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Abstract

Caching and replication have emerged as the two primary techniques for reducing the delay experienced by end-users when downloading

web pages. Even though these techniques may benefit from each other, previous research work tends to focus on either one of them

separately. In particular, caching has been studied mostly in the context of proxy server systems, while replication is the technology behind

Content Distribution Networks (CDNs). In this paper we investigate the potential performance gain by using a CDN server both as a

replicator and as a proxy server. We develop an analytical model to quantify the benefit of each technique, under various system parameters,

and propose a greedy algorithm to solve the combined caching and replica placement problem. Our simulation results indicate that a simple

LRU caching scheme can improve significantly the response time of HTTP requests, when utilized over a replication-based infrastructure.

Moreover, due to its simplicity, this hybrid approach does not affect the administrative overhead of the CDN architecture.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The explosive growth of the World Wide Web and the

increasing availability of fast Internet access to the end-user,

have turned centralized web servers into a performance

bottleneck. Popular web sites (e.g. news sites) receive

millions of HTTP requests per day, which may easily

overload a state-of-the-art web server and increase signifi-

cantly the delay perceived by end-users.

Proxy caching was the first step towards reducing the

latency of HTTP requests. It is realized by placing proxy

servers in front of the clients, which store the most

frequently accessed documents (this is commonly referred

to as ‘forward proxy’, as opposed to ‘reverse proxy’ which

is usually placed in front of the servers). User requests are

forwarded to the proxy server, and only cache misses result

in requests being forwarded to the web server. Proxy

caching, however, has several disadvantages that limit its
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potential benefit: (i) the hit ratio reported in the literature is

typically below 50% [1], and (ii) cache misses will normally

incur a large delay, since these requests will have to be

redirected to the origin server.

While caching tries to minimize the latency of down-

loading the most popular documents, the underlying

principle of replication is to move the web content as

close to the end-user as possible. Content distribution

networks (CDNs), for example, accomplish that by

replicating popular web sites across a number of geographi-

cally distributed servers. The key objectives of a CDN are to

increase the availability of the hosted sites and, most

importantly, to minimize the response time of HTTP

requests.

Even though these two techniques may benefit from each

other, previous research work tends to focus on either one of

them separately. In particular, caching has been studied

mostly in the context of proxy server systems (although [2]

considers the case of caching at the server side, i.e. reverse

proxy), while replication is the key technology of CDNs.

However, implementing a caching scheme as part of a CDN

architecture, may help overcome some of its limitations.
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For example, the study in [3] shows that the file popularity

of a busy web server tends to follow a Zipf-like distribution

with a parameter q, which is much higher than the one

observed in proxy server traces. Consequently, higher hit

ratios may be achieved when caching is performed within a

CDN system. Furthermore, cache misses may be redirected

to a nearby CDN server, instead of the origin server, which

can reduce the delay penalty of cache misses.

In this paper we investigate the potential performance

gain by using a CDN server both as a replicator and as a

proxy server. To the best of our knowledge this possibility

was overlooked in the past. We develop an analytical model

to quantify the benefit of each technique, under various

system parameters, and propose a greedy algorithm to solve

the combined caching and replica placement problem. Our

simulation results indicate that a simple LRU caching

scheme can improve significantly the response time of

HTTP requests, when utilized over a replication-based

infrastructure. Moreover, due to its simplicity, this hybrid

approach does not affect the administrative overhead of the

CDN architecture.

The remainder of the paper is organized as follows. In

Section 2 we discuss the motivation behind our work, and

also give a brief overview of previous research work on

replica placement algorithms. In Section 3 we present the

system model, and also state some assumptions regarding

the CDN architecture. The proposed replica placement

algorithm is introduced in Section 4, while the simulation

results are illustrated in Section 5. A general discussion

follows in Section 6, while Section 7 concludes our work.
2. Motivation and previous work

2.1. Motivation

A generic replication scheme works as follows: (i) the

‘objects’ to be replicated are defined, (ii) statistics are

collected, (iii) based on some optimization criteria and

constraints, replica placement is decided, and (iv) a

redirection method is provided that sends client requests

to the best replicator that can satisfy them. Regardless of the

location, where redirection happens (DNS [4], or server

level [5]), and the criteria with which a suitable replicator is

selected [5,6], for each object an entry of the form

!object_id,list_of_replicatorsO must be kept. Selecting

objects to be single web pages will cause scalability

problems, since updates need to be made whenever a new

page is created, deleted or relocated. Therefore, the silent

consensus in the papers dealing with replica placement is

that objects are large, representing whole sites or large parts

of them, e.g. whole directories. This is also indicated by the

number of objects considered in the experiments, which is

usually in the order of hundreds, e.g. [7] or thousands, e.g.

[8–10]. Here, we adopt per site replication, meaning that

either the whole content of a site is replicated, or none of it.
However, our work is also applicable in the intermediate

cases, where objects represent groups of pages.

Although creating site replicas helps on bringing the

content closer to the clients, it does suffer from two

drawbacks. First, the placement decisions should remain

fairly static for a considerable time period. This is due to the

fact that replica creation and migration incurs a high transfer

cost. Second and foremost, the storage space is not used

optimally. Ideally, we would require that the replicas of a

page be proportional to their popularity (assuming the

network parameters being otherwise equal). However, what

we can only achieve is that pages are assigned replicas

proportionally to the popularity of the site they belong. This

is not efficient, since it is recorded that a relatively small set

of pages within a site accounts for the largest number of

requests [3].

In order to alleviate the above problems we decided to

deploy caching in conjunction with replication. Caching

operates on a per page level and is inherently dynamic. The

intuition behind, is that by splitting the available storage

space at each CDN server between replica placement and

caching, we will end up with a network that stores sufficient

site replicas, while keeping the most popular pages of all

sites at the caches of the available servers. Deciding the

percentage of storage space to devote in caching should not

be an ad-hoc process. Therefore, we developed an analytical

model that predicts the hit ratio of the LRU cache

replacement scheme, given site access frequencies and the

available storage capacity.

A recent study [11] addressed this problem from a

different point of view. Motivated by the same observations,

the authors proposed a few clustering techniques to

efficiently group web pages into clusters. They also

provided some heuristic algorithms for the cluster-based

replica placement problem, and showed that clustering can

improve considerably the performance, compared to coarse-

grain (i.e. per site) replication. Their work, however, is

orthogonal to ours, since it essentially deals with the

problem of constructing clusters for efficient replication. As

we mentioned earlier, our work is also applicable in the case

of cluster-based replication.

Our primary contributions in this paper include the

following: (i) we show that the hybrid distribution policy

outperforms stand-alone replica placement, (ii) we show

that the hybrid distribution policy outperforms pure caching,

and (iii) we develop an analytical model to characterize the

LRU cache replacement policy, which can be used

independently.

2.2. Previous work

The implementation of a CDN service essentially

involves three major design considerations: (i) replica

placement, i.e. where and which documents to replicate,

(ii) where to redirect a client request (i.e. which server), and

(iii) who makes the redirection decision, e.g. client, server,
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DNS. In this paper we mainly focus on replica placement

algorithms, but the reader may refer to [12,13] for more

complete surveys on Internet data replication.

Models for replica placement date back to early 1970s

under the context of the file allocation problem (FAP) [14]

and received attention from diverse research areas, e.g.

distributed databases [15], video servers [16], etc. [17]

provides a thorough categorization of replica placement

papers and the assumptions they use. An old survey of FAP

formulations can be found in [18]. The basic form of the

FAP is the following: given a network with N servers and M

files exhibiting various read frequencies from each

server, allocate replicas in order to optimize a perform-

ance parameter, subject to certain constraints. Usually,

the resulting problem is (0,1) integer programming, NP-

complete, and requires heuristics to solve.

In the context of CDNs, FAP-like formulations were

used in [7,8,10,19–22], to name a few. The target functions

considered in these papers include client-replica distance

[10], read access cost [8,20], read and update cost [7,19,21],

and replica availability [22]. Depending on the formulation

various constraints were considered, e.g. server storage

capacity [8,19,21], processing capacity [20], bandwidth

[10], etc. Another distinguishing factor for the above papers

is whether they tackle the dynamic version of the problem.

[7,19,20] are works towards this direction. Given an input

stream of requests, they alter replica distribution so as to

minimize the total answering cost (potentially after each

request). [20] also aims at balancing the load between the

replicators. Load balancing is also the target of [23] with the

assumption that the network has a tree structure, while it is

also considered in [24], where the problem is replicating the

contents of a single site.

Another option to formulate replica placement is by

using the k-median problem [25], which can be briefly

described as follows: given a graph with weights on the

nodes representing number of requests, and lengths on

the edges, place k servers on the nodes, in order to minimize

the total network cost. The difference between k-median and

FAP formulations, is that k-median decides about the

replicas of a single object and, therefore, consecutive

calls must be executed in order to distribute all objects.

[9,10,26–28] are papers based on k-median formulations. In

[27] the authors solve the problem to optimality for a tree

network, using dynamic programming. [9] proposes a

greedy heuristic that outperforms dynamic programming

in non-tree networks, while [10] compares various heur-

istics and concludes that a greedy one that performs back

tracking offers the better results. [26] provides heuristics

specifically tailored for the Internet topology, while [28]

studies placement in the case, where there exists no

knowledge about the replication scheme of an object.

Finally, [29] discusses systematic methods to aid in the

process of choosing (among the various proposals that exist

in the literature) the most suitable replica placement

heuristic to implement in a specific environment.
To conclude, in a recent study [30], the authors raise the

question whether replica placement algorithms are really

important. Using extensive simulation experiments, they

compare the majority of the replica placement algorithms

from the literature, and conclude that a simple delayed-LRU

caching scheme can perform at least as well as the best

replica placement algorithms. They argue, however, that

replica placement is still needed for other reasons, such as

reliability and availability.

In this paper, we take advantage of the previous research

work on replica placement, in order to build the model of

Section 3. More specifically, we decided to use a FAP-like

formulation with the target function representing read costs.

Since our scope is large CDN providers, we also included

storage capacity constraints. Our goal is not to propose a

new replica placement scheme, but rather provide evidence

that such schemes when coupled with caching, perform

considerably better. Therefore, this work is complimentary

with the above described efforts.
3. System model

Consider a generic CDN infrastructure consisting of N

geographically distributed servers (Fig. 1). Let S(i), s(i) be

the name and the total storage capacity (in bytes) of server i,

where 1%i%N. The N servers of the system are

interconnected through a communication network, and the

communication cost between two servers S(i) and S(j),

denoted by C(i, j), is the cumulative cost of the shortest path

between the two nodes (e.g. the total number of hops). We

assume that the values of C(i, j) are known a priori, and that

C(i, j)ZC(j, i). As it will become apparent, the model does

not depend on the link costs being symmetric or any other

assumption concerning their values, as long as the relevant

costs are known a priori. However, for reasons of simplicity

in the simulation setup, we assume that link costs are

symmetric.

Let there be M different web sites, named

{O1,O2,.,OM}, that have subscribed to the CDN provider’s

hosting service. The size of site Oj, denoted by oj, is also

measured in bytes. Each site j consists of Lj distinct objects,

named fOj1;Oj2;.;OjLj
g, and the popularity of these

objects follows the Zipf-like distribution with parameter qj.

The replication policy assumes the existence of one

primary copy for each site in the network. Let SPj be the site

which holds the primary copy of Oj, i.e. the only copy in the

network that cannot be deallocated, hence referred to as

primary site of Oj. Each primary site SPj contains

information about the whole replication scheme of Oj.

This can be done by maintaining a list of the servers that the

jth site is replicated at, called from now on the replicators of

Oj. Moreover, every server S(i) stores a two-field record for

each site. The first field is the primary site SPj of it, and the

second the nearest server SNðiÞ
j of server i, which holds a

replica of Oj. In other words, SNðiÞ
j is the server for which
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the requests from S(i) for Oj, if served there, would incur the

minimum possible communication cost. It is possible that

SNðiÞ
j ZSðiÞ, if S(i) is a replicator of Oj. Another possibility is

that SNðiÞ
j ZSPj, if the primary site is the closest one holding

a replica of Oj.

Finally, we assume that the storage capacity at each

server can be used for both replication and caching.

Consequently, the overall functionality of the CDN system

may be summarized as follows. Whenever a client issues an

HTTP request for one of the M hosted sites, the DNS

resolver at the client side will reply with the IP address of

the nearest, in terms of network distance, server (step (1) in

Fig. 1). We will call this server a first hop server. The first

hop server will act essentially as a proxy server, and if the

requested document is neither replicated nor cached locally,

it will redirect the client request to the appropriate server

(i.e. the corresponding SNðiÞ
j ). The HTTP reply will be sent

back to the CDN server, which in turn will forward it to the

client, and also keep a copy in its local cache.
3.1. Problem formulation

Let rðiÞj be the number of requests for Oj, initiated from

the client population behind S(i) during a certain time period.

Our objective is to minimize the total cost, due to object

transfer. Let RðiÞ
j denote the total cost due to S(i)’s requests

for site Oj, addressed to the nearest server SNðiÞ
j . This cost is

given by the following equation

RðiÞ
j Z ½rðiÞj K lðiÞj �C i; SNðiÞ

j

� �

where lðiÞj is the number of requests that are satisfied locally

by S(i). Notice, that if SNðiÞ
j ZSðiÞ (i.e. S(i) is a replicator of
Oj), rðiÞj Z lðiÞj and RðiÞ
j Z0. Otherwise, lðiÞj will represent

the total number of requests served by the local cache.

Therefore, the cumulative cost, denoted by D, is given by

D Z
XN

iZ1

XM

jZ1

RðiÞ
j

Let us define an N!M replication matrix, named X, with

boolean elements. An element Xij of this matrix will be

equal to 1 if Oj is replicated at S(i), and 0 otherwise. Then,

the replica placement problem may be formulated as

follows
(1)
 Find the assignment of 0, 1 values at the X matrix that

minimizes D.
(2)
 Subject to the storage capacity constraints
XM

jZ1

Xijok %sðiÞ; c i Z 1; 2;.;N
3.2. Cache hit ratio

In order to quantify the benefit of caching as part of a

generic CDN architecture, we need an analytical model that

can predict the achievable hit ratio under various system

parameters. Assuming a simple LRU cache replacement

policy, we derive, in the following paragraphs, an

approximation for the cache hit ratio that can be achieved

at a single CDN server for a specific web site.

Let us consider the general case of server S(i) and site Oj.

The LRU cache may be modeled as a buffer that can store a

finite number of objects B (Fig. 2). Since the object size for

web documents is variable, B is approximated by c(i)/oi,

where c(i) is the amount of storage space allocated for
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caching, and oi is the average request size. When an object

Ojk is first stored in the cache, it occupies the rear part of the

buffer (i.e. it becomes the most recent one). If this object is

not requested again for a long period of time, it moves

gradually towards the front part of the buffer, and is

eventually evicted from the cache after KRB subsequent

object requests. If, on the other hand, Ojk is requested before

its eviction, it moves back to the rear of the buffer.

Assuming that each object is requested independently of

the others, we calculate the steady-state probability that a

specific object Ojk is present in the cache of server S(i). In

steady-state, this object spends on average �h time slots (i.e.

request instants) inside the cache, followed by �m time slots

during which it is not present in the cache. These two time

intervals may be calculated as follows

�h Z
XK

iZ1

ði C �hÞpiK1ð1 KpÞC
XN

iZKC1

KpiK1ð1 KpÞ

Z
pKK K1

1 Kp

�m ¼
XN

i¼1

ipiK1ð1 KpÞ ¼
1

1 Kp

where p is the probability that Ojk is not requested.

Then, the steady-state probability hðiÞ
jk that Ojk is present

in the LRU cache of sever S(i) is equal to

hðiÞ
jk Z

�h
�h C �m

Z 1 KpK

which is essentially the probability that this object is

requested at least once within K consecutive time slots.

Therefore, the hit ratio for the whole site Oj is equal to

hðiÞ
j Z

XLj

kZ1

1 K 1 KpðiÞ
j

aj

kqj

� �K� �
aj

kqj
(1)

where pðiÞ
j ZrðiÞj =

PM
kZ1 rðiÞk is the popularity of Oj at S(i), and

aj is the normalization factor for the Zipf-like distribution.

The only unknown variable in the above formula is K, i.e.

the expected number of time slots that an object may spend

in the cache before it is evicted, given that it is never

requested. Consider the general case, where an object enters

the cache at position 1, gradually moves towards the front of

the buffer, and finally arrives at position B without ever

being requested. Let us first determine what happens when

the object is in a random place inside the buffer (e.g.

position i in Fig. 2). During each time slot, it either stays at
position i with probability pi or moves to position iC1 with

probability 1Kpi, where pi is the cumulative probability that

one of the objects in positions 1 through iK1 is requested

(i.e. the objects in the shaded part of the buffer in Fig. 2).

Therefore, the expected number of time slots spent at each

position i is equal to

ti Z
XN

jZ1

jp
jK1
i ð1 KpiÞ Z

1

1 Kpi

In order to approximate K, we make the following

simplifying assumption. We assume that when the object

in question has been pushed to the front of the buffer (i.e. at

position B), all the previous positions are occupied by the

BK1 most popular objects. Let pB denote the cumulative

probability that any one of these objects is requested at a

given time slot. This probability may easily be calculated by

sorting all the individual objects according to their

popularity, and then selecting the top BK1 among them.

Moreover, we assume that, while this object is pushed from

position 1 towards position B, the popularity of every newly

inserted object will be equal to pB/(BK1) (i.e. all the new

objects will have identical popularity). Thus, K may be

approximated as follows

K Z
XB

iZ1

ti Z
XB

iZ1

1

1 K ði K1Þ pB

BK1

(2)
3.3. Cache consistency and uncacheable documents

Before we continue, we should briefly discuss two issues

that may affect the performance of a caching scheme. The

first one is cache consistency, which tackles the problem of

staleness in cached objects. Depending on the level of

staleness allowed, consistency mechanisms fall in two

categories: strong consistency (accessed copies are always

up to date) and weak consistency (accessed copies might be

stale). There has been an extensive amount of literature

work on cache consistency mechanisms, so we do not

address this problem in our present work. We assume that an

appropriate consistency mechanism is implemented inside

the CDN architecture, according to the specific policy of the

CDN provider. However, we should point out two facts

which are relevant to our work: (i) the stability of the CDN

architecture (i.e. fixed number of servers and web sites)

makes it easier to enforce strong consistency (e.g. through

server-based invalidation [31]), and (ii) the study in [3]

showed that the duration between successive modifications

of an object is relatively large (between one and 24 h),

hence the probability of requesting a stale object is very

small.

The second issue is related to HTTP requests, which

return uncacheable objects. URLs containing ‘cgi-bin’ or ‘?’

substrings, for instance, are considered as uncacheable at

proxy servers. Furthermore, the content provider might

explicitly prohibit certain pages, such as advertisement
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banners, from being cached. If these types of requests are

frequent, they will affect the performance of the caching

mechanism, since the value of hðiÞ
j in Eq. (1) will become an

overestimation of the actual hit ratio. To overcome this

problem, we assume that each web site Oj provides an

estimation of the fraction lj of requests that return

uncacheable documents. The values of lj can be calculated

by analyzing the log files at the CDN servers. Then, the hit

ratio hðiÞ
j may be adjusted by multiplying it with (1Klj), i.e.

the probability that the requested document is cacheable.
4. The hybrid algorithm

The replica placement problem with storage capacity

constraints has been shown in many studies to be NP-

complete (e.g. in [8,21]). Therefore, in this section we

introduce a simple greedy algorithm to get an approximate

solution for the combined caching and replica placement

problem. The detailed pseudo-code is illustrated in Fig. 3,

and the main flow of this program follows the greedy

global approach that was adopted in other studies as well

(e.g. [8,9,30]). In each iteration of the algorithm, all the

server-site pairs are compared, and the one that produces

the largest benefit value is selected for replication.
Fig. 3. The hybrid algorithm.
The algorithm terminates when the benefit value is

negative for all the server-site pairs or when all the servers

have reached their storage capacity.

Lines 1–4 constitute the initialization part of the

algorithm. In particular, it is assumed that all the storage

capacity is allocated to caching, and the initial per site hit

ratios, as well as the total initial cost, are calculated. The

‘for’ loop in lines 7–17 is the main part of the algorithm,

where the benefit value bij for every server S(i) and site Oj is

calculated. Specifically, line 9 is the local benefit for server

S(i), while lines 14–17 take into consideration the relative

benefit for any server S(k) for which S(i) is closer than the

current SNðkÞ
j . Furthermore, the benefit value is properly

adjusted in lines 10–13, since the new replica will

effectively reduce the hit ratios of all the non-replicated

sites at S(i) (the LRU buffer size B will decrease). Finally,

lines 19–25 perform some book-keeping operations to

account for the new replica.

The complexity of this greedy algorithm is O(RMN2C
RM2N), where R is the total number of replicas created. For

comparison reasons, the complexity of the typical greedy

global algorithm [8] (with no caching) is O(RMN2). Notice,

however, that we make the implicit assumption that the

complexity of evaluating the hit ratio hðiÞ
k; new in line 11, is

O(1). In the following paragraphs, we introduce some

implementation details to justify the above assumption.

Let us consider first the approximation of K in Eq. (2),

which essentially involves the sorting of L elements for the

estimation of pB. L is the total number of objects available

for caching, i.e. all the objects for which the corresponding

sites are not replicated. In the simulation experiments,

though, we observed that calculating K during each

iteration, produced the same result as in the case, where K

was only calculated once at the initialization step of the

algorithm (line 4 in Fig. 3). The intuitive explanation is that

whenever the objects of a site Oj are removed from the

sorted list, the popularity of the rest of the objects is

increased accordingly, thus keeping the value of pB at

approximately the same level.

Having made this simplification, estimating the hit ratio

from Eq. (1) is trivial. Notice, that hðiÞ
j depends only on the

site popularity pðiÞ
j and the value of K. Then, the obvious

solution to achieving the O(1) complexity, is to pre-compute

(off-line) the hit ratio of each site Oj under different values

of pðiÞ
j and K. In the simulation experiments, the granularity

of pðiÞ
j for the pre-computed values was set to 10K5, while

the granularity of K was set to 500 time slots.
5. Simulation experiments

In this section we investigate the impact of various

replication and caching strategies on the response time of

HTTP requests. Section 5.1 gives an overview of the

simulation setup, while Section 5.2 presents the detailed

simulation results.
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5.1. Simulation setup
5.1.1. Network topology

We consider a CDN infrastructure consisting of NZ50

servers, which is required to provide hosting service to

MZ200 web sites. Using the GT-ITM topology generator

[32], we generated a random transit-stub graph with a total of

1560 nodes, and then placed each server and primary site

inside a randomly selected stub domain. Finally, using

Dijkstra’s algorithm, we calculated the shortest path (in

terms of number of hops) from each server S(i) towards every

other server S(k) and primary site SPj. Since the performance

metric is the response time of HTTP requests, we set the

propagation, queueing and processing delay inside the core

network to be equal to 20 ms/hop. Notice that the maximum

hop count between any pair of nodes is equal to 14, setting an

upper bound of 280 ms for the end-to-end delay. In addition,

we consider the case of homogeneous servers, i.e. all the

servers have the same storage capacity s (given as a percentage

of the cumulative size of all the web sites).
5.1.2. Datasets

Due to the absence of CDN traces in the public domain,

we used the SURGE model [33] to generate a synthetic

workload for our trace-driven simulation. In order to

simplify the calculations, we used the same parameters qj

and Lj for all the web sites, but we varied the total number of

requests for each site in order to make the trace more

realistic. Specifically, we generated 50 sites of low

popularity (with 80,000 requests each), 100 sites of medium

popularity (with 160,000 requests each), and 50 sites of

high popularity (with 320,000 requests each). Furthermore,

the popularity of each site Oj at server S(i) followed a normal

distribution with mean mZ1/N and standard deviation

sZ1/4N. However, we limited the possible values in the

interval mG3s. Table 1 summarizes the various parameters

used in the simulation experiments.
5.2. Simulation results

In this section, we compare the performance, in terms of

user-perceived latency, of the following four content

delivery mechanisms
Table 1

Parameter settings

Parameter Values

Number of servers (N) 50

Number of sites (M) 200

Web site popularity Low, medium, high

Zipf parameter (q) 1.0

Objects per site (L) 2000

Uncacheable requests (l) 0, 10%

Site popularity at each server ðpðiÞj Þ Normalw(1/N, 1/4N)

Storage capacity (s) (% of total) 5, 10, 20%

Network path delay (ms/hop) 20
(1)
 Replication. This is the stand-alone replica placement

algorithm, using the greedy global approach [8].
(2)
 Caching. All the storage capacity at the servers is

allocated to caching.
(3)
 Hybrid. This is the combined caching and replica

placement algorithm introduced in Fig. 3.
(4)
 Optimal caching. This policy corresponds to the case

where all the servers have full and consistent knowledge

about the cache contents of all the other servers in the

network. Therefore, cache misses are always redirected

to the nearest copy (either a CDN server or the primary

site), i.e. we assume an ideal cooperative caching

environment [34].
In the first experiment, we consider the case, where all

the requested objects are allowed to be cached at the CDN

servers (i.e. lZ0). These results will give us an indication of

the ‘upper-bound’ on the performance of the pure caching

scheme. More specifically, Fig. 4(a) shows the average

latency per request for different content delivery mechan-

isms, under various storage capacity constraints. The hybrid

approach clearly outperforms the stand-alone replication

strategy, and reduces the average response time by

approximately 40%. Compared to the pure caching

technique, the performance difference is not that large, but

savings up to 13% may still be achieved for large storage

capacities. Finally, the optimal cooperative caching scheme

has very similar performance to the non-cooperative

version, which is an anticipated result, since cooperative

caching is expected to be effective only among proxy

servers that are physically close to each other.

Fig. 4(b)–(d) give another perspective of the relative

performance of the various mechanisms. Specifically, these

figures depict the cumulative distribution function (CDF) of

the response time, i.e. the percentage of requests that are

satisfied within a certain time period. From these graphs we

can actually get a clear picture of the potentials and

limitations of each technique. First, the effect of pure

replication is to distribute very normally the user-perceived

latency. The majority of client requests experience the

average response time, and only a small percentage of

the requests receive better or worse service. Caching, on the

other hand, produces a more ‘heavy-tailed’ distribution for

the response time. In particular, a large fraction of the

requests are satisfied locally at the CDN servers (the 20 ms

value corresponds to requests being satisfied at the first hop

servers), while a significant amount of client requests

experience relatively large delays. Finally, the hybrid

approach is able to offer the best performance overall. It

has a high hit ratio at the first-hop servers, but also avoids

excessive delays, by placing the right amount of replicas

inside the network. Consequently, the CDF curve of the

hybrid policy is a combination of the previous two: it

initially follows the curve of the caching scheme for small

delays, and later coincides with the curve of the replication

scheme for larger delays.
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The second experiment investigates the performance of

the various mechanisms under a more realistic environment.

Specifically, we consider the case, where 10% of the

requests involve uncacheable objects. The detailed results

are illustrated in Fig. 5, and may be summarized as follows.

The hybrid approach again outperforms both the caching

and replication counterparts. As expected, the performance

gain against pure replication is decreased, but it is still in the

order of 30%. However, the performance of the two caching

policies is degraded, and the hybrid scheme results in

savings of up to 22% in user-perceived latency. Similar

observations hold for the CDF of the response time. In

general, the greedy algorithm predicts very accurately the

relative benefit of caching and replication, and is thus able to

make the correct replica placement decisions, in order to

maximize the overall performance.

In our next experiment, we compare the performance of

the greedy algorithm (Fig. 3) against a few ad-hoc hybrid

approaches. In particular, we try to answer the following

question: ‘what if we allocate a fixed percentage of the

storage space to caching, and run the standard replication

algorithm for the remaining part of the storage space?’ We

tested three different versions, namely, for a cache

percentage of 20, 50 and 80%, and the corresponding

CDF plots for various parameters are shown in Fig. 6. The

main conclusion that can be drawn, is that the ad-hoc
approach is not very effective. The results for the different

versions vary according to the storage capacity and the

percentage of uncacheable objects. The greedy algorithm,

on the other hand, performs at least as well as any of the ad-

hoc schemes, under any system parameters. We should note,

that the percentage of storage space allocated to caching by

the greedy algorithm, ranged between 30–100% at different

CDN servers.

Finally, Fig. 7 illustrates the accuracy of the analytical

model for the hit ratio of the LRU cache (Section 3.2). It

shows the predicted cost (in number of hops) per request

that is returned by the greedy algorithm vs. the actual cost

obtained by the trace-driven simulation. The results are very

promising, and indicate that the proposed model can provide

a very accurate approximation of the achievable hit ratio at

different CDN servers. It tends to slightly overestimate the

total cost, especially for large buffer sizes, but the overall

error is less than 7%.
6. Discussion

6.1. Summary of experiments

The overall conclusion is that combining caching and

replica placement mechanisms yields significantly better
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performance, compared to the stand-alone versions. This

performance improvement is due to the following two facts:

(i) a sufficient number of replicas are stored inside the

network, so that the maximum delay is bounded ([10] also

showed that increasing the number of replicas yields no

significant performance improvement, beyond a small

number of copies), and (ii) the most popular pages from

all the available sites are stored locally at each server, so that

a large percentage of requests do not need to be redirected.

Another advantage of the hybrid approach is the low

administrative overhead for the CDN system. Specifically,

the caching part operates locally in a completely decen-

tralized manner, while the per site replication approach is

very scalable, and easy to maintain in terms of the

redirection mechanisms. We have shown that against a

per-site replication scheme, the client-perceived latency can

be reduced considerably (30–40%). Judging from the fact

that the hybrid scheme also outperforms pure caching, even

by a narrow margin (5–10%), we expect that against a per-

cluster replication scheme, hybrid will be again the winner

with the latency reduction varying in between the per-site

and the caching case (depending on how the clusters are

constructed). Proving the validity of the above claim is left

for future work.
6.2. Limitations and extensions

A potential limitation of our work, concerns the scope of

the replica placement model used in Section 3, which

essentially aims at minimizing the client-object distance

given the storage capacity constraints. Obviously, other

system parameters (e.g. available bandwidth) and perform-

ance goals (e.g. used bandwidth, client-perceived response

time) might have to be included. However, applying and

evaluating our framework for the major replica placement

problem (RPP) formulations that exist in the literature can

not be done within the limits of a single paper, and it would

have diverted the primary focus of our work, which is to

demonstrate that a hybrid caching-replication scheme

outperforms pure replica placement.

Nevertheless, we would like to point out that our

model is extensible, provided that the impact of a single

page placement on the constraints and the performance

metrics, can be properly characterized (usually from the

pure-RPP formulation). The hybrid problem can be

solved by incorporating these changes to the replica

allocation part of the algorithm in Fig. 3 (lines 7–17).

For instance, assume that bandwidth was also a

constraint. Then, for each server i we could define
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a load factor LFi, given by

LFi Z max
used_bandwidth

total_bandwidth
;
used_storage

total_storage

	 


The hybrid algorithm would then iterate until the target

function D can not be further reduced, and LFi%1 for all

i. To summarize, most RPP formulations that base their

decisions on object access frequencies, can be incorpor-

ated to a hybrid scheme that combines them with

caching. Unfortunately, this has the side-effect that, in
case the original RPP formulation bases its computations

on uncertain parameters and erroneous estimations, it will

negatively affect the performance of the hybrid scheme.

6.3. Practical considerations

Our work is based on the assumption that the storage

space at the CDN servers is not sufficient to replicate 100%

of the objects. However, one may argue that since disc space

is extremely cheap these days, full mirroring at each CDN

server is possible that would result in the minimum response
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time for client requests. There are several reasons, though,

why this approach is either non-feasible or inefficient. First,

not only the disk storage, but also the typical web content

increases in size as well, with more and more content

providers incorporating flash files and streaming media in

their pages. Consequently, the storage space needed to hold

one web site may become very large. Second, even if we

assume that full mirroring is possible, the effect of updates

would make such a system very expensive to manage. For

instance, if the CDN provider has 10,000 servers distributed

around the world, a simple update of a 10 KB object would

generate an amount of traffic equal to 100 MB.

Another issue relates to the service quality that the

content provider expects from the CDN provider, which

brings us back to the point of full mirroring. Since the

content provider pays for the hosting service, he or she may

require that the content is replicated everywhere. In this

case, there should be some sort of pricing agreement that

would reflect the quality of the service. Some possible

scenarios are: (i) the client pays proportionally to the data

transferred at latency less than some threshold, and (ii) the

client pays for a fixed number of replicas (primary replicas),

but at the same time it is up to the CDN provider to optimize

the download time of the content, by creating more replicas

as appropriate (this is done for reasons of competition

against other hosting services).
6.4. Future work

Nowadays, peer-to-peer (P2P) systems are responsible

for the majority of file sharing traffic, while in the near

future it is likely that they will also account for significant

content delivery activity (especially for bandwidth consum-

ing objects such as video). For instance, the SCRIBE system

[35] (based on the Pastry project) provides group com-

munication primitives for P2P overlay networks, Freenet

[36] ensures anonymity of user requests, while Skipnet [37]

provides the means to control in which peers data can be
stored. All these three functionalities are necessary for a

successful deployment of a CDN-like P2P system.

The basic concept of our work is applicable in P2P-

CDNs, albeit after significant changes. Replication is

already used in structured P2P systems, in order to avoid

partitions whenever a peer departs from the network. It

would be interesting to evaluate the system’s performance

when part of the resources at each peer are devoted to

replication and another part to caching. All the related

decisions should be taken by each peer in an autonomous

manner. The problem becomes even more difficult if we

take into account the fact that some peers will likely adopt a

selfish behavior preferring caching to replication. These and

other P2P related issues are parts of future work.

Another research direction is to apply our framework

specifically for video delivery, after taking into account

group communication and channel allocation issues [38].

The basic idea is to allow two methods of storage for each

video object. The first is replication, whereby the whole

video is stored, and the other one is caching, whereby only

the first part of the video is kept. The rationale behind

caching is that the client can start watching the video, while

waiting to obtain a free stream from the occupied video

server. Evaluating the relative dropout ratios of a hybrid

versus a pure-replication scheme might result in new

optimization opportunities.
7. Conclusions

In this paper, we investigated the potential performance

gain of combining replica placement and caching tech-

niques in a CDN architecture. We introduced an analytical

model to predict the relative benefit of each technique, and

proposed a simple greedy algorithm to solve the combined

caching and replica placement problem. The simulation

results indicate that there is indeed much room for

performance improvement, compared to stand-alone repli-

cation or caching mechanisms. More specifically, savings

up to 40% in user-perceived latency were observed, under

various system parameters. Since we only considered

coarse-grain (i.e. per site) replication, a straightforward

extension of this work is to investigate the performance gain

of the hybrid approach under finer-grain replication

schemes (e.g. cluster-based replication [11]).
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