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Fair bandwidth allocation is an important mechanism for traffic management in the Internet. Round
robin schedulers, such as Deficit Round Robin (DRR), are well-suited for implementing fair queueing in
multi-Gbps routers, as they schedule packets in constant time regardless of the total number of active
flows. The main drawback of these schemes, however, lies in the maintenance of per flow queues, which
complicates the buffer management module and limits the sharing of the buffer space among the com-
peting flows. In this paper, we introduce a novel packet scheduling mechanism, called Vertical Dimen-
sioning (VD) that modifies the original DRR algorithm to operate without per flow queueing. In
particular, VD is based on an array of FIFO buffers, whose size is constant and independent of the total
number of active flows. Our results, both analytical and experimental, demonstrate that VD exhibits very
good fairness and delay properties that are comparable to the ideal Weighted Fair Queueing (WFQ)
scheduler. Furthermore, our scheduling algorithm is shown to outperform significantly existing round
robin schedulers when the amount of buffering at the router is small.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The fair sharing of bandwidth among competing flows inside
the network is of paramount importance for efficient congestion
control. The design philosophy of the Internet relies on the end-
hosts to detect congestion (mainly through packet losses) and re-
duce their sending rates. Consequently, flows that do not respond
to congestion (e.g., UDP) may end up consuming most of the avail-
able bandwidth at the expense of TCP-friendly flows, while at the
same time increase the level of congestion. Fair bandwidth alloca-
tion is becoming even more important lately, due to the increasing
popularity of streaming applications, such as Internet radio/TV.
These applications require a stable throughput for a relatively long
period of time, in order for the end-user to perceive an acceptable
level of service quality.

Ideally, a router should be able to approximate a max–min
fair allocation of the available bandwidth, i.e., each flow should
be allocated as much bandwidth as possible, given that this allo-
cation does not affect the throughput of any other flow. Fair
queueing schedulers, such as Weighted Fair Queueing (WFQ)
[1,2], are extremely effective in providing tight fairness guaran-
tees. In fact, fair queueing is a very well-studied problem, and
many variations have been proposed throughout the years that
ll rights reserved.
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offer different levels of complexity and fairness (a detailed over-
view is given in Section 2).

Among all the packet schedulers reported in the literature,
round robin algorithms (e.g., Deficit Round Robin (DRR) [3] and
its variants) are probably the best candidates for incorporating fair
queueing in multi-Gbps routers, as they schedule packets in con-
stant O(1) time regardless of the total number of active flows.
The main drawback of these schemes, however, lies in the mainte-
nance of per flow queues that raises two important issues with re-
spect to their performance. First, the complexity of the buffer
management module increases with the number of active flows,
since the longest queue needs to be identified for dropping packets
in the presence of congestion. Second, and most important, the
sharing of the buffer space among the competing flows becomes
less effective with decreasing buffer size (a fact that is demon-
strated in our simulation experiments), and thus the flow isolation
property of fair queueing is not strictly enforced.

To further illustrate the importance of achieving efficient statis-
tical multiplexing with small buffer space, we should briefly dis-
cuss the current design practice of commercial routers. The rule-
of-thumb (based on the dynamics of TCP’s congestion control
mechanism) is that the amount of buffering at a router should be
equal to the Bandwidth-Delay Product (BDP), i.e., the product of
the average Round-Trip Time (RTT) times the link capacity. Conse-
quently, today’s core routers (with multi-Gbps links) contain
buffers that can hold millions of packets. However, a recent study
[4] suggests that the buffering capacity at the backbone routers
could be reduced by up to two orders of magnitude without
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significantly reducing the link utilization. If this theory holds, it
will have a positive impact on future communication networks.
For instance, the end-to-end delay and delay jitter will be reduced,
while the cost and complexity of backbone routers will be de-
creased dramatically.

To this end, we introduce a novel packet scheduling mecha-
nism, called Vertical Dimensioning (VD) that modifies the original
DRR algorithm so that it can operate without per flow queueing. In
particular, we introduce a simple data structure for storing the
incoming packets, based on an array of FIFO buffers. We illustrate
that this structure has two very attractive properties compared to
previous approaches: (i) it simplifies considerably the buffer man-
agement module at the router, and (ii) it enables efficient statisti-
cal multiplexing, even with very small buffer sizes. Our results,
both analytical and experimental, indicate that VD exhibits very
good fairness and delay properties that are comparable to the ideal
WFQ scheduler. Furthermore, our scheduling algorithm is shown
to significantly outperform existing round robin schedulers when
the amount of buffering at the router is much smaller than the
bandwidth-delay product.

In summary, the main contributions of our work are the
following:

� We introduce a novel packet scheduling algorithm for fair band-
width allocation that does not need to maintain per flow queues.

� We provide analytical results on the delay and fairness bounds
of our algorithm, and investigate its performance (with simula-
tion experiments) under various network conditions.

� We present initial results from a prototype implementation on a
software router, and demonstrate VD’s effectiveness in a real
network environment.

The remainder of the paper is organized as follows. Section 2
overviews the related work in the area of fair queueing algorithms.
Section 3 describes in detail the VD scheduling mechanism, and
analyzes its performance and implementation complexity. Section
4 presents the results from the simulation experiments, while Sec-
tion 5 provides some initial experimental results from a prototype
implementation. Finally, Section 6 concludes our work.

2. Related work

Fair queueing schedulers may be generally classified into two
categories, namely timestamp-based schedulers and round robin
schedulers. Timestamp-based schedulers emulate as closely as
possible the ideal Generalized Processor Sharing (GPS) [2] model,
by computing a timestamp at each packet arrival that corresponds
to the departure time of the packet under the reference GPS sys-
tem. Packets are then transmitted based on their timestamp val-
ues, using a priority queue implementation. WFQ [1,2], Worst-
case Fair Weighted Fair Queueing (WF2Q) [5], and WF2Q+ [6] fall
into this category. In particular, WF2Q achieves – what is called –
‘‘worst-case fairness”, by only scheduling packets that would have
started service under the reference GPS system. Although all the
above algorithms exhibit excellent fairness and delay properties,
the time complexity of both maintaining the GPS clock and select-
ing the next packet for transmission is Oðlog NÞ, where N is the
number of active flows [7].

The high complexity of GPS-based schedulers has led to a signif-
icant number of implementations that approximate fair queueing
without maintaining exact GPS clock. Start-Time Fair Queueing
(STFQ) [8], Self-Clocked Fair Queueing (SCFQ) [9], and Virtual Clock
(VC) [10] are typical examples of schedulers that calculate time-
stamps in constant O(1) time. However, since they need to main-
tain a sorted order of packets based on their timestamp values,
the overall complexity is still Oðlog NÞ using a standard heap-based
priority queue.

Leap Forward Virtual Clock (LFVC) [11] and Bin Sort Fair Queue-
ing (BSFQ) [12] further reduce the complexity of the dequeue oper-
ation, by using an approximate sorting of the packets. Specifically,
LFVC reduces the timestamp space to a set of integers, in order to
make use of the Van Emde Boas priority queue that runs at
Oðlog log NÞ complexity. However, the Van Emde Boas tree is a very
complex data structure, and its hardware implementation is not
straightforward. BSFQ, on the other hand, achieves an O(1) de-
queue complexity, by grouping packets with similar deadlines into
the same bin. Inside a bin, packets are transmitted in a FIFO order.
This is a very efficient method for implementing fair queueing, but
the number and the width of the bins must be properly set, in or-
der to avoid empty bins (which will compromise the O(1) dequeue
complexity).

Round robin schedulers do not assign a deadline to each arriv-
ing packet, but rather schedule packets from individual queues in
a round robin manner. As a result, most round robin schedulers
are able to process packets with an O(1) complexity, at the expense
of weaker fairness and delay bounds. Deficit Round Robin [3] is
probably the most well-known scheduler in this category. It im-
proves on the round robin scheme proposed by Nagle [13], by tak-
ing into account the exact size of individual packets. Specifically,
during each round, a flow is assigned a quantum size that is pro-
portional to its weight. Since the size of the transmitted packet
may be smaller than the quantum size, a deficit counter is main-
tained that indicates the amount of unused resources. Conse-
quently, a flow may transmit (at each round) an amount of data
which is equal to the deficit counter plus the quantum size. It is
easy to notice that DRR has certain undesirable properties. First,
it has poor delay guarantees, since each flow must wait for N � 1
other flows before it gains access to the output link. Second, it in-
creases the burstiness of the flows, since packets from the same
flow may be transmitted back-to-back.

The above shortcomings of DRR have been addressed by many
researchers, and several variations of DRR have been proposed.
Smoothed Round Robin (SRR) [14], for instance, employs a Weight
Spread Sequence to spread the quantum of each flow over the en-
tire DRR round, thus reducing the output burstiness. Aliquem [15]
introduces an Active List Management method that allows for the
quantum size to be scaled down without compromising complex-
ity. As a result, it exhibits better fairness and delay properties com-
pared to the original DRR implementation. Finally, Stratified Round
Robin (STRR) [16] and Fair Round Robin (FRR) [17] group flows
with similar weights into classes, and use a combination of time-
stamp and round robin scheduling to improve the delay bound.
In particular, they employ a deadline-based scheme for inter-class
scheduling, and a variation of DRR for scheduling packets within a
certain class. Both algorithms improve over the performance of
DRR, with FRR providing better short-term fairness.

3. Vertical dimensioning

We first present in detail the VD scheduling algorithm, and then
derive analytical results on its fairness and delay properties. In par-
ticular, Section 3.1 discusses the technical aspects of the algorithm,
while Section 3.2 presents its performance bounds from a worst-
case analysis. Finally, Section 3.3 outlines the space and time com-
plexity of VD.

3.1. The algorithm

We consider a single link with capacity C that provides service
to N backlogged flows. Each flow i has an associated weight wi P 1,
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which corresponds to the relative service that flow i should receive
compared to the rest of the backlogged flows. In a best-effort archi-
tecture, wi ¼ 1, for all i. Ideally, the amount of bandwidth that flow
i receives during any time interval should be equal to

ri ¼
wiPN

k¼1wk

� C ð1Þ

Notice that we do not assume any admission control mechanism,
i.e., the value of ri will constantly change depending on the total
number of backlogged flows.

Our motivation in developing the Vertical Dimensioning mech-
anism is to avoid the maintenance of per flow queues. To this end,
we propose the use of an array of M FIFO queues, where each queue
may contain packets from any active flow. The whole structure is
based on the DRR mechanism, i.e., packet transmissions are orga-
nized into a number of distinct rounds. Within each round, a flow
may transmit a certain amount of data that is proportional to its
weight. More specifically, during each round, we assign to every
flow i a quantum equal to wiLM , where LM is the maximum packet
size (i.e., the MTU size inside the network that the router belongs
to). Unlike DRR, though, we do not maintain per flow queues, but
rather assign one queue to each round. In other words, each packet
in the VD scheduler is placed in a queue that corresponds to a com-
plete round of transmissions under the DRR scheduler.

Fig. 1 illustrates the basic functionality of the VD scheduler with
M ¼ 10 queues, and four flows with weights 2, 1, 1, and 1, respec-
tively. A total of 10 packets arrive while the link is idle (for ease of
presentation, however, no packet leaves the queue). The number
on each packet corresponds to its order of arrival. Assuming that
the size of each packet is equal to LM , the first three packets will
join q[0], as they correspond to flows with an individual backlog
of LM bytes. When the fourth packet arrives, it increases the back-
log of flow 4 to 2LM , and thus joins q[1] (since w4 ¼ 1). Because the
fifth packet is the first one to arrive from flow 3, it is placed in the
first round (i.e., q[0]). This is also the case for the sixth packet, since
the weight value of flow 1 allows it to transmit both packets in the
same round. The rest of the packets follow in a similar fashion. In
summary, VD distributes the packets from a single ‘‘flow queue”
into multiple vertical ‘‘round queues”, hence the name Vertical
Dimensioning.
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Fig. 1. An example showing how VD inserts the arriving packets from four flows
into the FIFO buffers. The numbers on the packets correspond to their order of
arrival.
The value of M should be set to account for the worst case sce-
nario, i.e., when a single flow with weight value equal to 1 occupies
the whole buffer space. Therefore, to avoid wrap-around, M should
be set to B

LM

l m
, where B is the buffer size of the router. Notice that,

even if the value of M is fixed for the worst case, this fact has no
effect on the performance of the VD scheduling algorithm. The FIFO
queues do not waste any buffer space when they are idle, and are
merely represented by two pointers at the head and tail of the cor-
responding queues.

The actual packet transmission in the VD scheduler is per-
formed as follows. A counter current is maintained, indicating the
queue that is currently feeding the output link. Once this queue
is empty, the counter is increased, all the packets from the follow-
ing queue are transmitted, and the same process is repeated until
all queues are empty. In addition, a counter last identifies the
queue containing packets to be dropped in the case of overflow.
Both counters take values between 0 and M � 1.

The most important function of the scheduler is to correctly
identify the queue (i.e., round number) where an incoming packet
should be placed at. In order to achieve that we need to maintain
some per flow information. Specifically, the following variables
must be kept for every active flow i:

� bytesi: The total number of bytes currently in the queue for flow i.
� deficiti: This value corresponds to the amount of unused

resources that are carried over from one round to the next
(i.e., the deficit counter in the DRR terminology). It is also uti-
lized for counting the number of bytes transmitted in the current
round for flow i.

� roundi: The round number during which flow i transmitted its
last packet.

The variable deficiti deserves some further attention, since its
purpose is twofold. First, due to the variable size of IP packets, a
flow i may not be able to consume its entire quantum (i.e., wiLM)
during one round. Therefore, the amount of unused resources (let
it be Di) should be carried over to the next round, in order to ensure
fair bandwidth allocation. It is easy to see, and has been proven in
[3], that Di may take the following values:

0 6 Di < LM ð2Þ

Initially, when a flow becomes active (i.e., when its first packet is
enqueued) its deficit variable is initialized to zero. Then, the value
of deficiti is adjusted at the beginning of each new round (when a
packet from that flow is processed), in order to reflect the new value
of Di. Consider, for instance, two consecutive rounds, namely k and
kþ 1. The deficit counters at the beginning of round kðDk

i Þ and at the
beginning of round kþ 1ðDkþ1

i Þ are connected through the following
equation:

Dkþ1
i ¼ ðDk

i � bk
i Þ þwiLM

where bk
i is the number of bytes transmitted in the kth round for

flow i, and wiLM is the quantum assigned to flow i in the kth round.
Therefore, we choose the variable deficiti to represent ðDk

i � bk
i Þ, i.e.,

during each dequeue operation its value is reduced according to the
size of the transmitted packet. Consequently, the variable deficiti for
flow i is bounded as follows:

�wiLM 6 deficiti < LM

and is maintained through the following procedure:

� When flow i becomes active, set deficiti ¼ 0.
� When a packet of flow i is dequeued, set deficiti ¼ deficiti � sizei,

where the variable sizei corresponds to the size of the transmit-
ted packet.
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� At the beginning of each new round (i.e., when processing the
first packet of flow i in the new round), set
deficiti ¼ deficiti þwiLM .

Given the above information, the queue number for a random
packet of flow i is computed from the following formula:

pos ¼ current þ bytesi � deficiti þ sizei

wiLM

� �
� 1

� �
mod M ð3Þ

where the variable sizei corresponds to the size of the incoming
packet. It is easy to verify that this formula places each packet in
the exact round that it would have been transmitted under the
DRR scheduler.

The detailed pseudo-code of the enqueue, dequeue and drop
operations are shown in Fig. 2. The only points requiring some fur-
ther clarification are lines 6–8 in the enqueue operation, and lines
5–6 in the dequeue operation. Both pieces of code perform the ex-
act same function, i.e., they update the variable deficiti to reflect the
new value of the deficit counter. However, within each round this
initialization is performed only once, inside the function that is in-
voked first.

The Vertical Dimensioning mechanism borrows the basic con-
cepts from the DRR algorithm, but it has several advantages over
the original DRR technique:

� Packets from the same flow that are scheduled in the same
round are not necessarily transmitted back-to-back.
Fig. 2. The pseudo-code of the enqueue, dequeue, and drop operations.
� The delay properties of VD are significantly better, since a packet
does not need to wait for its turn in the round robin schedule
before it can be transmitted. Instead, packets in the same round
are transmitted in the order of their arrival.

� It enables efficient statistical multiplexing, since the entire buf-
fer space is shared by all competing flows.

This last property of VD distinguishes it from all other round ro-
bin schedulers in the literature. When per flow queues are em-
ployed, the sharing of the buffer space becomes a burden, and
may significantly increase the overall complexity. For instance,
the buffer stealing scheme of DRR (originally proposed by McKen-
ney [18]) suggests that, in the event of buffer overflow, a packet
from the longest queue should be dropped.1 However, maintaining
a sorted order of queue lengths has a complexity of Oðlog NÞ. In fact,
McKenney’s implementation is based on a linked list of all possible
queue length values, where each entry consists of a list of queues
that currently have that exact length. The cost of this approach can
be high if a large number of queues have approximately the same
length. In VD, we always drop the packet at the tail of the last
non-empty queue (e.g., q[2] in Fig. 1), which has a constant cost.
An alternative technique with O(1) complexity, called Approximated
Longest Queue Drop, is also proposed by Suter et al. [19]. Instead of
searching for the longest queue, the authors only store the length
and id of the longest queue from the previous queueing operation
(i.e., enqueue, dequeue or drop). However, as the authors state, this
scheme does not lead to optimal behavior and may occasionally fail
to provide the flow isolation property of fair queueing.

Besides the complexity of identifying the longest queue, per
flow queueing has another undesirable property. When the buffer
size at the router is smaller than the typical bandwidth-delay prod-
uct, the sharing of the buffer space among the competing flows be-
comes very ineffective. Specifically, our simulation results (Section
4) indicate that flows with large weight values end up consuming
most of the available bandwidth, leading flows with smaller
weights to bandwidth starvation. This is due to the weighting of
the queue lengths (by a factor of 1=wi) that essentially favors flows
with large weights (notice that using the same weight value for all
queues has the exact opposite effect, i.e., the high bandwidth flows
cannot reach their fair share). VD, on the other hand, results in very
good fairness even with small buffer sizes. Although current rou-
ters provide ample buffer space, the results in Ref. [4] suggest that
the buffering capacity at the backbone routers could be reduced by
up to two orders of magnitude without significantly affecting the
performance. In that case, VD presents itself as an excellent candi-
date for implementing fair queueing in future multi-Gbps routers.

3.2. Performance bounds

In this section, we derive some analytical results on the fairness
and delay properties of Vertical Dimensioning. For the sake of sim-
plicity, we assume that the number of backlogged flows is constant
and equal to N.

We begin by calculating the upper and lower bounds on the ser-
vice that a flow i receives during X consecutive rounds.

Lemma 1. Consider a flow i that is continuously backlogged during X
successive rounds. Then, the amount of service SiðXÞ received by that
flow is bounded by

XwiLM � LM < SiðXÞ < XwiLM þ LM
1 Actually, when the flows have different weights, the length of flow i’s queue
should be weighted by a factor of 1=wi .
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Proof. Let Dstart
i and Dend

i be the deficit values prior to the beginning
and after the completion of the X rounds, respectively. The amount
of service that flow i receives during the X rounds is equal to

SiðXÞ ¼ XwiLM þ Dstart
i � Dend

i

Therefore, according to Eq. (2)

SiðXÞ > XwiLM � Dend
i > XwiLM � LM ð4Þ

and

SiðXÞ < XwiLM þ Dstart
i < XwiLM þ LM ð5Þ

Combining (4) and (5) proves the Lemma. h

Next, we derive the corresponding bounds on the service that a
flow i receives during any time interval ðt1; t2Þ.

Lemma 2. Consider a flow i that is continuously backlogged in the
interval ðt1; t2Þ. The amount of service Siðt1; t2Þ received by flow i
within this time interval is given by

ðX � 2ÞwiLM � LM < Siðt1; t2Þ < XwiLM þ LM

where X is the number of rounds that completely enclose ðt1; t2Þ.

Proof. If X is the number of rounds that completely enclose ðt1; t2Þ,
then flow i will be served at most X times. Thus, according to
Lemma 1

Siðt1; t2Þ < XwiLM þ LM ð6Þ

Similarly, flow i will be served at least ðX � 2Þ times, and the
amount of bytes transmitted will be

Siðt1; t2Þ > ðX � 2ÞwiLM � LM ð7Þ

Combining (6) and (7) proves the Lemma. h

In the next theorem, we calculate the Golestani [9] fairness in-
dex, which measures the difference between the normalized ser-
vice received by any two flows.

Theorem 1. Consider two flows i and j that are continuously
backlogged in the interval ðt1; t2Þ. Then, the following inequality
holds:

Siðt1; t2Þ
ri

� Sjðt1; t2Þ
rj

����
���� < 2LM

rmin
þ LM

1
ri
þ 1

rj

� �

where rmin is the guaranteed service rate for any flow with weight equal
to 1.

Proof. Applying Lemma 2 to flow i,

ðX � 2ÞwiLM � LM < Siðt1; t2Þ < XwiLM þ LM )
ðX � 2ÞwiLM

ri
� LM

ri
<

Siðt1; t2Þ
ri

<
XwiLM

ri
þ LM

ri

From Eq. (1) it follows that

wi

ri
¼
PN

k¼1wk

C
¼ 1

rmin

where rmin ¼ C=
PN

k¼1wk is the guaranteed rate for any flow with
weight equal to 1 (i.e., the minimum possible weight value).
Therefore,

ðX � 2ÞLM

rmin
� LM

ri
<

Siðt1; t2Þ
ri

<
XLM

rmin
þ LM

ri
ð8Þ

Similarly, for flow j

ðX � 2ÞLM

rmin
� LM

rj
<

Sjðt1; t2Þ
rj

<
XLM

rmin
þ LM

rj
ð9Þ
Combining (8) and (9) yields the desired result
Siðt1; t2Þ

ri
� Sjðt1; t2Þ

rj

����
���� < 2LM

rmin
þ LM

1
ri
þ 1

rj

� �
�

The next theorem gives a measure of the Worst-case Fairness
Index (WFI) for VD. This index was first introduced by Bennett
and Zhang [5], and gives an upper bound on the difference between
the service that flow i receives and the service it should receive in
the ideal case.

Theorem 2. Suppose a packet from flow i arrives at time t1,
increasing the backlog of flow i to qi bytes. Let t2 be the time that
the last bit of qi is transmitted. Then, the total time s ¼ t2 � t1 that
elapses is bounded by

s < qi

ri
þ 2LM

rmin
þ ðN � 1Þ LM

C
þ LM

ri

Proof. During the time interval ðt1; t2Þ, the amount of bytes trans-
mitted over the output link is equal to

S ¼ qi þ
X
j 6¼i

Sjðt1; t2Þ

and, therefore, s is given by

s ¼ S
C
¼ qi

C
þ 1

C

X
j 6¼i

Sjðt1; t2Þ

According to Theorem 1

Sjðt1; t2Þ
rj

� qi

ri
<

2LM

rmin
þ LM

1
ri
þ 1

rj

� �
)

Sjðt1; t2Þ < rj
qi

ri
þ rj

2LM

rmin
þ rj

LM

ri
þ LM

Hence,

s < qi

C
þ qi

ri

X
j 6¼i

rj

C
þ 2LM

rmin

X
j 6¼i

rj

C
þ LM

ri

X
j 6¼i

rj

C
þ
X
j 6¼i

LM

C

Also, qi � C and, therefore

s < qi

ri
þ 2LM

rmin
þ LM

ri

� �X
j 6¼i

rj

C
þ ðN � 1Þ LM

C

Since
P

j 6¼irj < C, it follows that

s < qi

ri
þ 2LM

rmin
þ ðN � 1Þ LM

C
þ LM

ri
�

Finally, the next theorem gives a bound on the delay that a sin-
gle packet experiences at the head of its ‘‘flow queue”. In other
words, it gives a measure of the maximum inter-departure time
between two consecutive packets of the same flow.
Theorem 3. The maximum inter-departure time between two con-
secutive packets of flow i is given by
d <
2LM

rmin
þ ðN � 1Þ LM

C

Proof. We will prove this theorem, by considering the following
scenario where a packet from flow i experiences the worst-case
delay: all the packets from flow i are transmitted at the beginning
of round k, while in round kþ 1 all of flow i’s packets are transmit-
ted last. In this case, the maximum inter-departure time d is equal
to the time needed for all other N � 1 flows to transmit the maxi-
mum amount of data possible (within the two rounds). Applying
Lemma 1,
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To summarize, Vertical Dimensioning provides very good fair-
ness and delay bounds that are comparable to previous round ro-
bin schedulers. The main limitation, though, is that these bounds
are not strictly rate proportional. In other words, all the flows will
experience similar average delay inside the network, regardless of
their relative weights. In particular, the expression for the Gole-
stani fairness is dominated by the term 2LM

rmin
, while the expression

for the WFI is dominated by the term 2LM
rmin
þ ðN � 1Þ LM

C . However, this
is an expected result, since the transmission order of the packets
inside each round is based on their arrival time and not on their
weight value.
3.3. Time and space complexity

The implementation complexity of a packet scheduler is proba-
bly of equal importance to its fairness properties. With link speeds
reaching 40 Gbps, each packet must be processed within a time
frame of a few nanoseconds. Therefore, it is imperative that the
scheduler has a constant O(1) time complexity that is independent
of the total number of active flows. Furthermore, the per packet
processing functions should be simple enough, in order to facilitate
a fast hardware implementation.

Vertical Dimensioning has all the above properties, and it is ex-
tremely simple to implement in hardware. Looking back at Fig. 2,
all the pseudo-code lines can be implemented with simple arith-
metic operations, while the most expensive procedure is the round
number calculation for the incoming packet (Eq. (3)). Compared to
the simple DropTail queueing discipline, VD (as well as all the
other fair schedulers) needs to perform some additional memory
accesses during the queueing operations. Specifically, it requires
two accesses for reading and writing back the per flow variables
(for enqueue, dequeue, and drop). Nevertheless, these memory
accesses take place on fast SRAM chips, and to not affect signifi-
cantly the speed of the implementation.

Regarding space complexity, VD needs to maintain three vari-
ables for each active flow (as explained in Section 3.1), and two
pointers for each of the M FIFO queues. Therefore, the overall space
complexity is OðN þ B

LM

l m
Þ. This may result in larger memory con-

sumption, compared to per flow queueing schedulers, if B
LM

l m
> N.
4. Simulation experiments

In this section, we experimentally evaluate the fairness and delay
properties of VD, and compare its performance to other well-known
fair queueing schedulers. The experiments are performed with the
ns-2 [20] network simulator. The simulation topology is shown in
Fig. 3, where all the links have a propagation delay equal to 1 ms.
The packet size is uniformly distributed between 200 and 1000 by-
tes, while the simulation time is set to 60 s. The basic quantum size
for all the schedulers (e.g., the value of LM for VD) is set to 1000 bytes.
Finally, the results presented in the following paragraphs, corre-
spond to the average value from 10 independent simulation runs.

There are 15 flows from n0 to n4, 10 flows from n5 to n6, and 10
flows from n7 to n8. These flows constitute the background traffic
and we do not collect their individual statistics. They utilize the
UDP transport protocol, and transmit Pareto on/off traffic with a
shape parameter of 1.5. The on and off times are exponentially dis-
tributed with mean 500 ms, while the sending rate during the on
periods is 250 Kbps.
Furthermore, there are 10 reference flows from n0 to n4, for
which we measure their performance in terms of throughput and
end-to-end delay. Each reference flow i (1 6 i 6 10) is assigned a
weight value wi ¼ i. In order to get a complete picture of the rela-
tive performance of VD, we compare it to three representative
round robin schedulers, namely DRR, SRR, and Aliquem (with a
scaling factor of q ¼ 5). To ensure a fair comparison, we modified
the DRR, SRR, and Aliquem implementations, by incorporating
McKenney’s [18] buffer stealing scheme (where each queue has a
weight that is inversely proportional to the weight of its corre-
sponding flow).

In the first experiment, we investigate the delay properties of
the four schedulers. We configure the reference flows to transmit
Constant Bit Rate (CBR) traffic over the UDP transport protocol,
where flow i is transmitting at a rate of 125 � i Kbps. Fig. 4 shows
the average, 99th percentile, and maximum delay achieved by
the different schedulers. VD clearly outperforms the other three
schedulers in all cases. For instance, VD’s average delay is 8–54%
lower compared to Aliquem, 18–58% lower compared to SRR, and
46–57% lower compared to DRR. Also notice that the delay under
the VD technique does not vary considerably for different weight
values, verifying the analytical results in Section 3.2.

In the above scenario, each source is transmitting at a constant
rate without responding to congestion. In its current state, though,
the Internet relies on the end-hosts to adjust their sending rates
according to the congestion level inside the network. Conse-
quently, a scheduling algorithm should be able to provide fair
bandwidth allocation regardless of the transport layer mechanism.
In the next experiment, we investigate the effectiveness of the four
schedulers in the presence of an end-to-end congestion control
protocol. In particular, we set the reference flows to be FTP appli-
cations running on top of the TCP congestion control protocol,
and allow them to compete for the available bandwidth with the
rest of the background flows.

Fig. 5 illustrates the throughput for each of the reference flows,
under different buffer sizes. SRR, DRR, and Aliquem perform poorly
for a buffer size of 12,500 bytes (approximately equal to 25% of the
BDP). Specifically, flows with large weight values (>4) are allocated
an excessive amount of bandwidth, at the expense of flows with
small weight values (1 and 2). Also notice that DRR seems to per-
form better for weight values greater than 7. This is due to its strict
round-robin schedule that allows each flow to access the output
link once during each round. Therefore, if a packet arrives after
its flow has accessed the link, it has to wait until the next round
(even if it could be transmitted in the current round). Conse-
quently, flows with large weight values cannot sustain a high
throughput, because their queues are not emptied fast enough in
order to avoid frequent packet losses.

Unlike the per flow queueing schedulers, VD performs very
well, and its allocation of the available bandwidth is comparable
to the ideal case, regardless of the buffer size. This is due to the
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novel placement of packets into actual DRR rounds that essentially
pushes the packets that need to be dropped (in the event of con-
gestion) to the rear of the buffer. DRR, SRR, and Aliquem are based
on per flow queues, and during the congestion period the scheduler
has no information regarding the importance of each packet. Drop-
ping the packet from the longest weighted queue is obviously not
the best method, since it favors flows with large weights. As a re-
sult, these schedulers require a large amount of buffer space, so
that each flow can store enough packets in the queue to sustain
its throughput.
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5. Experiments with a real implementation

We implemented Vertical Dimensioning in the Linux kernel,
and in this section we show some representative experiments con-
ducted in the network topology of Fig. 6. We use a star topology
with a single router in the center (S5) where we implemented
the VD scheduling algorithm. S1 and S2 are connected to S5
through Gigabit Ethernet interface cards, while S3 and S4 are con-
nected through 100 Mbps Ethernet cards. The hardware configura-
tion of S5 consists of two Intel Pentium III 1.4 GHz processors and
1 GB of RAM. For the traffic generation we used the publicly avail-
able tool Iperf [21]. Finally, the packet size is set to 1500 bytes.

In the first experiment, we test the fairness of VD when three
TCP flows compete for an available bandwidth of 100 Mbps (all
the flows have weight equal to 1). Specifically, nodes S1, S2, and
S3 send traffic towards S4 through the VD scheduler. The starting
times of the three flows are at 0, 4, and 8 s, respectively. The
throughput achieved by each flow evolves as shown in Fig. 7.
Clearly, VD provides excellent fairness and all three flows receive
exactly their fair share.

Next, we investigate the flow isolation property of Vertical
Dimensioning in the presence of unresponsive traffic. In this set-
ting, we configure both Gigabit interfaces (i.e., at S1 and S2) to send
UDP traffic (towards S4) at their maximum rate. Their starting times
are set to 0 and 4 s, respectively. At time t = 8 s, we start a TCP con-
nection from S3 to S4. Fig. 8 illustrates the throughput of each flow
as a function of time. Notice that in this scenario the TCP flow does
not reach its maximum share, but maintains a throughput that is
slightly lower. This is due to the large sending rate of the UDP
sources that overwhelms the buffer, causing frequent packet losses.
Consequently, the TCP source is often forced to halve its congestion
window, thus reducing its sending rate. Nevertheless, even in this
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Fig. 6. Experimental testbed.
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extreme case, the TCP flow is allocated an amount of bandwidth
that is only 15% lower than its fair share.
6. Conclusions

In this paper, we introduce a new fair queueing scheduler,
called Vertical Dimensioning, that modifies the original DRR algo-
rithm to operate without per flow queueing. Similar to other round
robin schedulers in the literature, VD organizes packet transmis-
sions into a number of distinct rounds. Unlike previous approaches,
though, where packets are placed in per flow queues, each packet
in the VD scheduler is placed in a queue that corresponds to a com-
plete round of transmissions under the DRR scheduler. The result is
a simple data structure consisting of an array of FIFO buffers that is
independent of the total number of active flows. We analyze the
performance of VD, both analytically and experimentally, and
show that it exhibits very good fairness and delay properties that
are comparable to the ideal WFQ scheduler.

In summary, VD has several attractive features that make it an
ideal candidate for incorporating fair queueing in the current Inter-
net architecture: (i) it simplifies considerably the buffer manage-
ment module, (ii) it enables efficient statistical multiplexing with
small buffer space, (iii) it provides fair bandwidth allocation
regardless of the underlying congestion control mechanism, and
(iv) it is very easy to implement in hardware.

In the future, we plan to investigate the applicability of VD in a
router-assisted congestion control protocol (i.e., similar to XCP
[22]). In particular, the novel grouping of packets into rounds that
can be translated directly into ‘‘number of bytes per unit time”,
may provide some useful feedback to the end-hosts that will allow
them to calculate their fair share in a more efficient manner.
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