anti-Spoofing
BIWI [97] 2013 20 15,000 Kinect 640 x 480 640 x 480 Pose Estimation
HRRFaceD [83] 2014 18 22 Kinect v2 512 x 424 Detection, Recognition
FEEDB ver.1 [155] 2014 50 1,650 Kinect 640 x 480 Age, Gender Expressions
FEEDB ver.2 [156] 2014 50 1,550 Kinect 640 x 480 Age, Gender Expressions
RGBDFaces [110] 2014 28 Kinect Recognition, Reconstruction
Lock3DFace [43] 2015 | 509 (377/122) 5,711 Kinect 1,920 x 1,080 | 512 x 424 Age, Gender Detection, Recognition
UWA-Kinect [157] 2016 48 15,000 Kinect Recognition
Pandora [47] 2017 22 (10/12) 110 Kinect v1 1,920 x 1,080 | 512 x 424 Gender Pose Estimation
MotorMark [107] 2017 35 30,000 Kinect 1,280 x 720 515 x 424 Pose Estimation
IST-EURECOM LFFD [46] | 2017 100 4000 |  Lytro ILLUM Age, Gender, | Detection, Recognition,

Ethnicity Expressions
Cui et al. [100] 2018 747 845,000 RealSense 11 Detection, Recognition
SeetaFace [106] 2018 747 845,000 RealSense 11 Identification
Sun et al. [108] 2018 35 142,10 HD Dual 1,280 x 720 Anti-Spoofing

Camera

Intellifusion [103], [104] 2019 1,205 403,068 Reconstruction
Lietal. [105] 2019 15 9,800 Kinect Age, Gender Reconstruction
Florence3D-Re-1d [84] 2019 16 2,471 Kinect v2 Identification
Face-Emotion [112] 2020 69 1,000 Kinect 150 x 110 Expressions
Guo et al. [158] 2021 800 Iphone X 480 x 640 Reconstruction
IKFDB [113] 2021 Kinect Reconstruction
CAS(ME)? [92] 2022 216 4,950 RealSense 1,280 x 720 Age, Gender Macro/Micro Expressions

employed in the creation of data sets such as MeIn3D [164],
HeadSpace [57], UHDB31 [91], and D3DFACS [30]. The
primary reason for its widespread use is the innovative
“hybrid” stereo vision approach integrated into its systems.
This cutting-edge technique seamlessly combines both active
and passive stereo vision triangulation strategies, resulting in
exceptionally advanced 3D imaging outputs [165].

In contrast, the Di3D and Di4D systems rely solely
on passive stereo vision, an advanced imaging technique
that captures 3D data without the need for structured light
or lasers. Passive stereo vision involves capturing multi-
ple images of an object from various angles and utiliz-
ing the disparities between these images to calculate the
3D coordinates of points on the object’s surface. The BU-
4DFE [17] and ESRC3D [49] data sets were acquired using
the Di3D system, while the Di4D system was employed for
the 4DFAB [51] data set.

Initially, most 3D data sets were primarily designed to
address issues related to face recognition [23], [111] and
static facial expression recognition [15], [120]. However, in
recent years, the applications of 3D data sets have expanded
to encompass more advanced applications, including face
verification [51] and dynamic spontaneous facial expression
analysis [17], [31]. Furthermore, several 3D data sets have
been collected specifically to facilitate 3D statistical mor-
phable model analysis and 3D face reconstruction from 2D
data, such as HeadSpace [57], MeIn3D [45], KF-ITW [153],
and FaceScape [116]. These data sets include a greater
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number of 3D scans collected from a more extensive range
of subjects, encompassing various ages, genders, and ethnic
backgrounds.

C. DEPTH (RGB-D) DATA

In recent years, there have been significant advancements
in technology, particularly in the field of computer vision.
One notable development is the increased availability and
affordability of Red, Green, Blue, and Depth (RGB-D) sen-
sors. These sensors are capable of capturing both color and
depth information from the environment. Unlike traditional
RGB sensors, which only capture color information, RGB-
D sensors like those found in devices such as the Microsoft
Kinect [67] and Intel RealSense [73] offer an additional
dimension of data representing the depth. This information
represents the distance from the sensor to various points
on the subject’s face, creating a three-dimensional represen-
tation of the facial structure. This added dimensionality is
what sets RGB-D face recognition apart and contributes to
its superior accuracy.

The key advantage of RGB-D face analysis lies in its
ability to leverage spatial features. By incorporating depth
data, algorithms can discern not only the colors and textures
of facial features but also their positions in three-dimensional
space. This spatial awareness enables more accurate and
robust analysis, as it accounts for variations in pose, lighting
conditions, and even the presence of occlusions, such as eye-
glasses or facial hair. This additional depth information helps
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TABLE 7: RGB-Depth-3D Data Sets.

Resolution
Data Set Year | Subjects (M/F) | Samples Camera Modalities RGB Depth 3D Demographics Application
FRGCv2 [12] 2004 | 466 (266/200) 50,000 Minolta Vivid 910 RGB/Depth/Mesh i ;33 i f ém 640 x 480 Age, Gender, Ethnicity Detection, Recognition
FRAV3D [14] 2005 | 106 (79/27) 1,696 | Minolta Vivid 700 | RGB/Depth/Mesh 242 x 347 10,000 vertices, Age, Gender Verification
15,000 triangles
ND-2006 [95] 2006 888 13,450 | Minolta Vivid 910 | RGB/Depth/PointCloud | 640 x 480 | 640 x 480 | 112,000 vertices Age, Gender De‘“'g’:};:::;gﬁ"""’"‘
. 40,000 vertices. . .
3,34 2,02 ’ N ’
SuperFaces [89] 2012 50 50 3dMD/Kinect RGB/Depth/Mesh 3,341 x 2,027 80,000 triangles Age, Gender Detection, Superresolution
TAS-Lab [109] 2013 45 315 Kinect RGB/Depth/PointCloud | 1,920 x 1,080 | 960 x 540 Recognition
CurtainFaces [70], [90] | 2013 52 4,784 Kinect RGB/Depth/PointCloud | 128 x 128 Age, Gender De‘“‘\‘,‘;‘:i'ﬁl::i"oi“"“’“'
FaceWarehouse [71] 2014 150 3,000 Kinect RGB/Depth/Mesh 640 x 480 Age, Gender Detection, Recognition
UHDBI1 [91] 2014 23 1,625 3dMD RGB/Depth/Mesh 3,888 x 2,592 Age, Gender Detection, Recognition
4DFAB [51] 2018 180 (120/60) 1,800,000 DI4D/Kinect RGB/Depth/Mesh 640 x 480 640 x 480 | 60k-75k vertices | Age, Gender, Ethnicity Expressions
3DWEF [102] 2019 92 Asus Xtion RGB/Depth/PointCloud Age, Gender Recognition
TABLE 8: RGB-Thermal Data Sets.
Resolution
Data Set Year | Subjects (M/F) | Samples Camera Modalities RGB/Gray Thermal Demographics ‘Wavelength Application
ND-Collection-C [9] 2002 240 VIS/Merlin Gray/LWIR 1,200 x 1,600 320 x 240 7,000-14,000nm Recognition
NIST/Equinox [139] 2004 90 3,244 VIS/NIR RGB/LWIR 320 x 240 320 x 240 8,000-12,000nm Posed Expressions
IRIS [133] 2006 32 4,228 | Raytheon PalmIR Pro RGB/LWIR 320 x 240 320 x 240 Posed Expressions
UH [134] 2007 138 7,590 VIS/Flir MWIR 640 x 512 Aﬁ}ﬁi‘i‘g‘e“ 3,000-5,000nm Recognition
CBSR-NIR [140] 2007 197 3,940 VIS/NIR RGB/NIR 640 x 480 640 x 480 780-1,100nm Recognition
RaytheonL-3 T e J L.
TIV [166] 2009 20 21,676 hermal-Eyc2000AS LWIR 320 x 240 Recognition
PolyU-NIRFD [132] 2010 350 35,000 | NIR LED, JAI camera RGB/NIR Gender 780-850nm Recognition, Verification
704 x 480, Spontaneous and
NVIE [26] 2010 215 (157/58) 436 VIS/SAT-HY 6850 Mono/LWIR 390 x 240 Age, Gender Posed Expressions
Carl [27] 2010 41 (32/9) 7,380 VIS/TESTO880-3 RGB/NIR 640 x 480 160 x 120 820-1,000nm Recognition
NFRAD-DB [29] 2011 50 (37/13) 600 VIS/DSLR RGB/NIR 3,872 x 2,592 | 3,872 x 2,592 Gender 810-960nm Recognition
SMIC [33] 2013 20 (14/6) 306 VIS/NIR/HS RGB/NIR 640 x 480 640 x 480 Age, Gender Micro Expressions
I°BVSD [37] 2013 75 681 VIS/LWIR RGB/LWIR 4,288 x 2,848 720 x 576 Age, Gender Verification
CASIA NIR-VIS [32] 2013 725 17,580 VIS/ENIR RGB/NIR 640 x 480 640 x 480 Gender Matching, Recognition
LDHF-DB [36] 2013 100 (70/30) 1,600 VIS/RayMax300 RGB/NIR 5,184 x 3,456 Gender 850nm Matching, Recognition
Sober Drunk [38], [39] 2013 41 (31/10) 4,100 FLIR A10 LWIR - 128 x 160 750-1300nm Pose Estimation
KTFE [41] 2014 26 (16/10) VIS/NECR300 RGB/NIR/LWIR 320 x 240 336 x 256 8,000-14,000nm | Spontaneous Expressions
Nikon D90/ 4,770 x 3,177 o
ND-NIVL [44] 2015 574 341 CanonEOS50D RGB/NIR 4,288 x 2,848 Recognition
Liu et al. [42] 2015 77 181 VIS/FLIR RGB/LWIR 640 x 480 Ethnicity 8,000-14,000nm | Spontaneous Expressions
ARL-MMEFDI [135] 2016 60 960 |  VIS/Polaris Sensor RGB/LWIR 640 x 480 640 x 480 7,500-11,100nm Recognition
Msspoof [126] 2016 21 4,704 VIS/NIR RGB/NIR Age, Gender Anti-Spoofing
SWIR [127] 2016 5 141 VIS/M-SWIR RGB/SWIR Age, Gender Anti-Spoofing
BRSU [128] 2016 50+ 660 VIS/AM-SWIR RGB/SWIR Age, Gender Anti-Spoofing
MLEFP [130] 2017 10 1,350 VIS/NIR/LWIR RGB/NIR Age, Gender Anti-Spoofing
CIGIT-PPM [131] 2019 72 93,358 VIS/NIR RGB/NIR Age, Gender Anti-Spoofing
Eurocom [53] 2018 50 4200 | VIS/FLIR Duo R RGB/LWIR 160 x 120 160 x 120 | Age, Gender, Ethnicity | 7.500-13,500nm R“"g‘;“x‘sfe’s\s/f:;g‘ca“"“*
PUCV-DTEF [54] 2018 46 (40/6) 11,500 FLIR TAU 2 LWIR 640 x 480 Age, Gender 7,500-13,500nm P °;ff;f:§:“f“
ARL-MMFD2 [136] 2019 111 111 VIS/Polaris Sensor RGB/LWIR 640 x 480 640 x 480 7,500-11,200nm | Reconstruction, Synthesis
RWTH [141] 2019 90 10,000 Infratec HD820 LWIR 1,024 x 768 Expressions
ARL-VTEF [167] 2021 395 500,000 VIS/FLIR Boson/ Mono/RGB/LWIR 658 x 492 640 x 512 7,500-13,500nm Verification
FLIR Grasshopper3
. VIS/Pi NoIR/ | 1,680 x 1,050, .. 700-1,000nm, Recognition,
Sejong-A [59] 2021 30 (16/14) 1,500 Therm-App RGB/SWIR/NIR | 4,032 x 3,024 768 x 756 Gender, Ethnicity 750-1.400nm 3D Morphable Models
. VIS/Pi NoIR/ . L, | 1,680 x 1,050, L 700-1,000nm, Recognition,
Sejong-B [59] 2021 70 (44/26) 23,000 Therm-App RGB/SWIR/NIR | 4,032 x 3,024 768 x 756 Gender, Ethnicity 750-1.400nm 3D Morphable Models
SpeakingFaces [138] 2021 142 4,581,595 VIS/FLIR T540 RGB/LWIR 1,920 x 1,080 464 x 348 Expressions
TFW [137] 2022 147 9,982 FLIR T540 LWIR - 464 x 348 7,500-14,000nm Detection
UNCC-ThermalFace [60] | 2022 10 (5/5) 10,000 Flir A700 LWIR Multiple Recognition

address some of the challenges faced by traditional RGB-
based face analysis systems, such as variations in lighting
conditions, pose, and occlusions [168]. In Table 6, we list
some of the RGB-D data sets that are publicly available.
Some of the RGB-D data sets provide 3D mesh or point cloud
data, as summarized in Table 7.

Depth sensors capture the 3D structure of the face. Gen-
uine faces exhibit depth variations caused by the facial fea-
tures, including the nose, eyes, and mouth. Depth information
allows the system to verify the presence of these natural
3D features. Therefore, depth information is crucial in face
verification and anti-spoofing applications, because depth
sensors can differentiate between the texture of a printed
image or a screen display and the actual 3D contours of a
face. While a high-quality image might fool a purely texture-
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based system, depth information reveals the absence of true
facial structure. The 3DMAD [34], [35] data set was one
of the earliest to capture depth information for face anti-
spoofing applications. The depth information was collected
from 17 individuals in three different sessions within two
weeks. The data set contains mask attacks in order to assess
the spoofing performance of 3D masks against RGB and
depth information. Similarly, the Intel RealSense device was
used to capture depth information in the CASIA-SUREF [79]
data set for face anti-spoofing. The data set includes several
attacks, such as printing and face features cutting. Depth
information is also used in several other data sets such as
WMCA [74], MMFD [114], HQ-WMCA [93], and CASIA-
SURF CeFA [94].

The integration of depth information proves highly bene-
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ficial across various applications, with particular significance
in the domain of pose estimation analysis. A case in point is
the Biwi data set [97], specially designed for head pose esti-
mation. Comprising RGB-D data captured with a Kinect sen-
sor, this data set offers comprehensive head pose annotations
for every frame. Its utility extends to tasks like face detection
and head pose estimation. Similarly, the ICT-3DHP data
set [98], collected for pose estimation applications, leverages
Microsoft Kinect’s depth-sensing capabilities. Distinguished
by its inclusion of uncontrolled pose variations, this data set
broadens the scope of pose analysis. Notably, the Pandora
data set [47] stands as a recent addition to the pose estimation
data sets. It includes contribution from 22 individuals who
perform diverse poses and occlusions, mirroring real-life
scenarios. Jiang et al. [169] construct a large-scale RGB-
D face data set including more than 100k identities, mainly
in frontal pose, and a relatively small RGB-D data set with
952 identities in various poses. Collectively, these data sets
emphasize the role of depth information for pose estimation
applications.

Facial expression analysis is improved by depth informa-
tion integration. The RGB-D Face (VAP) [69] face data set
is one of the common data sets collected using a Kinect
sensor. It includes facial images of various individuals under
different lighting conditions, poses, and expressions. Curtin-
Faces [70], [90] is captured using a Microsoft Kinect Sensor.
A total of over 5,000 samples were captured from 52 subjects,
including a mix of male/female and with and without glasses.
These images have varying facial expressions, viewpoints,
illumination, and occlusion, simulating a real-world, uncon-
trolled face recognition problem. KinectFaceDB [40] offers
a range of expressions, poses, and occlusions that can be uti-
lized to develop robust face verification and recognition algo-
rithms. FaceWarehouse [71] is a data set of RGB-D facial ex-
pressions for visual computing applications captured with a
Kinect RGB-D camera. It is composed of 3000 facial images
from 150 individuals, aged from 7 to 80, of various ethnic
backgrounds with neutral expressions and 19 other actions,
such as mouth opening, smile, etc. The Lock3DFace data
set [43] contains 5,711 RGB-D face videos from 509 subjects
with variations in facial expression, pose, occlusion, and
time-lapses. It provides a standard evaluation protocol with
the aforementioned four variations. The CAS(ME)? [92] data
set provides around 80 hours of videos, including 1,109 man-
ually labeled micro-expression and 3,490 macro-expressions.
It also provides depth information as an additional modality
and elicits micro-expression with high ecological validity
using stimuli following the mock crime paradigm as well as
physiological and voice signals.

Similarly, the depth information can be utilized for face
reconstruction and recognition applications. The IIITD RGB-
D data set [72] consists of 106 male and female subjects with
multiple RGB-D images of each subject. All the images are
captured using a Microsoft Kinect sensor. Since the images
are unsegmented, the data set can be used for both face detec-
tion and recognition in RGB-D space. The HRRFaceD [83]
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data set consists of high-resolution depth images captured
using the Microsoft Kinect v2 device. This data set includes
facial images from 18 individuals captured in various poses,
including frontal and lateral views. Furthermore, the data set
comprises facial images of certain individuals both with and
without glasses. Guo et al. [158] use the depth information
provided by an Iphone X sensor to capture 800 samples for
3D face reconstruction. zhang et al. [106] collected an RGB-
D data set for face recognition using RealSense II as opposed
to the Kinect sensor. The data set comprises approximately
845,000 RGB-D images featuring 747 subjects. The images
exhibit consistent variations in pose and only minor alter-
ations in lighting conditions.

D. THERMAL INFRARED IMAGING
The field of facial analysis has gained significant attention,
particularly with the use of various imaging technologies,
such as IR imaging sensors [41]. The human body is respon-
sive to electromagnetic wavelengths that are not visible to
the naked eye. In this imaging technology, special cameras
equipped with infrared sensors capture thermal radiation
within the range of 0.7-14.0 um, which falls within the in-
frared spectrum. This differs from traditional visual cameras,
which capture electromagnetic energy in the visible spectrum
range of 0.4-0.7 pm. Two key factors influence the amount
of radiation released: the temperature of the material and its
emissivity, which is a measure of how efficiently it emits
radiation. However, creating images in certain portions of the
thermal IR spectrum can be quite challenging. Specifically,
there are significant limitations in imaging within the strong
atmospheric absorption bands in the wavelength range of 2.4-
3.0 ym between the SWIR and MWIR regions, and in the
range of 5.0-8.0 um between the MWIR and LWIR spectrum.
The human face and torso emit both the MWIR and LWIR
bands within the thermal IR spectrum. Thermal infrared cam-
eras can detect changes in facial temperature from a distance
and produce 2D images known as thermograms. Notably,
the LWIR band is preferred for facial recognition within
the thermal IR spectrum, due to the considerably higher
emissions in this band compared to the other bands [170].
The human face is a valuable biometric feature that can be
used in security systems for the purpose of person identifica-
tion and verification. However, in the context of thermal face
verification, there are specific challenges and considerations
that need to be addressed. One of the primary challenges in
face verification is to accurately match the input face with a
stored face image of the same person already present in the
system’s database. This process involves complex algorithms
that analyze facial features and patterns to make a positive
identification. In the case of thermal face verification, the
methods focus on analyzing facial thermograms, which are
representations of the heat patterns emitted by the face [21].
In the context of thermal face verification, there is a need
to represent a thermal face image using biometric features
that not only capture the unique thermal characteristics of the
face but are also compact and suitable for use in classification
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TABLE 9: RGB-Depth-Thermal Data Sets.

Resolution
Data Set | Year | Subjects (M/F) | | Camera | Modalities RGB | Thermal Demographics | gth | A
CASIA HFB [21] 2009 100 (57/43) 992 . VIS[EI.\H.R’ RGB/IR/Depth 640 x 480 640 x 480 Gender 700-880nm Matching, Recognition
Minolta vivid 910
KinectFaceDB [40] 2014 52 (38/14) Kinect RGB/IR/PointCloud 256 x 256 Age, Gender, Ethnicity Detection, Recognition
RGB-D-T [115] 2014 51 45,900 Kinect, AXIS Q1922 RGB/IR/Depth 640 x 480 384 x 288 Recognition
CASIA-SUREF [79] 2018 1,000 21,000 RealSense RGB/IR/Depth Age, Gender Anti-Spoofing
640 x 480,
KaspaAROV [82] 2018 108 831 Kinect v1/v2 RGB/IR/Depth 1,920 x 1,080, | 512 x 424 Detection, Recognition
320 x 240,
WMCA [74] 2019 72 6,716 RealSense/STC-PRO RGB/IR/Depth Age, Gender Anti-Spoofing
MMEFD [114] 2019 15 43,853 RealSense IT RGB/IR/Depth 1,280 x 720 640 x 480 Anti-Spoofing
Basler acA1921-150uc, R . R
HQ-WMCA [93] 2020 51 2,904 Intel RealSense D415. RGB/IR/Depth Age, Gender Anti-Spoofing
MAVFER [56] 2020 17 (7/10) 17 | Kinect v2 and FLIR A65 RGB/LWIR/Depth 1408 x 792 640 x 512 Age, Gender 7,500-13,000nm Expressions
VIS,

Tuft [58] 2020 113 (39/74) 10,000 LYTRO ILLUM 40, RGB/LWIR/PointCloud 336 x 256 336 x 256 | Age, Gender, Ethnicitiy Recognition

FLIR Vue Pro
CASIA-SURF CeFA [94] | 2021 1,607 23,538 RealSense RGB/IR/Depth Age, Gender Anti-Spoofing

TABLE 10: Multispectral/Hyperspectral Datasets

Data Set Year Subjects (M/F) Samples Camera Resolution Demographics Wavelength Bands Step Size Applications
CMU-HSFD [8] 2002 45 147 Spectro-polarimetric 640 x 480 450-1,100nm 65 10nm Recognition

VIS/CRI’s VariSpec/ | 2,272 x 1,704 | Age, Gender, . .
IRIS-M3 [16] 2006 82 (62/20) 2,624 Raytheon Palm-IR-Pro 640 % 480 Ethnicity 480-720nm 25 10nm Matching, Recognition
PolyU-HSFD [24] | 2010 25 (17/8) 300 | CRI’s VariSpec LCTF 400-720nm 33 10nm Recognition
UWA-HSFD [142] | 2015 70 120 | CRI’s VariSpec LCTF 400-720nm 10nm Recognition
EMSPAD [129] 2017 50 14,000 SpectraCam Age, Gender 7 Anti-Spoofing

8,000-14,000nm
VIS/Jenoptik/ . : A

UL-EMTV [52] 2018 | 238 (86/48) FLIR Phoenix 640 x 512 Age, Gender, | 3,000-5,000nm 4 Pose Estimation,

Indigo IR/Goodrish Ethnicity 900-1,700nm Expressions

750-1,100nm

SDFD [55] 2018 54 (54) 6480 RGB/NIR 530-1,000nm 8 Recognition

algorithms [145]. Unlike visible-spectrum images, thermal
face images reveal different details about the face, primarily
related to the heat patterns on the skin’s surface. Therefore, it
is more difficult for attackers to spoof the system with printed
photos or screens displaying facial images.

Numerous publicly available thermal imaging data sets
have been developed for applications in face verification
and identification. Some of these data sets are shown in
Table 8. The ND-Collection-C data set [9], as one of the
early contributions in this domain, was created with a spe-
cific focus on such applications. It was captured employing
a Merlin-Uncooled camera in 2002, yielding 2,492 frontal
long-wave infrared (LWIR) thermal images sourced from
241 individuals. In 2007, the CSBR-NIR [140] data set
was primarily designed to achieve illumination-invariant face
verification. This data set encompasses a total of 3,940
near-infrared (NIR) facial images, featuring 197 individuals.
These images are organized into two distinct sets: a gallery
set and a probe set. Within the gallery set, each individual is
represented by eight images, while the probe set comprises
a comprehensive set of twelve images for each subject.
Similarly, in the same year, the University of Houston [134]
data set was created to assess the impact of physiological
information on face recognition, specifically focusing on the
permanency of innate characteristics beneath the skin. The
data set was captured during multiple sessions, with a six-
month time gap between sessions, introducing variations in
poses and facial expressions. Fast-forwarding to 2010, the
PolyU-NIRFD [132] data set was collected using a custom-
designed camera, significantly augmenting the volume of
available face images in comparison to previous data sets.
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This extensive data set includes 35,000 thermal facial images
gathered from 350 subjects. It spans a diverse range of poses,
expressions, and scales, enhancing its utility for research
purposes.

Subsequently, several other data sets, including NFRAD-
DB [29], LDHF-DB [36], ND-NIVL [44], ARL-MMFDI [135],
SDFD [55], and UNCC-ThermalFace [60] have been made
accessible to the research community. Each of these data
sets captures thermal imaging across different wave bands,
encompasses multiple illumination variations, and introduces
variability in facial expressions and poses. These data sets
collectively facilitate advancements in thermal face verifi-
cation by offering diverse and comprehensive resources for
researchers. They cater to the exploration of thermal imaging
in different contexts, thereby contributing to the ongoing
progress in this field.

The need to develop robust face verification and recogni-
tion systems increases as face spoofing attacks evolve. The
CIGIT-PPM [131] data set includes VIS and NIR face image
pairs of real access and attack attempts from 72 subjects,
comprised of 61 live persons and 11 masks. The BVSD [37]
data set contains images capturing both visible and thermal
spectra from 75 individuals with varying disguises. Each
participant has multiple images, ranging from 6 to 10, includ-
ing at least one neutral face image and several images with
different disguises. The data set consists of 681 images for
each spectrum, with visible images taken using a Nikon D-90
camera and thermal images captured with a thermal camera.
SWIR [127] is the first data set of corresponding SWIR and
RGB color images incorporating various types of masks and
facial disguises.
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Combining thermal infrared and depth sensors for facial
scanning and analysis offers several advantages. These in-
clude improved robustness in varying lighting conditions, the
ability to analyze facial expressions and emotions, enhanced
security through liveness detection, improved face detection,
privacy benefits, adaptability to different environments, and
a range of applications from health monitoring to gaming.
In essence, the synergy between thermal and depth data
enhances the accuracy, versatility, and reliability of facial
analysis systems. Table 9 summarize data sets that combine
both thermal infrared and depth information.

E. MULTISPECTRAL/HYPERSPECTRAL IMAGING
Multispectral and hyperspectral imaging are advanced imag-
ing techniques used in various fields, including facial anal-
ysis, to capture and analyze the spectral information of
an object or scene beyond what is visible to the human
eye. They involve capturing images at different wavelengths
across the electromagnetic spectrum. These techniques pro-
vide a wealth of data that can be valuable for a range of
applications, including facial analysis and recognition. It can
provide additional information about the face beyond what
is captured by RGB images alone. Multispectral imaging
involves capturing data from multiple discrete spectral bands,
typically spanning a range of wavelengths beyond the visible
spectrum (e.g., ultraviolet and infrared) [171]. In contrast,
hyperspectral imaging is more advanced than multispectral
imaging, involving the capture of data in many narrow and
contiguous spectral bands, providing highly detailed spectral
information [172].

There are several multispectral and hyperspectral data sets
designed for several facial analysis applications, as presented
in Table 10. The Multispectral Latex Mask-based Video
Face Presentation attack (MLFP) data set combines thermal
and visible videos with and without wearing face masks
for ten individuals. Videos are captured in indoor and out-
door environments. The data set contains 1,350 videos, of
which 1,200 videos are of faces wearing masks and 150
videos are of faces without masks [130]. The Multispectral-
Spoof data set (MSSPOOF) [126] contains paired images of
VIS and NIR modality, which are captured under various
environments. It covers genuine face images, printed VIS,
and NIR images. BRSU [128] consists of 130 participants
and combines spectral measurements at several points on
faces and limbs with pictures taken using both an RGB
camera and the presented multispectral camera system. The
Extended Multispectral Presentation Attack Face Dataset,
EMSPAD [129], comprises face scans of 50 subject collected
by a multispectral camera for both the evaluation of presen-
tation attack detection and the analysis of face presentation
attack vulnerability.

VI. APPLICATIONS

Facial multimodal data sets have a wide range of applications
across different domains. These data sets offer a holistic view
of individuals’ facial features and characteristics, allowing
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for more comprehensive insights and enhancing the accuracy
of facial analysis. There are several data sets that are mainly
designed for face detection, recognition, and verification
applications. A selection of these data sets are summarized in
Table 11. Similarly, there are several data sets that are mainly
designed to address problems related to facial expression and
pose estimation applications. We present some of these data
sets in Table 13. Data sets that are designed for face anti-
spoofing applications are shown in Table 12. In the following,
we discuss several key applications of facial analysis multi-
modal data sets.

A. FACE DETECTION

Face detection is a crucial research topic in computer vision,
focusing on developing algorithms and techniques to identify
human faces within images or video frames. It serves as a
critical pre-processing step for various face-related applica-
tions, including face recognition, facial expression analysis,
age estimation, and more. Early face detection methods relied
on traditional computer vision techniques. These methods
often involved analyzing image features such as edges, color,
or textures to identify potential face regions [173]-[175].
Other solutions relied on feature-based face detection, by
identifying specific facial features, such as mouth, nose,
and eyes, leveraging their geometry to identify faces. These
methods can be effective but are sensitive to variations in
pose, lighting conditions, and occlusions [176]. The last
decade has seen an increasing interest in machine learn-
ing approaches that significantly advanced face detection
research. In particular, deep learning has revolutionized the
field by automatically learning discriminative features from
raw image data [177], [178].

Variations in illumination, pose, and occlusion are exam-
ples of challenges that face detection algorithms have to han-
dle to improve robustness and generalization. The collection
of a balanced data set that leverages these challenges is one
of the main research objectives in face detection. Data sets
play a crucial role in the development of research in this
area. Driven by new multimodel data sets and deep learning
advances, research in face detection continues to evolve
rapidly [179]. There are several data sets that researchers use
for face detection. For instance, Mian et al. [180] employed
the FRGC v2 [12] data set to develop a 3D face detection
approach. Similarly, Pamplona Segundo et al. [181] used
3D data sets like BU-3DFE [15], Bosphorus [18], Texas
3D [23], and RGB-D Face [69] to evaluate a real-time 3D
facial detection system. Furthermore, there is the TFW [137]
data set, which was created specifically for detecting faces
in thermal images. This data set includes manually marked
boxes around faces and precise locations of five key facial
points: the centers of the eyes, the tip of the nose, and
the corners of the mouth. Adding these facial points to the
face detection process serves as an extra guide, significantly
improving detection accuracy, especially in situations where
facial images are complex. The NVIE [26] data set is utilized
by Basbrain et al. [182] for face detection in thermal imaging.
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TABLE 11: Face Detection, Recognition, Verification, and Reconstruction Data Sets.

Data Set Year Subjects (M/F) Modalities Land ks Expr Poses  Occlusions  Distance  Illumination Applications
MPIBC [6] 1996 | 200 (100/100) RGB/Mesh 3 Reconstruction,
Recognition
3DRMA [7] 1998 120 (106/14) PointCloud 3 Recognition, Verification
ND-Collection-C [9] 2002 240 Gray/LWIR 2 3 Settings Recognition
ND-Collection-D [10] 2003 275 RGB/Depth 150cm Matching, Recognition
FSU [119] 2003 37 RGB/Depth 6 Recognition
FRGCvV2 [12] 2004 | 466 (266/200) RGB/Depth/Mesh 2 15m 2 Settings Detection, Recognition
GavabDB [13] 2004 61 (45/16) RGB/PointCloud 3 6 Detection, Recognition
FRAV3D [14] 2005 106 (79/27) RGB/Depth/Mesh Variable Variable Verification, Recognition
UoY [96] 2006 350 RGB/Depth/Mesh 5 3 Detection, Recognition
IRIS-M3 [16] 2006 82 (62/20) Multispectral 1 25 120cm 3 Settings Recognition
UH [134] 2007 138 MWIR 5 5 Variable Recognition
CBSR-NIR [140] 2007 197 RGB/NIR 4 50-100cm Variable Recognition
Bechman [120] 2007 RGB/Mesh 65 Recognition
CASIA HFB [21] 2009 100 (57/43) RGB/NIR/Depth Eye 2 1 80-120cm 2 Settings Matching, Recognition
Coordinates
TIV [166] 2009 20 LWIR 3 2 2 Recognition
Texas 3D [23] 2010 118 RGB/PointCloud 25 5 Detection, Recognition
PolyU-HSFD [24] 2010 25 (17/8) Multispectral Recognition
PolyU-NIRFD [132] 2010 350 RGB/NIR Variable Variable 80-120cm Recognition, Verification
Carl [27] 2010 41 (32/9) RGB/Thermal 1 1 1 135cm 3 Recognition
3D-TEC [87] 2011 214 RGB/PointCloud 1 Detection, Recognition
UMB-DB [88] 2011 143 RGB/PointCloud 3 1 3 Detection, Recognition
Photoface [28] 2011 261 (227/34) 2D/Depth/Albedo 11 5 4 Settings Recognition, Verification
MICC (Florence2D/3D) [111] | 2011 53 RGB/Mesh Variable 2 Settings Recognition
NFRAD-DB [29] 2011 50 (37/13) RGB/NIR Neutral 2 1-50m 4 Settings Recognition
3DFACE-XMU [117] 2011 15 RGB/Depth Recognition
RGB-D Face (VAP) [69] 2012 31 RGB/Depth 4 17 85cm Variable Detection, Recognition
CurtainFaces [70], [90] 2013 5 Rab/Depth/ 7 7 i 5 Detection. Recoenition.
IIT-D RGB-D [72] 2013 106 RGB/PointCloud Variable Variable Variable Detection, Recognition
IAS-Lab [109] 2013 45 I;ffli gleof’:';’ 2 2 2 2 Recognition
CASIA NIR-VIS [32] 2013 725 RGB/NIR Eye Variable | Variable 1 Variable Matching, Recognition
Coordinates
LDHF-DB [36] 2013 100 (70/30) RGB/NIR 1-150m 2 Settings Matching, Recognition
12BVSD [37] 2013 75 (60/15) RGB/LWIR - 9 Verification
KinectFaceDB [40] 2014 52 (38/14) R.G B/IR/ Annotations 9 Variable 5 Variable Detection, Recognition
PointCloud
FaceWarehouse [71] 2014 150 RGB/Depth/Mesh 20 Detection, Recognition
UHDBI1 [91] 2014 23 RGB/Depth/Mesh Variable 12 6 Detection, Recognition
HRRFaceD [83] 2014 18 RGB/Depth Variable 1 Detection, Recognition
RGBDFaces [110] 2014 28 RGB/Depth 1 3 Recogition,
Reconstruction
RGB-D-T [115] 2014 51 RGB/Depth/ 5 7 13 6 Recognition
Thermal
Lock3DFace [43] 2015 | 509 (377/122) RGB/Depth Annotations 6 2 1 Variable Detection, Recognition
ND-NIVL [44] 2015 574 RGB/NIR 6 152-213cm Indoor Recognition
UWA-Kinect [157] 2016 48 RGB/Depth Variable Variable Recognition
ARL-MMFDI [135] 2016 60 RGB/LWIR 6 1 1 2.5-7.5m 1 Recognition
IST-EURECOM LFFD [46] 2017 100 RGB/Depth 5 3 6 6 2 Recognition
KE-ITW [153] 2017 17 RGB/Mesh Annotations 2 Variable 3D Morphable Models
UHDB31 [48] 2017 77 (53/24) RGB/Mesh 12 3 Recognition
KaspaAROV [82] 2018 108 RGB/Depth/NIR Variable Variable Variable Detection, Recognition
Cuietal. [100] 2018 747 RGB/Depth Variable Variable Detection, Recognition
SeetaFace [106] 2018 747 RGB/Depth Variable Yes Identification
2,476 Recognition,
FIDENTIS [50] 2018 (1.15471,322) RGB/Mesh 42 Reconftmction
SDFD [55] 2018 54 RGB/NIR 1 3 Recognition
3DWF [102] 2019 ) ig’zgff:g’ Annotations 10 Recognition
Intellifusion [103], [104] 2019 1,205 RGB/Depth Detection, Recognition
Lietal. [105] 2019 15 RGB/Depth 6 Recognition
Florence3D-Re-Id [84] 2019 16 RGB/Depth Annotations Variable Variable Variable Identification
ARL-MMFD2 [136] 2019 111 RGB/LWIR 6 1 1 2.5m Synthesis
FaceScape [116] 2020 938 RGB/Mesh 20 3D Morphable Models
HeadSpace [57] 2020 1,519 RGB/Mesh 23 3D Morphable Models
Tuft [58] 2020 113 (39/74) RGEﬁ:gDLXIR/ 5 9 150cm 2 Recognition
Guo et al. [158] 2021 - RGB/Depth Variable Variable Reconstruction
ARL-VTF [167] 2021 395 Mono/RGB/LWIR 6 2 3 1 210cm 1 Verification
Sejong-A [59] 2021 30 (16/14) RGB/SWIR/NIR 1 13 200cm 2 Verification
Sejong-B [59] 2021 70 (44/26) RGB/SWIR/NIR 15 13 200cm 2 Verification
TFW [137] 2022 147 Thermal 9 Variable Variable Variable 3 Detection
UNCC-ThermalFace [60] 2022 10 (5/5) LWIR 72 25 Variable Recognition

B. FACE ALIGNMENT

Facial alignment applications have witnessed significant ad-
vancements in recent years, largely owing to innovations in
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imaging technologies. The primary goal of facial alignment
is to accurately locate and align key facial landmarks or
features, such as eyes, nose, and mouth, within an image or
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TABLE 12: Anti-Spoofing Data Sets.

Attack Type
Data Set | Year | Subjects | Samples | Camera Print | Elec. Screen | Cut | 2D Mask | 3D Mask | Replay
3DMAD [34], [35] 2013 17 255 VIS/Kinect X X
Msspoof [126] 2016 21 4,704 VIS/NIR X
SWIR [127] 2016 5 141 VIS/M-SWIR X X
BRSU [128] 2016 >50 VIS/AM-SWIR X X
EMSPAD [129] 2017 50 14,000 SpectraCam X
MLEFP [130] 2017 10 1,350 VIS/NIR/Thermal X
CASIA-SURF [79] 2018 1,000 21,000 RealSense X X
Sun et al. [108] 2018 35 14,210 HD dual camera X X
CIGIT-PPM [131] 2019 72 93,358 VIS/NIR X
MMED [114] 2019 15 43,853 RealSense II X X X
WMCA [74] 2019 72 6,716 | RealSense/STC-PRO X X X
HQ-WMCA [93] 2020 51 2,904 RealSense X X X X
CASIA-SURF CeFA [94] | 2021 1,607 23,538 RealSense X X X
TABLE 13: Facial Expressions and Pose Estimation Data Sets.
Data Set Year Subjects (M/F) Modalities Land ks Emotions Poses  Occl Distance Illuminations Applications
CASIA-3D FaceV1 [11] | 2004 123 RGB/Mesh 3 5 1 5 Posed Expressions
NIST/Equinox [139] 2004 90 RGB/Thermal 3 3 Settings Posed Expressions
Action Unit,
BU-3DFE [15] 2006 100 RGB/Mesh 6 2 Static Posed Expressions
ND-2006 [95] 2006 888 RGB/Depth/PointCloud 5 Posed Expressions
ZJU-3DFED [118] 2006 40 RGB/Mesh 4 Posed Expressions
IRIS [133] 2006 32 RGB/LWIR 3 11 183cm 5 Settings Posed Expressions
Bosphorus [18] 2008 105 (60/45) RGB/PointCloud 24 34 13 4 150cm Posed Expressions
BU-4DFE [17] 2008 101 RGB/Mesh 6 Variable Dynamic Expressions
ETH [154] 2008 26 RGB/Depth Variable Pose Estimation
ADSIP [22] 2009 10 (2/8) RGB/Mesh 7 100cm Posed Expressions
B3D(AC) [25] 2010 14 (6/8) RGB/Mesh 11 Variable Dynamic Expressions
NVIE [26] 2010 | 215 (157/58) Mono/LWIR 8 75cm 3 Settings Spontaneous and
Posed Expressions
D3DFACS [30] 2011 10 (4/6) RGB/Mesh 47 6 Dynamic Expression,
Action Unit
ICT-3DHP [98] 2012 RGB/Depth Annotations Variable Pose Estimation
SMIC [33] 2013 20 (14/6) RGB/NIR 3 Spontaneous Expressions
BIWI [97] 2013 20 RGB/Depth Variable Pose Estimation
Pose Estimation,
Sober Drunk [38], [39] 2013 41 (31/10) LWIR 2 Posed Expressions
FEEDB ver.1 [155] 2014 50 RGB/Depth 33 Posed Expressions
FEEDB ver.2 [156] 2014 50 RGB/Depth 22 33 Posed Expressions
KTFE [41] 2014 26 (16/10) RGB/NIR/LWIR 6 1 85cm 7 Spontaneous Expressions
Liu et al. [42] 2015 77 RGB/LWIR 8 75cm Spontaneous Expressions
Pandora [47] 2017 22 (10/12) RGB/Depth Annotations Variable 5 Indoor Pose Estimation
MotorMark [107] 2017 35 RGB/Depth 68 Controlled Pose Estimation
ESRC3D [49] 2018 99 (45/54) RGB/Mesh 7 4 7 Posed Expressions
4DFAB [51] 2018 180 (120/60) RGB/Depth/3D 79 6 2 140cm Variable Posed Expressions
UL-FMTV [52] 2018 | 238 (86/48) Multispectral 7 4 100cm | 7 Settings Pose Estimation,
Posed Expressions
PUCV-DTF [54] 2018 | 46 40/6) Thermal 2 4 Pose Estimation,
Posed Expressions
Eurocom [53] 2018 50 RGB/Thermal 7 4 6 150cm Posed Expressions
RWTH [141] 2019 90 LWIR 68 8 9 90cm 2 Settings Posed Expressions
Face-Emotion [112] 2020 69 RGB/Depth 6 Posed Expressions
MAVEFER [56] 2020 17 (7/10) RGB/Depth/LWIR Annotations 2 Posed Expressions
SpeakingFaces [138] 2021 142 RGB/LWIR 100cm Posed Expressions
CAS(ME)® [92] 2022 216 RGB/Depth 7 Macro/Micro Expressions
FaceVerse-Detailed [99] | 2022 128 RGB/Mesh 21 Posed Expressions

video frame. These applications find relevance in a variety of
domains, including computer vision, healthcare, augmented
reality, and biometrics. The precision of facial alignment
is essential for tasks such as face recognition, expression
analysis, 3D face reconstruction, and facial feature tracking.
3D geometry, depth, and thermal imaging have significantly
elevated the precision and adaptability of facial alignment
applications. These modalities empower algorithms to ac-
curately locate facial landmarks, even in challenging con-
ditions, making facial alignment more robust and versatile
across various domains.

The BIWI [97] data set contains RGB-D data of hu-
man faces captured using the Microsoft Kinect sensor. This
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data set is proposed mainly for face alignment across large
poses. It includes RGB images, depth maps, and skeleton
information [183]. The 3D Face Alignment in the Wild
(3DFAW) [184] data set is widely used for face alignment.
It contains an annotated corpus of over 23,000 multi-view
images from a wide range of conditions, captured in both
controlled and in-the-wild settings. The data set includes
images from MultiPIE and BP4D [185] as well as images
collected from the Internet. All images were annotated in a
consistent way with 66 3D facial points. The Florence data
set [111] is used by Guo et al. [186] for 3D dense face
alignment. The BU-4DFE [17] and BP4D [185] data sets are
used by Jeni et al. [187] for dense 3D face alignment from
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2D videos in real time.

C. FACE REGISTRATION

Face registration is the process of aligning or registering
multiple facial images or 3D face models into a common
coordinate system or reference frame. The goal is to ensure
that all faces are in a consistent pose, scale, and orientation,
making it easier to compare, analyze, or combine them for
various applications [188].

Face registration is particularly important when working
with a database of facial images or 3D face models, where
faces may vary in pose, expression, or illumination. It helps
bring these faces into a canonical form such that subse-
quent processing or comparisons can be performed accu-
rately [189].

The relationship between face alignment and face registra-
tion lies in the fact that face alignment is often an integral step
in the face registration process. Before registering faces, it is
common to perform face alignment on each individual face
to ensure that the facial landmarks are correctly positioned.
These landmarks can then be used as reference points during
the registration process to align and normalize the faces.
Gerig et al. introduced the BFM-2017 [152] data set for
evaluating face registration algorithms. They used the data set
to develop a pipeline for face registration based on Gaussian
processes. The FRGC v1 [12] data set was used by Tena et
al. [190] for 3D Dense Registration. Ayyagari et al. [188]
utilized the IRIS 3D data set for face registration. Ma et
al. [191] used the IRIS [133] data set to evaluate non-rigid
registration of visible and infrared face images.

D. FACE RECOGNITION

Face recognition goes beyond face verification and aims
to identify or recognize individuals from a set of known
identities. It involves comparing a given face image against a
database or a gallery of known face images and determining
the most likely identity for the input face.

The process of face recognition typically involves the
following steps: localization of faces in the input image,
alignment of the detected face to a standard pose or con-
figuration, extracting discriminative features from the face
image, comparing the feature representation of the input face
against a database of known face features, and identifying the
best match with the highest similarity score. Face recognition
has numerous security, surveillance, biometrics, and human-
computer interaction applications.

Solutions for face recognition include feature extraction-
based approaches and deep learning-based approaches. Algo-
rithms developed based on feature extraction methods aim to
extract robust and discriminative features that can capture the
unique characteristics of each person. Traditional methods
utilize handcrafted features such as Local Binary Patterns
(LBP) [192], Histogram of Oriented Gradients (HOG) [193],
or Eigenfaces citeSirovich:1987:Eigenface. On the other
hand, deep learning techniques, particularly Convolutional
Neural Networks (CNNs), have shown remarkable perfor-
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mance in automatically learning highly effective feature rep-
resentations from raw face images. Various deep learning
architectures have been employed to enhance face recog-
nition performance [1]. Models like FaceNet [194], VG-
GFace [195], and DeepFace [196] have achieved state-of-the-
art results on benchmark data sets.

Face recognition algorithms often face challenges in han-
dling variations in pose, illumination, expression, and oc-
clusion. Researchers have explored domain adaptation tech-
niques to improve the generalization capability of models
across different environments or data sets. Several bench-
mark data sets are widely used for evaluating and com-
paring the performance of face recognition algorithms in
RGB images. Examples include the Labeled Faces in the
Wild (LFW), MegaFace, CelebA, MS-Celeb-1M, and IARPA
Janus data sets. These data sets provide standardized pro-
tocols, labeled identities, and a diverse range of face im-
ages to facilitate the fair evaluation of algorithms. However,
RGB images are highly sensitive to variations in lighting
conditions. Changes in ambient lighting, shadows, or harsh
illumination can significantly affect the appearance of a
face, making it challenging for a face recognition system
to perform consistently in diverse lighting environments.
Therefore, interest in using thermal, depth, and 3D images
for face recognition is rapidly increasing during the last few
years. Numerous data sets have been created to provide input
data for face recognition algorithms. Some of the early 3D
data sets that were mainly collected for face recognition
include FRGCv2 [12], Bosphorus [18], UoY [96], BJUT-
3D [19], Texas 3D [23], and Photoface [28]. These data
sets include between 100 and 500 subjects. The FRGCv2
and BJUT-3D data sets include more than 40,000 samples
whereas UoY [96], Texas 3D [23], Bosphorus [18], and
Photoface [28] provide less than 10,000 samples. The FI-
DENTIS [50] is a 3D data set recently released with more
than 2,400 subjects accompanied by fundamental demo-
graphic and descriptive information. This data set is orga-
nized based on individual subjects and contains both single-
scan entries and a smaller subset of multi-scan entries. The
multi-scan entries vary in terms of the time elapsed between
recording sessions and the types of 3D data capture devices
used. This data set is considered one of the largest 3D data
set available for face recognition.

Depth data plays a crucial role in face recognition applica-
tions and several RGB-D data sets are commonly used in this
context. Examples include FEEDB [156], Lock3DFac [43],
and HRRFaceD [83]. In addition, the UHDB31 [48] data set
was introduced specifically to allow researchers to evaluate
the impact of pose, illumination, and resolution on their face
recognition algorithms. Despite its relatively small number
of subjects, UHDB31 provides challenging data samples for
face recognition due to its wide range of poses and diverse
lighting conditions. The data set meticulously distributes its
data samples across 21 different poses and three distinct
illuminations. In the study by Jiang et al. [103], the Intellifu-
sion RGB-D data set is employed for face recognition. This
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data set includes RGB-D images of 1,205 individuals, each
represented by multiple images, resulting in a comprehensive
data set comprising a total of 403,068 images that include
both RGB and depth data.

Over the past decade, there has been a growing focus on
face recognition using thermal imaging data sets, leading to
the collection of numerous data sets to serve as input for
training recognition models. The UH data set, as described in
Buddharaju et al. [134], offers thermal scans for 138 subjects
and grants access to over 7,000 MWIR images. The ND-
NIVL [44] data set comprises NIR scans of more than 500
subjects captured indoors. Similarly, the CIGIT-PPM [131]
data set encompasses over 93,000 NIR scans of 72 subjects,
all acquired under controlled illumination conditions. The
Eurocom [53] data set provides scans of 50 subjects in
various poses, with occlusions and different lighting settings.
Additionally, there are data sets that combine thermal and
depth images for face recognition, such as RGB-D-T [115],
KinectFaceDB [40], and Tuft [58].

E. FACE VERIFICATION
Face verification, also known as face authentication, aims to
verify whether two face images belong to the same person
or not. In face verification, the system compares the facial
features extracted from two images and determines whether
they represent the same person or different individuals. The
goal is to determine if there is a match or a mismatch
between the faces [197]. The process of face verification
typically involves the following steps: locating and extracting
faces from the input images, aligning the detected faces to a
standard pose or configuration, extracting distinctive features
from the aligned faces, comparing the feature representations
of the two faces, and making a binary decision (match or non-
match) based on a predefined threshold or similarity metric.
There are several types of multimodal data sets that are
specifically collected for training and evaluating face veri-
fication algorithms. FRAV3D [14] is a multimodal data set
used by Conde et al. [198] for face verification. The data set is
collected over a ten-month period involving 105 volunteers.
All of the participants fall within the young adult age range
(18-35 years), are of Caucasian ethnicity. The data set also
exhibits a gender bias, with 81 males and 24 females in-
cluded. McCool et al. [199] use the FRGC v2 data set for face
verification by dividing the 3D face into separate parts. The
same data set is later used by McCool et al. [200] for 3D face
verification using feature distribution modeling techniques.
KriZajet al. also use the FRGC v2 data set to evaluate a 3D
face verification approach developed using Gaussian mixture
models. Ouamane et al [201] introduce an innovative method
for face verification, wherein they represent 2D and 3D
face images as a high-dimensional tensor. They evaluate the
proposed approach using FRGC v2 [12], Bosphorus [18],
and CASIA 3D [11]. Yu et al. [202] use both the FRGC v2
and Bosphorus data sets to develop a 3D face verification
approach using sparse ICP With resampling and denoising.
Depth data represents a crucial input for improving face

20

verification approaches. Lin et al. [203] use RGB-D input
data to develop a deep learning approach for face verification
where the III-D RGB-D face data set [72] is used for training
the proposed model. This data set was generated using a
Kinect sensor and comprises RGB-D images of 106 individu-
als. The EUROCOM [53] and CurtinFaces [70] RGB-D data
sets are also used for face verification evaluation experiments
conducted by Xu et al. [204].

Face verification in thermal images has received great in-
terest during the last few years. The ARL [135] and Tuft [58]
data sets are utilized by Di et al. [205] to develop a multi-
scale visible to thermal face verification approach using
attribute-guided synthesis. Peri et al. [206] collected a data
set, named MILAB-VTF(B), for face verification evaluation.
The data set consists of matched thermal and visible video
recordings. This data set includes data from 400 subjects of
indoor and long-range outdoor thermal-visible face imagery.

F. FACE ANTI-SPOOFING

Face verification technology has wide applications in serving
as a reliable means of authenticating individuals based on
their facial features. However, conventional face verification
systems, while highly effective, often lack the ability to
distinguish between genuine faces and spoofed face attacks.
These spoof attacks can take various forms, including the use
of printed photos, digital images, masks meticulously crafted
to resemble live faces (presentation attacks), and videos of
faces (replay attacks). The vulnerability of traditional face
verification systems to such spoof attacks poses a significant
security risk. If these systems cannot differentiate between
real individuals and fraudulent attempts, unauthorized access
can occur, potentially leading to security breaches or com-
promised authentication processes. This is where face anti-
spoofing solutions become a demand.

Face anti-spoofing is a critical and evolving field within
biometrics and computer vision. Its primary objective is to
discern between genuine, live faces and spoofed face attacks,
effectively identifying and thwarting fraudulent attempts. In
essence, anti-spoofing measures act as a protective layer,
ensuring that only legitimate access is granted and that
spoofed faces fail the verification process. Implementing ef-
fective face anti-spoofing techniques is crucial for improving
face verification systems’ overall safety and reliability. By
bolstering the system’s ability to detect and reject spoof
attacks, it not only safeguards against security breaches but
also enhances user trust and confidence in the technology.
This is particularly essential in applications where secu-
rity is paramount, such as access control, secure banking
transactions, and identity verification in critical infrastructure
settings [207]. Therefore, many data sets are specifically
designed for face anti-spoofing applications.

Face-antispoofing data sets are collected using different
visible light scanning technologies such as mobile and con-
ventional webcams. CASIA-FASD [208] (CASIA Face Anti-
Spoofing Dataset) contains 1,000 genuine face images and
4,000 spoofing face images from 50 subjects. The spoofing
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attacks include printed photos, mobile phone displays, iPad
displays, and computer displays. The Spoof in the Wild
(SiW) [209] data set includes real and spoof face images
captured with mobile devices. It contains various spoofing
attacks, including printed photos, replay attacks, and masks.
The mobile face spoof (FSD) [210] data set is a face spoof
data set, created using the cameras of a laptop (MacBook
Air3) and a mobile phone (Google Nexus 54) and three
types of attack medium (iPad, iPhone, and printed photo).
The Replay-Mobile [211] data set consists of short video
recordings of both real-access and attack attempts of 40
different identities. Each video is approximately 10 seconds
long (300 frames at 30 fps), and is captured at HD resolution
(720 x 1,280). The Oulu-NPU [212] data set is designed
explicitly for face anti-spoofing. It consists of both real
access attempts and spoofing attacks using various materials.
The Replay-Attack [213] data set contains videos of real
access attempts and spoofing attacks performed using various
materials and techniques.

The evolution of new advanced scanning technologies
such as depth and thermal imaging has enabled new robust
methods for face anti-spoofing. Many data sets have been
created to provide input data for these methods. The NUAA
Imposter [149] data set is a face anti-spoofing data set created
by researchers at the Nanjing University of Aeronautics and
Astronautics (NUAA). This data set is designed for the
purpose of developing and evaluating face liveness detection
methods. The 3DMAD data set contains 76,500 frames of
17 different users, recorded using a Microsoft Kinect sensor
for both real-access and spoofing attacks using 3D facial
masks [34], [35]. The Wide Multi-Channel presentation At-
tack (WMCA) data set includes genuine faces and seven
categories of attack samples. Each data sample contains
images of four modalities: VIS, NIR, thermal, and depth [74].
The CASIA-SURF data set consists of 1,000 subjects and
21,000 video clips with 3 modalities (RGB, Depth, IR). It
has six types of photo attacks involving multiple operations,
e.g., cropping, bending the print paper, and stand-off dis-
tance [79]. In the CASIA-SURF CeFA data set, the Intel
RealSense is used to capture the RGB, Depth, and IR videos
simultaneously at 30 fps and a resolution of 1280 x 720
pixels for each frame in the video. Subjects are asked to move
their head smoothly so as to have a maximum of around
30° deviation of head pose in relation to frontal view [94],
[214]. The GUC-LiFFAD data set is a new face artifact
data set collected using LFC. It comprises 80 subjects. Face
artifacts are generated by simulating two widely used attacks,
such as photo print and electronic screen attacks [215]. The
3D Mask [216] is a recent 3D mask anti-spoofing data set
with more variations to simulate the real-world scenario.
This data set contains 12 masks from two companies with
different appearance qualities. Seven cameras from station-
ary and mobile devices and six lighting settings that cover
typical illumination conditions are included. Therefore, each
subject contains 42 (seven cameras X six lighting conditions)
genuine and 42 mask sequences, totaling 1,008 videos. The
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silicone mask attack data set SMAD [217] comprises 130
videos, including 65 real samples and 65 silicone-masked
samples. The attack samples in SMAD wear vivid silicone
masks that fit well with holes in the eyes and mouth regions.
Some silicone masks also have hair, mustaches, and beards
for life-like impressions.

G. FACIAL EXPRESSIONS AND EMOTIONS DETECTION
Human communication is profoundly shaped by facial ex-
pressions—a rich range of emotional cues that convey human
thoughts and feelings. Understanding these expressions has
been a pursuit of great significance, both in psychology and
technology. In the domain of facial expression recognition,
researchers and engineers have developed various modal-
ities to dissect and comprehend this intricate non-verbal
language [163].

Among these modalities the dynamic, static, posed, action
units, and spontaneous forms of expression recognition each
offer a distinct perspective and set of challenges [33]. Static
expression recognition relies on a single image frame to
capture facial expressions. It aims to identify emotions by
scrutinizing the facial configuration at a specific moment in
time. Static recognition is vital in scenarios where a snapshot
of emotional state suffices, such as security systems and
still image analysis. Similarly, posed expression recognition
is Often used in controlled environments. Posed expres-
sion recognition involves individuals intentionally mimick-
ing specific emotions. This modality serves as a founda-
tion for understanding basic emotional archetypes, laying
the groundwork for more comprehensive analyses. On the
other hand, spontaneous expression recognition, the most
challenging and truest reflection of human emotion, involves
detecting emotions as they naturally occur without prompting
or preparation. This modality seeks to unveil unscripted,
authentic emotional responses, providing valuable insights in
fields like psychology, market research, and human-computer
interaction. The early research in facial expression recogni-
tion mainly focused on posed static expressions. Several data
sets were created to meet the requirements of this kind of fa-
cial analysis. The NIST/Equinox [139] data set was released
in 2004. It contains three distinct facial expressions of 90
subjects captured using thermal imaging. The FRGCv2 [12]
data set, which was released in the same year, contains 3D
scanning of 466 subjects. The latter data set includes a variety
of posed static facial expressions. The ND-2006 [95] data
set contains 3D scanning of 888 subjects performing five
facial expressions. The BU-3DFE [15] data set is one of
the most common multi-modal data sets that provide 3D
face models with seven expressions: happiness, disgust, fear,
anger, surprise, sadness, and neutral, with different levels
of intensity. There are 100 subjects, of which 56 are male
and 44 are female. The majority of subjects were undergrad-
uates of various ethnicities. For each subject, there are 25
face models. The facial expressions and emotions data set
(FEEDB) [155] consists of 1,650 recordings of 50 persons
posing for 33 different facial expressions and emotions. The
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second version of FEEDB consists of 1,550 recordings of 50
persons recorded in two separate video streams, separately
for RGB and depth channels.

In contrast, dynamic expression recognition captures the
temporal evolution of facial expressions, providing insight
into the progression of emotions. Dynamic recognition is
particularly valuable in applications that demand real-time
emotion tracking, such as human-computer interaction and
emotion-aware technology [42]. Several facial expression
data sets provide a rich source of input data that can be
used to excel research in this field. The MMI [218] data
set contains recordings of facial expressions performed by
multiple individuals. It includes video sequences and high-
quality 3D facial scans. The data set provides annotations
for different expressions, intensity levels, and onset and apex
frames of expressions. The FRGCv2 [12] data set combines
audio and dense 3D facial deformations of effective com-
munication. It contains images from 466 subjects collected
in 4,007 scans with two facial expression variances. The
BU-4DFE data set, as described in Yin et al. [219], com-
prises 606 sequences of facial expressions obtained from 101
individuals. In each sequence, one of the six fundamental
facial expressions is demonstrated, beginning with a neutral
expression, reaching the apex of the expression, and then
returning to neutrality. The data set includes seven frames
captured around the moment of the most intense expression,
and these frames are associated with the corresponding se-
quence labels. This arrangement results in a total of 4,272
images (101 individuals x 6 expressions x 7 frames). The
B3D(AC) or ETH-3DAV data set [25] is a collection of high-
quality, realistic 3D facial scans. The scans were obtained
using a 3D scanner while individuals pronounced a set of 40
predetermined sentences under both neutral and deliberately
induced emotional conditions.

Spontaneous expression refers to genuine and uncontrolled
emotional reactions or facial expressions that occur natu-
rally in response to one’s emotions, thoughts, or imme-
diate surroundings. These expressions are not consciously
planned, rehearsed, or posed but instead emerge instinctively
in reaction to a particular stimulus, situation, or internal
emotional state. The Binghamton-Pittsburgh 4D spontaneous
expression data set (BP4D) [17], [185] provides RGB-D
data for facial expression analysis. It includes spontaneous
3D facial expressions captured using a Di3D dynamic face-
capturing system. The Multimodal Spontaneous Emotion
data set (MMSE/BP4D+) [220] is an extension of the BP4D
data set, which provides RGB-D data for spontaneous facial
expression analysis, captured using RGB and depth sensors.

Similarly, action unit recognition processes deeper intri-
cacies of facial expressions. Action unit recognition breaks
down the face into its constituent movements. It dissects
the nuanced muscular changes underlying expressions, al-
lowing for a granular understanding of emotional subtleties.
This modality finds applications in psychology, clinical as-
sessment, and animation. The Dynamic 3D Facial Action
Coding System (FACS) data set (D3DFACS) [30] presents
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the first dynamic 3D FACS data set for facial expression
research, portraying ten subjects performing between 19 and
97 different AUs both individually and in combination. Ab-
basnejad et al. [221] creates different, synthetic action units
and expressions to generate a large-scale synthetic facial
expression data set geared towards training neural networks.
The 3D Relightable Facial Expressions (ICT-3DRFE) [222]
data set comprises RGB-D data captured by a structured
light scanner. It includes high-resolution 3D face scans, RGB
images, and depth maps of human faces expressing various
emotions. It contains 3D models for 23 subjects and 15
expressions, as well as photometric information that allows
for photo-realistic rendering.

H. POSE ESTIMATION

Face pose estimation, also known as facial pose estimation or
head pose estimation, is a computer vision task that involves
determining the orientation or pose of a person’s face in a
three-dimensional space relative to a reference coordinate
system. This estimation typically includes the angles repre-
senting the pitch (up-down tilt), yaw (left-right rotation), and
roll (sideways tilt) of the face. The result is often expressed
as a set of angles or a transformation matrix that describes
the face’s position and orientation. The accurate estimation
across a full range of head poses is challenging since faces
can exhibit a wide range of poses. Faces may also appear at
different scales and resolutions in images or videos, making
it challenging to detect and track facial landmarks accurately.
Moreover, variations in lighting conditions, in addition to
partial occlusions, increase the complexity of estimating face
poses. To address these challenges, several multimodal data
sets are designed with high variability in illumination, poses,
and scales.

Depth data offers significant advantages, particularly in
the field of pose estimation analysis. A notable example is
the Biwi data set [97], which has been specifically created
for head pose estimation. This data set incorporates RGB-
D information captured through a Kinect sensor, providing
extensive annotations for head poses in each frame. Likewise,
the ICT-3DHP data set [98] is designed for pose estimation
purposes using depth information. What sets it apart is its
inclusion of uncontrolled variations in poses, significantly
expanding the scope of pose analysis. The Pandora data
set [47] is a pose estimation data set with a diverse range
of poses and occlusions, mimicking real-life scenarios.

I. 3D MORPHABLE MODELS( 3DMM)

A 3D morphable face model represents facial shape and ap-
pearance as a generative model. It establishes dense point-to-
point correspondence across all faces through a registration
process on a set of example faces. This correspondence en-
ables the meaningful combination of faces in a linear manner,
resulting in the creation of morphologically realistic faces.
It also involves the separation of facial shape and color by
eliminating factors from external variables like illumination
and camera parameters. 3D morphable models are statistical
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models that capture the inherent variability and structure of
3D facial shapes within a population. They are often built
using a large data set of 3D facial scans or models. Most of
the 3D data sets that are publicly available are commonly
used as input to train 3D morphable models [223]. However,
few data sets are particularly proposed for training 3DMMs.
FaceScape [116] is a large-scale data set that includes high-
quality 3D scanning of 938 subjects with a variety of expres-
sions, which makes it a perfect fit for training 3DMMs. It
employs a multi-view 3D reconstruction system to acquire
the initial mesh models using 68 DSLR cameras, with 30
of them dedicated to capturing high-resolution images of the
front side, while the remaining cameras capture images of the
side part. Geriag et al. [152] introduced the Basel face model
data set, known as BFM-2017, which incorporates facial
expressions and age distribution. This data set was mainly
created for processing non-rigid registration of faces, which
is a crucial step for designing 3DMMSs. Headspace [57] is
also mainly designed for generating 3DMMs. This data set
stands as the first publicly available data set that provides
both the shape and texture components for the entire human
head. Booth et al. [45] collected a large-scale 3D data set
composed of 10,000 high-quality 3D facial scans to develop
3DMM. As of the time of writing and to the best of our
knowledge, this data set stands as the most expansive 3D data
set in terms of the number of individuals it includes.

VII. ANALYSIS

All findings in this section are based on the data sets pre-
sented in this work. Comparisons between different data sets
could yield different results.
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FIGURE 2: Overview of researchers’ interest in collecting
facial data sets over time.

The data sets presented in this review span the time be-
tween 1996 and 2022. The graph in Figure 2 illustrates the
trend in the number of collected data sets over time. Before
2010, the maximum number of collected data sets was ap-
proximately six. However, after 2010, there was a significant
surge in the number of generated data sets, establishing six
papers as the new annual minimum. We attribute this in part
to the Kinect v1, which was released by Microsoft in 2010
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and marked the advent of consumer-grade (thus, affordable)
depth sensors.
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FIGURE 3: Distribution of data sets acoss tasks.

We also examined the types of tasks for which these data
sets were collected. However, it is crucial to recognize that
the number of data sets alone does not necessarily indicate
the level of advancement in the field. Ideally, we would
compare data set sizes based on the number of samples. Yet,
due to variations in the sample types collected by different
researchers, we opted to compare data set sizes in Figure 3
based on the number of subjects.

ANTI-SPOOFING

DETECTION

EXPRESSION

VERIFICATION

RECOGNITION

0 5000 10000 15000 20000 25000 30000 35000 40000
Total number of subjects

FIGURE 4: Total number of subjects aggregated across mul-
tiple data sets per task.

Surprisingly, data sets for verification tasks were the least
numerous compared to the top four tasks. However, as shown
in Figure 4, these data sets contributed substantially to the
verification research field by encompassing a significant
number of subjects and, consequently, samples.

We further analyzed data sets collected for the top five
tasks over time. Figure 5 reveals that the initial interest in
collecting facial data sets was primarily for recognition tasks,
with verification tasks emerging around 2003. Detection and
expression tasks followed suit in 2004, while anti-spoofing
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FIGURE 5: Trends in data collection for different tasks over
ime.

data sets made their appearance in 2009. Notably, data sets
for recognition and expressions have continued to be gen-
erated consistently, while anti-spoofing data sets have not
been as prevalent in the last five years. This timeline roughly
coincides with, but pre-dates, face biometrics becoming a
consumer-level feature in 2011 (FaceUnlock, introduced with
the Android 4 OS), sparking a wider interest in protecting
digital devices from spoofing attacks.

It is evident that the focus on different tasks reached peaks
at different times. For instance, anti-spoofing peaked in 2013,
while data sets for recognition and expressions were most
prolific in 2018, and for detection in 2019. However, data
sets specifically designed for verification tasks did not gain
as much traction over time, possibly due to the ease of using
recognition-focused data sets for verification. In this context
we would also like to note that face verification may not
need as much data as other tasks. The reason is that the
verification process is, essentially, an outlier detection or one-
class classification problem, in which a face is compared with
another face obtained during the registration process. As a
result, existing manifold learning models or embeddings that
have been trained on data sets designed for different purposes
may be used.

Regardless of the intended purpose behind data set gen-
eration, 38% of data sets were annotated with participant
information. Figure 6 indicates that the participants’ age is
rarely considered in isolation; it mostly appears in papers that
also disclose ethnicity and gender. Among these attributes,
ethnicity is the most frequently considered label, even when
analyzed separately. Gender is also highly considered, often
appearing alongside ethnicity and age attributes. We believe
these statistics to be crucial for future research as cross-
domain generalization (e.g., training on a limited variety of
ethnicities before general deployment) and class imbalances
remain a fundamental challenge of modern Al

In examining experimental settings for participants (Fig-
ure 7), we found that 72.1% of the data sets include variations
in facial expressions, poses/views, or illumination settings.
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FIGURE 6: Statistics on labeling participant information
across data sets
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FIGURE 7: Statistics on labeling experimental settings across
data sets.

49.95% of the data sets take expressions and illumination into
consideration. The graph clearly shows no relation between
views and poses. The reason behind the previous relation is
that views refer to placing sensors at different angles from
the subject, while poses refer to changing the participant’s
viewing angle from the sensor’s perspective. Therefore, it
is logical to have either one of the two attributes. However,
existing data sets prefer poses over views, with a presence of
30% in data sets compared to 8.17%, respectively. The graph
also indicates a good size of data sets, 15.65%, that consider
all top three attributes at the same time.

In our analysis, we investigated the types of sensors
adopted in collecting the 3D data sets. Figure 8 shows that
one-third of the 3d data sets are captured using by Microsoft
Kinect sensor (36%), followed by the 3dMD system (16%),
Intel RealSense (11%), and Minolta Vivid 910 (7%). How-
ever, the combined percentage of the three Minolta Vivid
versions represents approximately 14% , placing it in the
third position after the 3dMD system.

Figure 9 shows that VIS is the oldest type of sensor among
the top four. 3dMD and FLIR started to appear in 2006 and
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2007, respectively. Both of them reached their peak in 2018.
Despite the fact that the Kinect v1 appeared first in 2010,
it attracted researchers from its early stages considering that
Microsoft released the non-commercial version of the Kinect
SDK only in 2011.
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FIGURE 10: Counting and ranking different modality types
based on their occurrence
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The second part of the experimental settings we are look-
ing into is the type of modalities used in collecting the
data sets. Figure 9 shows that RGB ranks first, Which is
a justifiable conclusion since the RGB modality is incor-
porated in most of the multimodal datasets, followed by
thermal imaging , followed by RGB-Depth and 3D Data. In
Figure 11, thermal imaging is decomposed into thermal and
infrared (NIR, SWIR, MWIR, and LWIR). The graph shows
that LWIR is favored in facial tasks due to its high emission
compared to MWIR, for instance.
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VIil. DISCUSSION

Large-scale data sets. Large-scale multimodal data sets
are predominantly accessible to well-funded companies and
resource-rich institutions. These data sets have the potential
to contain a wealth of information. In the context of facial
analysis, this means that these data sets provide valuable
contextual information for understanding and interpreting
facial expressions, identities, or emotions. While there are
some large-scale multimodal data sets available, they are
relatively small in terms of both the population represented
and the modalities they cover. In other words, the available
data sets may not capture the full diversity of individuals and
the wide variety of data sources that are encountered in the
real world. In addition, different cultures may have different
reservations regarding taking pictures of faces out of privacy
concerns, resulting in yet another source for biases. Despite
the presence of a few existing large-scale data sets, there
is a continued need to collect more extensive and diverse
data sets for facial analysis applications. This is because
the effectiveness and fairness of facial analysis algorithms
often depend on the diversity of the training data. Collecting
data sets with a broader range of input samples, includ-
ing different ethnicities, ages, genders, and environmental
conditions, is crucial to improving the performance and
fairness of facial analysis models. The availability of large-
scale multimodal data sets allows for more comprehensive
analysis. Researchers, auditors, regulators, and policymakers
can study the data sets to better understand their capabilities
and limitations, identify potential risks, and address any
harms associated with the use of facial analysis in various
applications, such as surveillance, identity verification, or
emotion recognition.

General purpose data sets. In the past, data sets were
typically collected with specific goals and tasks in mind.
This means that data collection efforts focused on gathering
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information directly relevant to solving a particular problem
or addressing a specific use case. With the advent of deep
learning, there has been a significant shift in how models are
trained. Instead of using purpose-specific data sets, the cur-
rent state-of-the-art involves training large-scale, “general-
purpose” Al models. These models are initially trained on
vast data sets collected from multiple data sources, which
may contain diverse and unfiltered information. These large-
scale AI models, such as deep neural networks, can be
thought of as compressed representations of the data they are
trained on. In essence, they encapsulate the patterns, features,
and knowledge present in the massive training data sets. This
makes them versatile, as they can be fine-tuned or specialized
for various tasks.

Privacy and bias issues. The weights of deep neural net-
works carry a representation of the training data sets, which
raises privacy and bias issues. There is a concern raised about
the failure to account for the rights, welfare, and interests
of vulnerable individuals and communities. In multimodal
facial analysis data sets, this concern could relate to issues
like consent for using facial images, potential harm from Al
technology misuse, and the impact of biased algorithms on
marginalized groups. Variations in age, gender, and ethnicity
within facial analysis data sets can introduce bias in the
representation of human faces. Bias occurs when certain
demographic groups are overrepresented or underrepresented
in the data set, leading to inaccurate or unfair results in facial
analysis applications. If a data set lacks diversity in terms of
ethnicity and primarily includes faces from a single ethnic
group, facial analysis algorithms may struggle to perform
accurately on faces from underrepresented groups, a problem
known as cross-domain generalization. This can lead to
misidentification, poorer facial recognition, and inaccurate
ethnicity-based analyses.

Facial and environmental variations. The challenges in
face analysis data sets persist due to factors such as differ-
ent facial expressions, poses, lighting conditions, age-related
changes, and the use of makeup. To potentially address
these issues, both three-dimensional (3D) and infrared (IR)
face recognition technologies have been explored. Likewise,
image-based color/albedo decompositions have been pro-
posed, both for the purpose of extracting makeup [224] and
highlight removal [225] to help multiview image alignment.
However, their effectiveness in improving performance re-
garding these factors has yet to be explored. 3D face scans
offer advantages by capturing facial shape information and
representing facial geometry, making them less susceptible
to variations in lighting and viewpoint changes when com-
pared to (multi-view) 2D images. Nevertheless, they may be
sensitive to changes in facial expressions, and the challenge
of handling age-related variations is also pertinent in 3D face
recognition. However, it is important to note that 3D-based
approaches are not without challenges of their own. These
include computational complexity, potential issues with pre-
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cise alignment of 3D scans, and the generation of undesirable
artifacts when creating virtual views based on 3D models.

Recent advances in the field of facial analysis have been di-
rected towards making the most of thermal images. These in-
novations seek to use the unique properties of thermal imag-
ing, especially its capability to capture distinctive patterns of
superficial blood vessels on the face. These patterns contain
information about a person’s physiological information that
does not change with time and can be accurately extracted
from thermal images. This is quite advantageous because it
remains reliable even when the environment or conditions
change, making thermal imaging a standout choice compared
to other ways of capturing facial information.

When it comes to handling different lighting conditions,
NIR imaging has shown great promise in delivering accurate
results. NIR images have specific advantages over visible
light, especially when dealing with various lighting angles
and situations. Because of these advantages, infrared (IR)
imaging is now being considered as a promising option for
biometric applications (e.g., for face verification on smart-
phones). This is because it has the capability to illuminate
low light scenatios and the potential to provide consistent
results for an individual over time and in diverse lighting
situations, making it extremely useful in applications where
robust and dependable facial recognition is needed.

Multimodal data sets. Assessing which of the three modal-
ities (RGB, 3D, or thermal) is superior for facial analysis
depends on the development of algorithms and rigorous eval-
uations. Visible light imagery is relatively easy to obtain at
high quality, making it a reliable choice. Three-dimensional
facial data closely mimics the way human vision works, espe-
cially when combined with visual texture information. On the
other hand, the IR modality, particularly thermal images, can
reveal a unique facial vascular network for each individual,
which is challenging to alter. Each of these modalities has its
own strengths and weaknesses. However, as prior research
shows, combining multiple modalities generally leads to
better performance than relying on a single modality alone.

Dynamic and static data sets. Dynamic data sets, which
involve capturing changes in facial expressions, movements,
and temporal variations, offer distinct advantages over static
data sets in various contexts within facial analysis and scan-
ning. For example, dynamic data sets are essential for ac-
curately recognizing and analyzing emotions because they
capture the temporal evolution of facial expressions. Emo-
tions often involve changes in expression over time, and static
images may not convey the full emotional context. Dynamic
data sets are also crucial for training and validating facial
action recognition systems based on facial action coding sys-
tem, which involves categorizing facial muscle movements
and their temporal patterns. In biometric applications, such
as liveness detection or anti-spoofing, dynamic data sets are
essential for verifying the authenticity of a person’s face.
Static images can be easily spoofed, but dynamic analysis of
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facial movements can help distinguish real faces from fake
ones.

IX. CONCLUSION

In this work, we provided a comprehensive review of existing
multimodal face data sets. Our work assumes a data-centric
approach, categorizing existing data based on the technology
used, the data contents, and the applications. This allows
readers to browse through data sets relevant to their work
from multiple perspectives. Our findings show that multi-
modal data sets can boost performance and robustness in
many applications. A concern that remains (as with most data
sets) are cross-domain generalization problems due to biases
in ethnicity, age, and gender, as well as class imbalances
that may lead to mispredictions or underrepresentation of
minorities. We believe that the latter point, in particular,
deserves future research, not only into work of representing
minorities accurately but also into societal and infrastructural
biases (e.g., the need for funding and recruiting volunteers)
to ensure that work based on such data sets remains fair and
equitable.
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