Computer Communications 180 (2021) 97-108

Contents lists available at ScienceDirect

computer
communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Towards real-time privacy-preserving video surveillance™ m

Check for

Elmahdi Bentafat, M. Mazhar Rathore, Spiridon Bakiras * | tpdates

Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

ARTICLE INFO ABSTRACT

Keywords: Video surveillance on a massive scale can be a vital tool for law enforcement agencies. To mitigate the serious
Video surveillance systems privacy concerns of wide-scale video surveillance, researchers have designed secure and privacy-preserving
Privacy

protocols that obliviously match live feeds against a suspects’ database. However, existing approaches are
very expensive in terms of computation and communication costs and, as a result, they do not scale well for
ubiquitous deployment. To this end, we propose a general framework for privacy-preserving identification that
operates by storing an encrypted version of the suspects’ database at the video cameras. We show that this
approach (i) reduces the protocol to a single round of communication between the camera and the server and
(ii) speeds up the computation times significantly through the use of input-independent precomputations. We
apply our framework to two practical use-cases, namely, face and license plate number recognition. In addition
to the identification result, our face recognition protocol discloses some trivial information to the database
server; however, this information is not sufficient for the server to infer any meaningful characteristics about
the underlying individuals. On the other hand, the license plate recognition protocol is provably secure and
can also handle minor character recognition errors that often occur in such systems. We implemented working
prototypes of both surveillance systems and our experimental results are very promising. In the case of face
recognition, and for a database of 100 suspects, the online computation time at the camera and the server is
155 ms and 34 ms, respectively, while the online communication cost is only 12 KB. Similarly, for a database
of 3000 entries, license plate recognition requires only 232 ms and 75 ms at the camera and the server,
respectively, while the online communication cost is 375 KB.

Face recognition
License plate recognition
Homomorphic encryption

1. Introduction feature vector matches one of the suspects in the database. If a match is
found, the id number of the suspect is revealed; otherwise, the protocol
discloses no information to either party. These protocols first com-
pute an encrypted similarity score (Euclidean or Hamming distance)
for each suspect in the database, using an additively homomorphic
cryptosystem. Then, a variety of techniques are employed to identify
the matching suspect, if and only if the underlying similarity distance
is below a certain threshold. These techniques involve standard cryp-
tographic primitives for secure computations, such as homomorphic
encryption, garbled circuits, and oblivious transfer.

Nevertheless, all the aforementioned systems suffer from high com-
putational and communication costs that render them impractical for
wide-scale deployment. For instance, the Eigenfaces implementation
by Sadeghi et al. [3] for face recognition necessitates 40 s of online
computations to match a single face against a database of 320 suspects.

Surveillance systems are being deployed in numerous countries
around the world. An effective video surveillance system automatically
monitors all available data feeds, extracts feature vectors from the indi-
vidual targets, compares them against a suspects’ database, and raises
an alarm when a match is found. Nevertheless, this approach raises sig-
nificant privacy concerns, because all individuals with known feature
vectors can be tracked on a daily basis. Analyzing such information-
rich datasets has the potential to reveal sensitive personal information,
including home and work locations, health issues, religious affiliations,
etc. Even if we trust the law enforcement authorities to protect the
location privacy of their citizens, the stored location data may still be
accessed by malicious users, such as rogue insiders or hackers.

As a result, the research community has proposed several methods
that provide privacy-preserving systems for face recognition [1-3] and

license plate matching [4,5]. In particular, these methods execute a
secure two-party protocol between the camera and the database server,
which lets the camera learn in zero-knowledge whether a captured

In addition, the online communication cost is over 5 MB. Similarly,
SCiFI [2] reports 31 s of online computations for a database of 100 sus-
pects. Another significant limitation of these protocols is their reliance

A preliminary version of this paper appeared in the Proceedings of the International Conference on Applied Cryptography and Network Security (ACNS

2020).
* Corresponding author.

E-mail addresses: ebentafat@hbku.edu.qa (E. Bentafat), mrathore@hbku.edu.qa (M.M. Rathore), sbakiras@hbku.edu.qa (S. Bakiras).

https://doi.org/10.1016/j.comcom.2021.09.009

Received 12 February 2021; Received in revised form 13 July 2021; Accepted 9 September 2021

Available online 17 September 2021

0140-3664/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.comcom.2021.09.009
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2021.09.009&domain=pdf
mailto:ebentafat@hbku.edu.qa
mailto:mrathore@hbku.edu.qa
mailto:sbakiras@hbku.edu.qa
https://doi.org/10.1016/j.comcom.2021.09.009
http://creativecommons.org/licenses/by/4.0/

E. Bentafat, M.M. Rathore and S. Bakiras

on offline computation and communication that has to be performed
for every face that is captured by the camera. While the offline tasks
reduce the overall online cost dramatically, it is not feasible to process
and store the underlying data for potentially millions of detected faces
on a daily basis.

To this end, our work introduces the first practical system for
privacy-preserving video surveillance on a large scale. In particular,
we propose a general framework that applies to different surveillance
applications, such as face recognition and license plate matching. The
efficiency of our approach stems mainly from two design decisions.
First, the suspects’ database is distributed to all cameras, after it is
encrypted with the public key of the law enforcement agency. As such,
the expensive operations for computing the encrypted similarity scores
are performed at the surveillance cameras, thus alleviating the server’s
computational load. The local database copy also allows the cameras
to precompute most values that are involved in the encrypted distance
computations. More importantly, unlike existing approaches, the offline
computations are performed only once, during the system’s initializa-
tion. In addition to precomputations, our methods employ an efficient
elliptic curve cryptosystem (ElGamal [6]) that reduces significantly the
computational and communication costs.

Our second decision is to disclose to the server a random per-
mutation of obfuscated similarity scores between the captured feature
vector and all suspects in the database. The server then decrypts all the
similarity scores and, based on the plaintext values, it is able to deduce
whether one of them is a potential match. As a result, the protocol
involves a single round of communication for the server to learn the
(binary) result of the identification. If a match is found, an additional
verification protocol is invoked, where the server receives the suspect’s
id and optionally receives the image of the potential suspect.

In our previous work [7], we applied this framework to the case
of privacy-preserving face recognition. Given the wide range of the
underlying similarity scores, our obfuscation step for this use-case does
not result in a zero-knowledge identification. Nevertheless, we have
showed that, the leaked information is not sufficient for the server
to infer any meaningful characteristics regarding the target’s feature
vector. We built the corresponding video surveillance system on top of
the OpenFace [8] platform that implements the face recognition layer.
OpenFace is one of the most accurate open-source face recognition
systems that employs Google’s FaceNet [9] algorithm. Besides its high
accuracy, a notable advantage of OpenFace over other approaches is
its compact feature vector that speeds up considerably the encrypted
distance computations. We demonstrated experimentally that our sys-
tem reduces the costs by orders of magnitude compared to the current
state-of-the-art approaches.

In this paper, we extend our previous work in two directions. First,
we improved the face recognition implementation of our system, by
incorporating several code optimizations. As a result, we were able
to achieve a higher frame per second rate for the live video feed.
Second, we extended our framework to the case of privacy-preserving
license plate recognition. The proposed protocol is provably secure
and it is also able to handle minor character recognition errors that
may be caused by the poor quality of the captured image. To the
best of our knowledge, this is the first method in the literature that
addresses this issue. We built the corresponding surveillance system
on top of the OpenALPR [10] platform that leverages deep learning
techniques to efficiently extract license plate numbers from images or
video sequences. As in the case of face recognition, we demonstrate
that our system is orders of magnitude faster than existing methods.

The rest of the paper is organized as follows. Section 2 presents
a literature review of privacy-preserving face recognition and license
plate recognition systems, and Section 3 discusses the main tools that
we utilized in our implementation. Section 4 introduces our problem
definition and describes the underlying threat model. Section 5 dis-
cusses our general framework for privacy-preserving video surveillance,
while Sections 6 and 7 describe the details of the two use-cases.
Section 8 evaluates the security of our systems, and Section 9 presents
the implementation details and summarizes our experimental results.
Finally, Section 10 concludes our work.

98

Computer Communications 180 (2021) 97-108
2. Related work
2.1. Privacy-preserving face recognition

The first privacy-preserving face recognition protocol is due to Erkin
et al. [1] in 2009. It leverages the Eigenfaces algorithm for face recogni-
tion, but is very inefficient in terms of online performance. Specifically,
the protocol requires O(log M) rounds of online communication (M is
the number of suspects in the database) and heavy public key homo-
morphic operations over the ciphertexts. Sadeghi et al. [3] improved
the performance of Erkin’s work by shifting some computations into a
precomputation phase, and using garbled circuits [11] to compute the
Minimum function. In a recent work, Xiang et al. [12] further improved
upon the aforementioned protocols [1,3] by outsourcing the expensive
server computations to the cloud.

SCiFI [2] is the only protocol in the literature that is not based on
the Eigenfaces representation. Instead, the authors proposed a novel
face recognition method that takes into account the appearance of
certain facial features. In SCiFI, each face is represented with a 900-
bit vector, while the similarity score is simply the Hamming distance
between two vectors. After the Hamming distance is computed, the
result of the suspect identification is revealed through a 1-out-of-d,,, +1
oblivious transfer protocol [13], where d,,,, is the maximum theoretical
Hamming distance. One advantage of this approach is that Hamming
distance computations on the ciphertext space are significantly faster
than the Euclidean ones. Finally, various studies have used similar
cryptographic tools, mainly garbled circuits and oblivious transfer,
in the context of biometric identification. In particular, researchers
have proposed several efficient protocols to compute the similarity
scores, including Hamming distance, Euclidean distance, Mahalanobis
distance, and scalar product [14-18].

2.2. Privacy-preserving license plate recognition

Sunil et al. [4] introduced the first protocol for privately matching
Dutch car license plate numbers. The authors proposed a simple and
accurate character recognition algorithm where the resulting feature
vectors were converted into integer numbers. They considered two
different encryption schemes in their implementation, namely, Gen-
try’s fully homomorphic cryptosystem [19] and Paillier’s additively
homomorphic cryptosystem [20]. Even though Paillier’s scheme is
considerably faster, their experimental results show that the overhead
incurred by the cryptographic layer is still very high for a wide-scale
adoption.

Vaishnav et al. [5] replaced the Paillier implementation of the
aforementioned protocol with an optimized version, and they were able
to reduce the computational cost by a factor of 10. Specifically, they
showed that matching a license plate against a database of 2500 entries
takes 7 seconds, using a 2048-bit RSA modulus as the Paillier key. In
a more recent work, the same authors [21] improved their previous
work, by leveraging a lightweight cryptosystem called HEIN [22],
which is a symmetric, integer-based, fully homomorphic encryption
scheme. Nevertheless this protocol is most likely insecure, because
symmetric homomorphic encryption is not widely accepted by the
crypto community. For example, a similar cryptosystem by Trostle and
Parrish [23] has been completely broken by lattice-based attacks, such
as the Lenstra—-Lenstra—Lovész (LLL) reduction [24].

3. Tools
3.1. OpenFace

OpenFace [8] is an open-source face verification and recognition
system that maps face images to a compact Euclidean space. It is a

deep convolutional network trained method for face recognition that
achieves an accuracy of 92.95% on the Labeled Faces in the Wild (LFW)

E. Bentafat, M.M. Rathore and S. Bakiras

benchmark, one of the largest publicly-available datasets. OpenFace
matches very well the performance of FaceNet [9] and DeepFace [25],
despite the small size of the trained network. The advantage of Open-
Face is the face representation efficiency that consists of 128 features.
The similarity score between two faces is represented by the Euclidean
distance of the two feature vectors, and ranges between O (for the same
image) and 4. A threshold ¢ = 0.9 has been set empirically by the system
developers of OpenFace, such that a distance less than 7 indicates a
positive match.

3.2. OpenALPR

OpenALPR [10] is an open-source Automatic License Plate Recog-
nition (ALPR) library. It is developed in C/C++ and has bindings
in Python, Java, and C#. The library was published as open-source
software in late 2015, but is also available as a commercial product
that provides extended functionalities, such as a video stream analyzer
and a cloud-based API. License plate recognition in OpenALPR consists
of multiple steps. First, the detection engine detects potential license
plate regions on a given image, while the binarization process converts
these regions into black and white. Next, a character analysis algorithm
identifies the blobs in the plate region, which is followed by a process
that detects the edges of the plate number. Then, the deskew algorithm
transforms the detected image to an ideal size, and the character
segmentation engine isolates the individual characters. Finally, an opti-
cal character recognition (OCR) algorithm recognizes these characters
along with their confidences, and a post-processing step generates a
list of possible results based on these confidences. To perform these
operations, OpenALPR relies on other libraries, such as OpenCV [26]
for image processing based on deep learning frameworks, and Tesseract
OCR [27] for optical character recognition. Notice that, OpenALPR is a
deep neural network-based method, and relies on models trained over
large datasets, in order to reach a high accuracy.

3.3. Homomorphic encryption

Homomorphic cryptosystems [28] allow for the evaluation of cer-
tain arithmetic operations directly on the ciphertext domain. Fully
homomorphic encryption (FHE) [19] supports both addition and multi-
plication operations and can, thus, be used to evaluate any circuit over
encrypted data. Nevertheless, FHE schemes are still very inefficient to
be used in real-time applications, such as video surveillance. Instead,
similar to previous work, we built our protocol on top of additively
homomorphic cryptosystems, such as Paillier [20] or ElGamal. More
specifically, we opted for an implementation of ElGamal’s cryptosystem
over elliptic curves, due to its computational efficiency and compact
ciphertexts (128 bytes). The cryptosystem consists of the following
functions:

+ Key generation: Instantiate an elliptic curve group of prime order
g with generator P. Choose a private key x uniformly at random
from z, and set the public key O = x - P.

» Encrypt: Let m be the secret message. Choose r uniformly at
random from ZZ and compute ciphertext Enc(m) = (r- P, (m+r)-Q).

» Decrypt: Compute m-Q = (m+r)-Q—x-r- P and solve the discrete
log to recover m.

ElGamal’s scheme is semantically secure and its security is based on
the decisional Diffie-Hellman assumption. Note that, in our implemen-
tation, we utilized a look-up table of precomputed m - Q values (for all
theoretically possible values of m) in order to speed up the discrete log
computations at the database server.

The homomorphic properties of ElGamal’s cryptosystem over ellip-
tic curves are shown below.

99

Computer Communications 180 (2021) 97-108

+ Homomorphic addition: Given the encryption of two messages
my; and m,, Enc(m;) + Enc(m,) is equal to

(ri - P,(my+r)- Q) +(ry- P,(my+1ry)- Q) =

((ry +ry) - P,(my +my +ry +ry)- Q) =Enc(m; +mj)

+ Homomorphic scalar multiplication: Given a plaintext scalar A
and the encryption of a message m, 4 - Enc(m) is equal to

(A-r-P,(A-m+A-r)-Q)=Enc(d-m)
4. Security definition and threat model

We assume a wide-scale surveillance environment, where a large
number of cameras, equipped with moderate computational, storage,
and communication capabilities, are deployed throughout a city. The
database server (law enforcement) holds a database S = {.5,,.5,, ...,.S),}
of M suspects, where each suspect S; is represented by an Nth
dimensional feature vector x;. More specifically, for face recognition,
the feature vectors are generated from OpenFace’s deep learning model
and consist of N = 128 values. For license plate matching, the feature
vectors are extracted using OpenALPR with N = 8 (max number of
characters on a license plate). During the system initialization, the
database server shares an encrypted version of S (to be discussed later)
with all cameras, using its own public key Q that is also known to all
cameras. Every camera will then capture all passing-by faces/vehicles
and, for each candidate C;, compute its feature vector y; using Open-
Face/OpenALPR. What follows, is a two-party protocol between the
camera and the database server, where

* The server outputs a random permutation z; of obfuscated simi-
larity scores between y; and x;,Vi € {1,2,..., M }.
» The camera has no output.

When the protocol’s output is revealed to the server, it will imme-
diately disclose the identification result. In particular, for face recog-
nition, a positive match is signified by a negative similarity score,
whereas in the case of license plate recognition, a match is triggered by
a similarity score of zero. Note, however, that the identity of the suspect
is still unknown due to the underlying permutation. In that case, the
camera and the server invoke a separate two-party protocol, where the
camera verifies that the similarity score is indeed negative/zero. During
that protocol,

» The server receives the actual id of the matching suspect and
(optionally) receives the captured image from the camera.

» The camera receives the actual similarity score and id of the
matching suspect.

We assume that the server and all cameras are semi-honest players.
In other words, they will follow the protocols correctly, but try to
infer some non-trivial information about the other party’s input from
the communication transcript. For example, the camera might want to
learn the plaintext content of the suspects’ database, while the server
might want to infer some information about the captured faces that
do not produce a database match. We also allow the server to act
maliciously after the initial identification result, by falsely claiming
that a certain similarity score is negative/zero. Such behavior will
be discovered during the subsequent verification protocol. Finally, we
should note that our protocol cannot protect against illegitimate inputs
from any of the parties. For instance, the server can insert into their
database S an innocent civilian that it wants to track, while the camera
can test whether a specific individual is part of S by using their feature
vector in the identification protocol. However, none of the existing
privacy-preserving protocols can protect against such attacks, since
they are not cryptographic in nature.

E. Bentafat, M.M. Rathore and S. Bakiras
5. Privacy-preserving surveillance framework

In this section, we introduce the different phases of our privacy-
preserving surveillance framework. Nevertheless, each surveillance ap-
plication has its own specificities, which will be explained in detail in
the upcoming sections.

5.1. Offline phase

The server first instantiates an elliptic curve group of prime order
q (as described in Section 3) and generates its public and private keys.
The public key is distributed securely to all surveillance cameras in
the city. Next, the server employs a recognition method to extract the
feature vector x; for every suspect S; € S. The feature vectors are then
encrypted with its public key and sent to the surveillance cameras.
Finally, both the server and the individual cameras, precompute a
series of public key operations that will be used to speed up the online
surveillance process. It is worth noting that, unlike existing approaches,
the offline costs of our framework are incurred only once and are
independent of the number of objects that are captured by the camera.

5.2. Similarity score computation

Following the offline phase, our system is ready for real-time video
surveillance. When a new candidate is identified, the camera generates
its plaintext feature vector and, using the precomputed values from
the offline phase, it evaluates the encrypted similarity score for every
suspect in the database. The similarity metric will depend on the
underlying surveillance application.

5.3. Similarity score obfuscation

Once the similarity scores are computed, the camera performs the
similarity score obfuscation step. This is accomplished with an affine-
like transformation, involving multiplication and addition operations.
However, the transformation is performed in a way that it does not
affect the matching decisions at the server. The obfuscated scores are
then randomly permuted and forwarded to the database server.

5.4. Matching

The matching operation at the server is straightforward. It simply
decrypts all ciphertexts and, based on the obfuscated scores, the server
can determine whether a positive match has occurred. Note that, for
efficiency, the decryption operations may also involve precomputed
values from the offline phase. Upon signaling a positive match, a
verification protocol is invoked in order for the server to learn the id of
the potential suspect and (optionally) receive the surveillance image.
This step is necessary to prevent a malicious server from requesting
footage of random individuals that did not actually produce a database
match.

6. Use-case 1: Face recognition
6.1. Offline phase

First, the server employs OpenFace to generate the feature vectors
x; for every suspect S; € S. By default, OpenFace operates over floating
point numbers, so we first had to convert the vectors into integers
before applying any homomorphic operations. We empirically com-
puted the normalization parameters for a floating point representation
f as follows: |f x400+ 128], where f € Q : —0.32 < f < 0.32. With
this transformation, every element in a feature vector is an integer in
the range [0, 256), thus allowing us to represent a vector with just 128
bytes. Furthermore, the transformation does not result in a significant
loss of accuracy, as illustrated in Table 1. Specifically, the table depicts

Computer Communications 180 (2021) 97-108

Table 1

Accuracy results on the LFW benchmark [8].
Model Accuracy
Human 97.53%
EigenFaces 60.02% + 0.79
FaceNet 99.64% + 0.9
DeepFace 97.35% +0.25
OpenFace 92.95% + 1.34

OpenFace, normalized 92.92% + 1.36

the accuracy results from various state-of-the-art face recognition algo-
rithms, and also quantifies the loss of accuracy due to the normalization
of the features values. For our system, we rerun the evaluation step
of the CNN model using our normalization technique in order to use
integers in the range [0, 256) instead of floats and, out of 13,233 images,
we had only one misidentification compared to the original OpenFace
implementation. Note that FaceNet and DeepFace are more accurate
than OpenFace because they are trained on much larger datasets.

Given suspect S;’s feature vector x; and a potential candidate’s
vector y;, the first step of OpenFace’s face recognition algorithm is to
compute the Euclidean distance between the two feature vectors. In the
ciphertext domain, it is only feasible to compute the squared Euclidean
distance, i.e.,

N N
d,~2 = Z(xiiyj - yi,j)z = Z(x,zj + yiz,j - 2xi,/’yi$j) (@)
j=i j=1
where N = 128 is the vector dimensionality. In the ciphertext domain
over elliptic curves, this is equivalent to
N N N

Enc(d}) =Y Enc(x};) + Y Enc(y? D+ Y v - Enc(=2x;) @

Jj=1 Jj=1 Jj=1

Therefore, for the cameras to correctly compute Enc(dl.z), the server
will send them an encrypted version of the database S, consisting of

« T Enc(x?), Vi€ {1,2,..., M}.
« Enc(-2x;;),Vi € (1.2,...,M},j € (1.2,...,N}.

As such, the offline communication cost of our protocol is (N +1)xM xT
bytes, where T is the size of an ElGamal ciphertext. Due to the semantic
security of the cryptosystem, the cameras cannot infer any information
regarding the feature vectors of the suspects.

After a camera receives the encrypted database, it performs a series
of offline precomputations, in order to speed up the online computation
of the similarity scores. In particular, the camera will precompute all
possible values for the second and third terms of Eq. (2), which is
feasible due to the limited range of y; ; (just 256 distinct values). The
computational cost involves 256 x N x M elliptic curve point mul-
tiplications and 256 encryption operations. Additionally, the storage
requirements at the camera (for the database and all precomputed
values) is (256 + M + 256 x N x M) X T bytes. Even for large databases
(e.g., M = 1000), the storage cost is approximately 4 GB, which is very
reasonable for a low-cost camera.

Nevertheless, if a camera does not possess the storage capacity to
hold the entire set of precomputed values, we may still gain a lot in
performance if we store partial information. (We will illustrate this
in our experimental results.) As shown in Fig. 1, the coefficients of
a feature vector are not uniformly distributed over the entire range,
but instead, values ranging from 64 to 191 tend to occur more fre-
quently. As such, the camera may only precompute, say, 50% of the
values (for y;; € [64,191]) and perform the remaining elliptic point
multiplications, i.e., y; ; - Enc(-2x; ;), on the spot.

At the server side, the offline cost to compute the encrypted
database is 2 x N x M encryption operations plus N x M elliptic curve
point additions, which is trivial for a powerful multi-core server. On
the other hand, in order to speed up the decryption operations that

E. Bentafat, M.M. Rathore and S. Bakiras

250 300
250
200
200
150
150
100
100
0 0
0 20 40 60 80 100 120

Position on the 128-bit vector

Value

&
g

Fig. 1. Heat map of feature vector coefficients for 13,095 faces.

constitute the bottleneck of the online identification protocol, we need
to precompute a large number of elliptic curve points (lookup table),
as explained in Section 3. Assuming a maximum bit-length of k bits
for the obfuscated similarity scores, the server will precompute and
store 2% 32-byte values with a computational cost of 2 additions (that
are relatively cheap). In our system, the lookup table was implemented
as a hash table with open addressing, using buckets of size two. This
generated a hash table with a load factor of 0.5. We set k = 30, and
opted to store only 128 bits of the key value instead the entire 256 bits,
which reduces the size of the lookup table to 34 GB.

6.2. Similarity score computation

Each camera captures all passing-by faces and, for each face C,,
it generates the plaintext feature vector y;. Based on the generated
vector elements, the camera selects the corresponding ciphertexts from
the precomputed values and evaluates the encrypted squared Euclidean
distances Enc(diz) for every suspect i, as given in Eq. (2). This task
entails, for all M suspects, (2x N +1)x M elliptic curve point additions.
Each distance is then adjusted by subtracting the normalized similarity
threshold ¢, thus generating an encrypted similarity score s; that is (i)
positive for a non-match or (ii) negative for a match. Therefore, the
encrypted similarity score for suspect i is computed as

Enc(s;) = Enc(d? — 1) = Enc(d?) + Enc(—1) 3)

By precomputing the encrypted threshold value (constant), the com-
putational cost of this step is M point additions. To summarize, the
overall cost for computing the similarity score is 2 x (N + 1) x M point
additions. Finally, we should mention that, based on the normalization
parameters given is Section 5.1, the normalized similarity threshold is
set to ¢ = (0.9 X 400)%> = 129, 600.

6.3. Similarity score obfuscation

For every score s;, the camera selects two uniformly random num-
bers r;,r, € (0,27) and masks the score as

Enc(6;) = ry - Enc(s;) + Enc(r,) (€))

In order to avoid reversing the sign of the similarity score, we always
choose r; > r,. Note that we may precompute some encryptions of r,
and reduce the computational cost of this step to M point multipli-
cations and M additions only. The exact value of # depends on the
memory specifications of the server, and affects both the security and
the performance of our scheme. For this application, we empirically
determined the max value for the similarity score to be < 2'° and set
¢ = 11, which limits the obfuscated scores to values < 23°. Note that,
since r, < 2048, we may precompute all possible encryptions of r, and

101

Computer Communications 180 (2021) 97-108

Score verification protocol
Camera Server
Input : A, B
A,B
—_—
U s Zy
D<+—u-A
D
%
v 457,
v
_
z 4 (u+wv-z)modq
z
%
:A=D+v-B

Fig. 2. Score verification protocol.

reduce the computational cost of this step to M point multiplications
and M point additions. Also note that the multiplication operations are
quite cheap, as they involve #-bit scalars.

6.4. Matching

The matching operation is performed exactly as explained in Sec-
tion 5.4. Under normal conditions, the overwhelming majority of cap-
tured faces will not produce a database match, so the cost of the
matching protocol is dominated by the M decryption operations, each
requiring one point multiplication and one point addition (due to the
stored lookup table). The communication cost involves the transmission
of M ciphertexts and is, thus, equal to M X T bytes.

In the rare case of a positive match, the verification protocol is
invoked as follows. The server first informs the camera of the suspect’s
position and score on the permuted vector, and the camera then looks
up the suspect’s real id and encrypted score in the permutation = that is
temporarily stored in its local storage. Assume that the stored copy of
the encrypted score is equal to Enc(s) = (r; - P,(s+r;)- Q). The camera
will then generate encryption of the score s’ that the server claims to
be true: Enc(s’) = (ry - P,(s' +1rp) - 0). If s
of the two ciphertexts will produce the encryption of the value zero.
Therefore, the camera will compute

s', then a subtraction

Enc(s) — Enc(s') = {(r; = rp) - P,(s = s’ +r; — 1) - Q) 5)

which is supposedly equal to (A4, B) = (r- P,r - Q), for some unknown
random r. As such, it suffices to prove that x - A = B, where x is the
server’s private key. Essentially, the server has to prove to the camera
that it knows the value x that satisfies the above equation. This is
trivially done with Schnorr’s identification protocol [29], as shown in
Fig. 2. Initially, the server generates a uniformly random number u and
computes D, which represents the server’s commitment in the protocol.
On the other hand, v is the challenge posed by the camera. The server’s
response z can only be computed by the party who knows x, and the
camera accepts the result if and only if the last equation holds.

E. Bentafat, M.M. Rathore and S. Bakiras

(KY68W Z M)

1

[#KYGSWZMj

1

(36 20 34 6 8 32 35 22)

1

(db;s = Enc(3600000000000000))
db; 7 = Enc(20000000000000)
dbi e = Enc(340000000000)
db; 5 = Enc(600000000)
db; 4 = Enc(8000000)
db; 3 = Enc(320000)
db; o = Enc(3500)
dbi1 = Enc(22)

~ J

Fig. 3. Database encryption process.

7. Use-case 2: License plate recognition
7.1. Offline phase

Similar to face recognition, the offline phase involves (i) the gen-
eration of the encrypted suspects’ database and (ii) the necessary
precomputations that will be employed during the online phase. To
derive the encrypted database, the server starts by encoding the license
plate numbers stored in a text file. Specifically, given an alphabet A
of size |A|, we assign to each character an integer value from 0 to
| A|-1. We assume that the maximum number of characters on a license
plate is N and, to accommodate plates with less than N characters, we
introduce an additional padding character ‘#’ in the alphabet. Padding
is applied at the left hand side of the plate number. Most license plate
numbers around the world consist of alphanumeric characters, i.e., the
alphabet size would typically be equal to 37 (including the padding
character).

After the characters are encoded into unique integers of size ¢ =
log |A|, each character is shifted to the left according to its location
on the license plate, i.e., the character at position i is shifted bitwise
by (i — 1) - ¢ positions, Vi € {1,2,..., N}. Finally, the server encrypts
these values with its public key and distributes them to the surveillance
cameras. The offline communication cost for the entire database S
containing M license plate numbers is, therefore, N x M x T bytes.
The complete database encryption process in depicted in Fig. 3, for
an alphabet of size |.A| = 37. At this point, the offline phase for the
database server is complete. Unlike the use-case of face recognition,
the server does not need to precompute any values for the decryption
process since, as we will show later, the only plaintext value of interest
is ‘0.” As such, the offline computation cost at the server is just N x M
encryption operations.

Having the encrypted characters from a license plate number i,
the camera can then combine them to construct the corresponding
one-dimensional feature vector:

N
X; = [Z dbi,k]
k=1

where db, , represents the encryption of the shifted number at position
k in the license plate of suspect i, as shown in Fig. 3. In other words,

(6)

102

Computer Communications 180 (2021) 97-108

to compare two license plate numbers, we simply subtract (homo-
morphically) their feature vectors. If there is a match, the resulting
ciphertext is an encryption of ‘0.” Nevertheless, optical character recog-
nition systems, including OpenALPR’s, are not perfect and may produce
small errors during the recognition process. These can be caused by
the internal image processing algorithms and/or the camera’s image
resolution. Such recognition errors will result in false negatives that
fail to identify the corresponding suspect.

Therefore, in this work, we decided to address character recognition
errors, in order to reduce the false negative rate of our system. Note
that, false positives are not a major concern, because the error will be
detected when the law enforcement receives the image of the suspect’s
license plate. Let us consider off-by-one errors first, i.e., out of the N
possible characters, at most one will be recognized incorrectly. (We
assume, however, that the total number of characters on the license
plate is recognized correctly.) To handle such cases, the camera will
compute an N-dimensional feature vector x;, where feature x;; is
computed as follows:

N
X = Z db;,
k=1,k#j

()

In other words, each element j of the feature vector corresponds to the
encryption of the license plate that does not include the jth character.

It is worth noting that, we can extend this approach to address
I-character errors, i.e., the camera can compute an (’;’)-dimensional
feature vector where each element is the encryption of the license
plate that is missing / out of N characters. However, this method is
not recommended for / > 1, because (i) it is expensive in terms of
computation, storage, and communication costs and (ii) it may increase
the number of false positives, thus negatively affecting the privacy of
the underlying individuals. As a result, our system offers two variants
of the license plate recognition protocol: (i) a basic version that lacks
fault tolerance (/ = 0), and (ii) an enhanced version that handles simple
off-by-one errors (I = 1). Each camera will have the ability to configure
this option, e.g., based on the underlying image resolution.

In terms of precomputations, each camera must compute and store
the N different ciphertexts (one for each location) for every alphabet
character. As such, when a new license plate is captured, the feature
vector can be computed with cheap elliptic curve addition operations.
Therefore, the offline computation cost at the camera is N2 x M
addition operations for the computation of the database feature vectors,
and |.A| X N encryption operations for the necessary precomputations.
Finally, the storage cost at the camera is quite small and consists of
(JAl+ M) x N x T bytes.

7.2. Similarity score computation

During real-time video surveillance, the camera identifies the li-
cense plates from passing-by vehicles. For each vehicle j, it extracts
the license plate number C;, and generates the (encrypted) feature
vector y;. This is done by homomorphically adding a number of pre-
computed values from the offline phase. Then, for each suspect plate i
in the database, it computes the encrypted similarity score vector s; via
element-wise subtraction as follows:

(8

Si =X;~Y;

Note that, to avoid performing the negation operation (which is expen-
sive), we can simply precompute the encryptions of negated character
values during the offline phase. For example, given the license plate
character corresponding to value 15, the cameras will precompute
the encryptions of —15, —1500, —150000, etc., instead of their positive
counterparts. After all these optimizations, the online computation cost
at the cameras is reduced to N x (N + M) point addition operations.

E. Bentafat, M.M. Rathore and S. Bakiras
7.3. Similarity score obfuscation

Given that a positive match is signified by a zero similarity score,
the obfuscation phase simply involves the multiplication of the score
with a uniformly random r € [1, g). Unlike the use-case of face recog-
nition, this obfuscation method gives us information-theoretic security
since, for every possible real score value, we can find a random r < ¢
that produces the given obfuscated score. Not that, for computationally
bounded adversaries, even the decryption of the obfuscated score is
infeasible (for non-zero plaintexts) due to the discrete log nature of the
cryptosystem. Nevertheless, these strong security guarantees come at
a computational cost of N x M point multiplication operations with
scalars of size log ¢ bits.

7.4. Matching

The inherent security of the score obfuscation process allows the
camera to send the N x M scores to the server in a sequential manner,
i.e., without applying a random permutation. Therefore, the server
can identify immediately a suspect license plate without contacting
the remote camera. However, false positives are still possible, so the
server may request an image of the captured license plate to confirm
the match. In this case, the server and the camera will run the score
verification protocol described in Fig. 2, where the server proves to
the camera that a certain ciphertext is an encryption of ‘0.” Regarding
the matching operation, an encryption of ‘0’ will consist of a tuple
(r-G,r- P) for some random integer r < ¢. Thus, for every received
ciphertext, the server will multiply the first term with its secret key x
and check whether the result is equal to the second term. Consequently,
the computational cost for matching one captured license plate is Nx M
scalar-point multiplication operations.

8. Security

In this section, we analyze the security of the two different use-
cases. For face recognition, we have employed several optimizations
that relax the stringent privacy requirements of existing approaches,
in order to make real-time video surveillance possible. These include
(i) a single-round protocol that reveals a permuted list of obfuscated
similarity scores and (ii) the use of a discrete log based cryptosystem
that limits the degree of obfuscation that we can enforce. As a result,
we cannot formally prove the protocol’s security, but instead provide
empirical evidence that illustrate the difficulty of deriving any non-
trivial information about the captured faces. On the other hand, license
plate recognition is a considerably easier problem and we will prove its
security under the simulation paradigm.

8.1. Face recognition system

We consider two types of attacks against our system. The first one
is a complete privacy break, where the server is able to retrieve the
plaintext version of the feature vector for some captured face. This
is only possible if the server is able to correctly inverse the camera’s
permutation and obfuscation steps and solve the underlying non-linear
equations with N unknowns (assuming M > N). Nevertheless, this is
infeasible due to (i) the exponential number M! of possible permutation
outcomes and (ii) the unpredictability of OpenFace’s deep learning
approach to feature vector generation that makes it very difficult to
link a similarity score to a specific face-suspect pair.

To illustrate the second point above, we analyzed the similarity
scores generated by our system for four random faces from the LFW
dataset. We selected 500 images from person P, and computed the
(non-obfuscated) similarity scores against one image of Py, P,, P;, P,.
The results are shown in Fig. 4, where it is evident that the obtained
scores follow a Gaussian-like distribution with a large overlap among
the different faces. In particular, for the non-matching faces, the large

Computer Communications 180 (2021) 97-108

majority of similarity scores lie within the interval [50K,200K], thus
preventing the server from inferring any non-trivial information about
the underlying permutation.

The second type of attack is less severe and pertains to the ability of
the database server to distinguish an unknown individual across mul-
tiple cameras. For example, suppose that a captured face generates an
identical feature vector across a series of cameras. While the probability
of that event is negligible, it is worth investigating the effect of the
obfuscation step on the generated score distribution. Fig. 5 depicts the
probability distribution of the obfuscated score bit-lengths against a
database of 1000 suspects. P, is indistinguishable across two different
obfuscations (for an identical feature vector) and all four distributions
are very similar to each other with large overlaps. Note that, we are
not interested in the distribution of negative scores, since a match will
trigger the verification protocol that reveals the suspect’s identity.

8.2. License plate recognition system

In secure multiparty computation protocols, a straightforward ap-
proach to proving the security of a protocol is the simulation paradigm
[30]. Specifically, it is sufficient to show that, for each party, we can
simulate the distribution of the messages that it receives based only on
that party’s input and output to the multiparty protocol. This is true
because, if we can simulate each party’s view from just their input
and output, then the messages themselves cannot possibly disclose any
additional information.

Starting with the server, its input is the encrypted suspects’ database
and the output can be one of the following: (i) the license plate does not
match any suspect, (ii) the license plate is a 100% match to a suspect,
and (iii) the license plate is a match to a suspect, but with an off-by-
one error. These are easily simulated by sending N X M encryptions of
random values r < g for case (i), N encryptions of ‘0’ and N X (M — 1)
random encryptions for case (ii), and one encryption of ‘0’ and N X
M —1 random encryptions for case (iii). For the individual cameras, the
input is a captured license plate and there is no output. Furthermore,
the only messages that a camera receives are the ciphertexts of the
encrypted database. As such, the simulator can simply generate N x M
random encryptions because, given the semantic security of ElGamal’s
cryptosystem, the camera cannot distinguish these ciphertexts from the
ones that are produced by the server’s real input.

9. Experimental results
9.1. Implementation details

We implemented our systems on two machines, one to emulate
the law enforcement server and the other to simulate the camera
operations. The server is a Ubuntu desktop machine equipped with Intel
Xeon CPU E5-2620 2.10 GHzx16, 64 GB of RAM, and a 512 GB SSD.
The other machine is a Ubuntu laptop with Intel Core i7-6500U CPU
2.50 GHzx4 and 8 GB of RAM (it is also equipped with a front camera).
The two machines are connected via a TCP/IP4 LAN over Gigabit
Ethernet. Our systems are built on top of OpenFace.! and OpenALPR?

The face recognition layer of the OpenFace implementation em-
ploys package shape predictor 68_face landmarks as face predictor and
nn4.small2.v1.t7 as the network model. The package is written in
Python version 2.7 and, with the aforementioned configuration, face
recognition and normalization take about 600 ms on our laptop (using
the default configuration). This overhead greatly affects the perfor-
mance of our system, as it is sometimes larger than the cost of the
cryptographic operations.

After investigating the low-level details of OpenFace, we realized
that the face recognition process comprises two important phases: (i)

1 https://github.com/cmusatyalab/openface
2 https://github.com/openalpr/openalpr

https://github.com/cmusatyalab/openface
https://github.com/openalpr/openalpr

E. Bentafat, M.M. Rathore and S. Bakiras

0.16 T T T T T T T

0.14
0.12

0.1
0.08

Probability

0.06
0.04

0.02

0
-200K-150K-100K-50K 0 50K 100K 150K 200K 250K
Normalized similarity score

(a) P

0.12 T T T T T T T

Probability

0
0 50K 100K 150K 200K 250K 300K 350K 400K

Normalized similarity score

(c) P3

Computer Communications 180 (2021) 97-108

Probability

0 50K 100K 150K 200K 250K 300K 350K 400K

Normalized similarity score

(b) P

Probability

0 50K 100K 150K 200K 250K 300K 350K 400K

Normalized similarity score

(d) Py

Fig. 4. Distribution of non-obfuscated similarity scores for 500 images of P, against one image of P, P,, P;, P,.

0.45 T T T
0.4 1
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Probability

20 22 24 26

Obfuscated score (No. of bits)

28
(a) Person Pi, obfuscation 1

0.45

0.35
0.3
0.25

Probability

20 22 24 26

Obfuscated score (No. of bits)

(c) Person P»

28

0.45 T T T T T
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Probability

20 22 24 26

Obfuscated score (No. of bits)

(b) Person Pp, obfuscation 2

28

0.45

0.35
0.3
0.25

Probability

20 22

24
Obfuscated score (No. of bits)

(d) Person P3

26 28

Fig. 5. Distribution of obfuscated score bit-lengths against a database of 1000 suspects (r,r, < 2048).

detecting and generating the bounding boxes of possible faces in a
frame and (ii) generating the 128-byte vector for each bounding box.
The latter operation is performed using neural networks and is easily
parallelizable. On the other hand, the identification of the bounding
boxes employs the d1ib library and uses a combination of Histogram
of Oriented Gradient (HOG) and Support Vector Machine (SVM) algo-
rithms. This combination brings many benefits in terms of recognition

accuracy, but it cannot be parallelized.

To mitigate this problem and leverage the power of all available
CPU cores, we decided to split the recognition workload equally across
the different cores. In particular, instead of trying to parallelize each
step of the recognition pipeline, we assign each video frame to one
of the CPU cores. Despite increasing the overall face detection time,
we gain a lot in terms of processing throughput (frames per second).
To get reasonable face recognition times, we have used a resolu-
tion of 640 x 480 pixels and an upsampling parameter of 1 in our
implementation.

E. Bentafat, M.M. Rathore and S. Bakiras Computer Communications 180 (2021) 97-108
3800 37GB
10GB ¢]
L . -
@1400 7 . & - .
g 2 | § 1GB - =] 4
1] L
= A g s [JE]
S S 100MB
= =) S
© s 4 2 5
> L2 c Ji: e
g 100 2 tomB | IV
S £ JU
© 8 e Server storage —6—
Server —x— imMB >3< Cam storage, full G &
L Camera, full G ——m— 7 Cam storage, 50% G &
Py I . Camera, 50% G 3 | P S . Communication_----
10 100 200 400 600 800 1000 10 100 200 400 600 800 1000
Number of suspects in database Number of suspects in database
(a) Computation time (b) Communication/Storage
Fig. 6. Offline cost.
2 i) 140
1L 120 ¢
& ¢
@ . 100
(0] 173
£]
< Camera, full G —m— g 80
2 Camera, 50% G & =
g Server —x S 60t
=3 (=
£ oilg g
8 . g 40 -
o
x 20
X
25 A . . . 0 M . . .
10 100 200 400 600 800 1000 10 100 200 400 600 800 1000

Number of suspects in database

(a) Computation time

Number of suspects in database

(b) Communication

Fig. 7. Online cost.

25

T T
. Communication
mm— Server dec.
s Camera enc.

| W= Face recognition

Computation time (s)

10 100 200 400 600

Number of suspects in database

Fig. 8. Round Trip Time for a positive face match.

License plate recognition was implemented with the OpenALPR
library. Similar to face recognition, the system is implemented as a
client/server application on the same hardware configuration. The
server’s input is a .txt file, containing a list of the suspects’ license
plate numbers. We run our experiments using different database sizes,
varying from M = 10 to 3000. On the client side, the input is typically a
live video stream from the device’s camera. However, the input can also
include stored video sequences and still images. In our experiments,
we set the maximum number of characters on a license plate to be
N = 8. The camera (client) application sets the preferred fault tolerance
threshold /, which can be equal to / 0 (100% match) or !/ 1
(off-by-one errors).

The cryptographic layer (elliptic curve ElGamal) for both methods
was implemented in C, using the BIGNUM library of OpenSSL (ver-
sion 1.1.0g). We also used SWIG to connect C with Python (version
4.0.1). We set the order of the elliptic curve to be a 256-bit prime

number, as per NIST’s recommendations [31]. As a result, all cipher-
texts, which consist of two elliptic curve points, require 128 bytes of
storage/communication. Under this C/Python environment, the aver-
age time for encryption, decryption, and scalar-point multiplication
(with 256-bit scalars) is about 0.23 ms. On the other hand, point
addition takes only about 0.02 ms. For each reported result, we run
the experiment 4 times and plot the average time. Finally, our im-
plementation leverages the parallel computing abilities of the two
multi-core machines, since all our algorithms are easily parallelizable.
The source code of our implementations is available online for both
face recognition® and license plate recognition.*

Next, we discuss the results of our experimental evaluation for the
two use-cases. The reported times correspond to actual measurements
collected from the two implementations on the separate devices (laptop
and workstation).

9.2. Face recognition

Starting with the offline phase, we first evaluate the computation
and communication/storage costs at both the camera and the server, as
a function of the database size M. To this end, Fig. 6 illustrates the CPU
time at all parties. G represents the database of precomputed values, so
the bottom curve of the plot corresponds to the cost where only 50% of
the precomputations are actually performed. The cost at the camera is
clearly linear in M and is dominated by the computation of the terms
y;j - Enc(=2x; ;), as explained in Section 6. This is, by any means, an
acceptable cost, as it is incurred only once and can terminate within a
few minutes.

At the server-side, the offline cost includes the generation of the
suspects’ feature vectors from the corresponding images (OpenFace),
the normalization of their representations (our algorithm), and the
generation of the encrypted database that is sent to the cameras. Nev-
ertheless, these costs are not evident in Fig. 6, as they are dominated by

3 https://github.com/mahdihbku/BlindGuardian
4 https://github.com/mahdihbku/BlindCarSeeker

https://github.com/mahdihbku/BlindGuardian
https://github.com/mahdihbku/BlindCarSeeker

E. Bentafat, M.M. Rathore and S. Bakiras
-
2 L)
Q
£065
<
2037 F
8
3
Q
€
8
2ot
&= fo)
o) ® Server —x<—
Camera, I=0 o
= L
0.03))) Camgra,l 1 ;
10 500 1000 1500 2000 2500 3000
Number of plates in database
(a) Computation time
Fig. 9.
2000
1000
£ s
£ 1208
z 75
S
8
g_ s
g 10% 1
o] Camera, |=0 —&—
Server, |=0 &
Camera, I=1 —=—
1 . . ___Server,|=1 —m
10 500 1000 1500 2000 2500 3000

Number of plates in database

(a) Computation time

Computer Communications 180 (2021) 97-108

3MB T T T T T
B
S 1MB | E 1
©
S
L
c
k=]
‘©100KB
2 /
< i
=3
£
E i
=}
© 10KB &
2
£ Cam storage, =0 —e—
€] Cam storage, I=1 &
KB _ Communication/Server storage
10 500 1000 1500 2000 2500 3000

Number of plates in database

(b) Communication/Storage

Offline cost.

3MB . . . —

1MB
400KB

tion cost

ical

100KB

= W
o o
A X
W @

Online communi

I=0 —o—

1KB L L L L |=1 L
500 1000 1500 2000 2500

Number of plates in database

3000

(b) Communication

Fig. 10. Online cost.

T T T T
[mmmmm Communication

= Server dec.
[Camera enc.
Plate recognition

0.6

0.5

0.4

0.3

Online time (s)

0.2

0.1

10 1000 1500 2000

Number of plates in database

2500 3000

Fig. 11. Round Trip Time for a positive license plate match (/ =0).

the cost of the precomputations for the discrete log lookup table. This
operation necessitates over an hour of compute time, but is crucial in
our system because it speeds up considerably the decryption operations
at the server. More importantly, this is a one-time cost that is incurred
before the system becomes operational.

Fig. 6(b) depicts the offline communication/storage cost at the two
devices. The compact representation of elliptic curve points makes it
feasible to store the entire database G at the camera with only 4
GB of main memory. On the other hand, the cost at the server is
again dominated by the discrete log lookup table, whose size is equal
to 37 GB. However, this is a trivial requirement for today’s state-
of-the-art servers. Finally, the offline communication cost entails the
transmission of the encrypted database and remains under 10 MB, even
for a database of 1000 suspects.

In the next set of experiments, we evaluate the online cost of our
approach, as a function of the database size M. First, Fig. 7 shows the
online CPU time at all parties. Clearly, the cameras absorb most of the

computational cost, since they have to compute the encrypted similar-
ity scores for every suspect in the database. Nevertheless, the online
cost is order of magnitudes lower compared to existing approaches, and
remains below 1 s for databases of up to 500 suspects.

A notable observation that motivates the partial storage of G (as
explained in Section 6) is that the performance penalty from storing
50% of G is not significant. In particular, for M = 100, the CPU time at
the camera when the full G is available is 155 ms, and it only increases
by 35% (to 210 ms) when 50% is available. Finally, a very promising
result of our implementation is the online computation cost at the
database server. For M = 100 the cost is just 34 ms, while for M = 1000
it only raises to 50 ms. As mentioned previously, the database server
is the bottleneck in a wide-scale video surveillance system, because it
may potentially process thousands of captured faces every second.

Fig. 7(b) illustrates the online communication cost for our system. It
involves a single round of communication, where the camera transmits
M encrypted similarity scores to the server. For a database of 1000
suspects, this entails a communication cost of just 128 KB.

Our previous experiments focused only on the cryptographic over-
head of the privacy-preserving face recognition system. Alternatively,
Fig. 8 illustrates the true Round Trip Time (RTT) for detecting a
suspect. It includes face recognition and detection at the camera,
all the cryptographic operations at both the camera and the server,
and the required communication that includes sending the suspect’s
image from the camera to the server. For a database of 100 suspects,
the RTT is less than 0.8 seconds (with a precomputation of the en-
tire database G), while for M 1000 the RTT is approximately
2.2 seconds. Nevertheless, a fixed portion of the RTT (around 0.6 s)
is consumed on non-cryptographic operations, namely the face recog-
nition and detection by the OpenFace software. A better combination
of hardware/software at the surveillance cameras could improve that
cost considerably.

9.3. License plate recognition

Fig. 9(a) depicts the offline computation cost for the server and
client applications. As explained in Section 7, the server’s sole offline

E. Bentafat, M.M. Rathore and S. Bakiras

n
o

o
o

N

Online computation/communication (s)

0.5
Ours —8—
0.1 4 Sadeghi et al., 2048 -
0.05" . . _ Sadeghi et al., 3072 —e
710 100 200 400 600 800 1000

Number of suspects in database

(a) Face recognition

Computer Communications 180 (2021) 97-108

04 r

0.1 ¢

Online computation/communication (s)

0.05 |
';, Ours —=—
0.02 { Vaishnav et al., 2048 &
0.01) __Vaishnav etal., 3072 -—e
BT 500 1000 1500 2000 2500 3000

Number of plates in database

(b) License plate recognition

Fig. 12. Online cost vs. state-of-the-art protocols.

task includes the generation of the encrypted database, which com-
prises N X M encryption operations. On the other hand, the camera
has to generate the extended database (depending on the fault tolerance
value /), and precompute | A|- N ciphertexts that are utilized during the
online phase. In terms of communication, Fig. 9(b) illustrates that cost
is very low, even for a database of 3000 entries. The cost is dominated
by the transmission of the encrypted database from the server to the
camera. Similarly, the storage space required at both the camera and
the server is negligible, and remains below 3 MB in all cases.

Next, we evaluate the online cost of our approach. Fig. 10(a) shows
the computation time required by the server and the client to compare
one captured license plate against the entire suspects’ database. As
expected, this cost increases considerably when we incorporate the
fault tolerance mechanism. Without fault tolerance (/ = 0), the com-
putation time on the laptop (client) is 325 ms for M = 3000. This cost
includes frame processing and license plate extraction (92 ms), and the
computation/obfuscation of the similarity scores (232 ms). The server’s
CPU cost involves the partial decryption of M ciphertexts, which takes
only 75 ms. Note that both the client and server applications are multi-
threaded and utilize all available cores. The online communication cost
(Fig. 10(b)) is simply the cost of transmitting the encrypted similarity
scores to the server. Without fault tolerance, the number of ciphertexts
is equal to M, which requires 375 KB of online communication. On the
other hand, when / = 1, the cost is increased by a factor of N = 8.

Fig. 11 illustrates the Round Trip Time for detecting a suspect
license place. It includes all the performed operations, such as Ope-
nALPR’s license plate recognition, the cryptographic computations at
the camera and server, and the communication time for transmitting
the encrypted similarity scores and the image of the captured license
plate. When the suspects’ database is large, the RTT is dominated by the
cryptographic operations at the camera and the communication cost.
Nevertheless, even for a database of 3000 license plates, the RTT is
just 612 ms.

9.4. Comparison with the state-of-the-art

Finally, in Fig. 12 we compare our methods with the current state-
of-the-art solutions, namely Sadeghi et al. [3] for face recognition and
Vaishnav et al. [5] for license plate recognition. The graphs represent
the combined online computation and communication cost that is re-
quired to match a single suspect against the server’s database (assuming
a 10 Mbps bandwidth between the cameras and the server). Both
our competitors are implemented on top of Paillier’s homomorphic
cryptosystem. To this end, we run two sets of experiments under
different security levels, i.e., with a 2048-bit and 3072-bit RSA mod-
ulus. According to NIST’s recommendations [31], for 128 bits security,
RSA-based algorithms necessitate a 3072-bit modulus (and a 2048-bit
modulus for 112 bits security). On the other hand, our approach offers
128 bits security with the selected 256-bit curve. Note that, for a fair
comparison, both protocols were implemented using multi-threading,
in order to take advantage of the multi-core CPU machines.

Sadeghi et al. improved the online time by leveraging precompu-
tations, wherever possible, and packing multiple distance scores in a
single ciphertext. This reduces significantly the number of expensive
public key operations. Furthermore, Vaishnav et al. is based on an
improved Paillier implementation proposed by Jost et al. [32]. Their
algorithms optimize the encryption operation by employing precompu-
tations, whereas the decryption is improved by reducing the size of the
exponent to 320 bits, instead of 2048 or 3072. For Vaishnav et al.’s
method, we run the experiments without the trusted third party, in
order to match our proposed architecture.

Fig. 12(a) shows that the required time to match a single face
against a database of 500 suspects is around 9.5 s for 112 bits security,
and more than 17 s for 128 bits security. The cost is dominated
by (i) the projection phase at the server (computations) and (ii) the
communication cost that involves multiple rounds of communication
and more than 5.8 MB of data exchange. On the other hand, our method
reports only 663 ms for 500 suspects. As such, for the same security
level, our protocol reduces the overall cost by a factor of 26.

Fig. 12(b) shows that, for a database of 3000 license plates, Vaish-
nav et al. requires 2.84 s and 6.1 s for 112 and 128 bits security,
respectively. The cost is dominated by the decryption operation at the
server and the communication overhead. Our method necessitates only
346 ms of online cost, i.e., a factor of 18 improvement.

10. Conclusion

In this paper, we introduced the first near real-time privacy-
preserving video surveillance system. We started by designing a general
framework for privacy-preserving surveillance that has several advan-
tages over the existing state-of-the-art approaches. The benefits of our
framework stem mainly from two design decisions. First, the encrypted
suspects’ database is distributed to all surveillance cameras, which fa-
cilitates the use of extensive precomputations that reduce significantly
the computation of the encrypted similarity scores. Second, the protocol
involves a single round of communication, where the server receives
a random permutation of obfuscated similarity scores that instantly
reveal the suspect identification result. We applied our framework
to two distinct use-cases, namely, face recognition and license plate
recognition, and implemented the corresponding system prototypes.
We performed an extensive experimental evaluation of the two systems
and our results show that, compared to the current state-of-the-art
approaches, our protocols reduce the overall cost by a large factor.

CRediT authorship contribution statement

Elmahdi Bentafat: Conceptualization, Methodology, Software,
Writing - original draft. M. Mazhar Rathore: Conceptualization,
Methodology, Writing — review & editing. Spiridon Bakiras: Concep-
tualization, Supervision, Writing — review & editing.

E. Bentafat, M.M. Rathore and S. Bakiras

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Open Access funding provided by the Qatar National Library.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, 1. Lagendijk, T. Toft, Privacy-
preserving face recognition, in: Proc. International Symposium on Privacy
Enhancing Technologies (PETS), 2009, pp. 235-253.

M. Osadchy, B. Pinkas, A. Jarrous, B. Moskovich, Scifi — A system for secure face
identification, in: Proc. IEEE Symposium on Security and Privacy (SP), 2010, pp.
239-254.

A.-R. Sadeghi, T. Schneider, I. Wehrenberg, Efficient privacy-preserving face
recognition, in: Proc. International Conference on Information Security and
Cryptology, 2009, pp. 229-244.

A.B. Sunil, Z. Erkin, T. Veugen, Secure matching of dutch car license plates, in:
2016 24th European Signal Processing Conference (EUSIPCO), IEEE, 2016, pp.
2116-2120.

H. Vaishnav, S. Sharma, A. Mathuria, Efficient implementation of private license
plate matching protocols, in: International Conference on Security, Privacy, and
Applied Cryptography Engineering, Springer, 2017, pp. 281-294.

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Trans. Inform. Theory 31 (4) (1985) 469-472.

E. Bentafat, M.M. Rathore, S. Bakiras, A practical system for privacy-preserving
video surveillance, in: International Conference on Applied Cryptography and
Network Security, Springer, 2020, pp. 21-39.

B. Amos, B. Ludwiczuk, M. Satyanarayanan, Openface: A general-purpose face
recognition library with mobile applications, CMU School Comput. Sci. 6 (2016).
F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding for face
recognition and clustering, in: Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 815-823.

Openalpr: Automatic license plate recognition, 2014, URL https://github.com/
openalpr/openalpr.

A.C.-C. Yao, How to generate and exchange secrets, in: Proc. Symposium on
Foundations of Computer Science (FOCS), 1986, pp. 162-167.

C. Xiang, C. Tang, Y. Cai, Q. Xu, Privacy-preserving face recognition with
outsourced computation, Soft Comput. 20 (9) (2016) 3735-3744.

M. Naor, B. Pinkas, Computationally secure oblivious transfer, J. Cryptol. 18 (1)
(2005) 1-35.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Computer Communications 180 (2021) 97-108

J. Bringer, H. Chabanne, M. Favre, A. Patey, T. Schneider, M. Zohner, GSHADE:
faster privacy-preserving distance computation and biometric identification, in:
Proc. ACM Workshop on Information Hiding and Multimedia Security, 2014, pp.
187-198.

D. Evans, Y. Huang, J. Katz, L. Malka, Efficient privacy-preserving biometric
identification, in: Proceedings of the 17th Conference Network and Distributed
System Security Symposium, NDSS, Vol. 68, 2011, pp. 90-98.

P. Gasti, J. Sedénka, Q. Yang, G. Zhou, K.S. Balagani, Secure, fast, and energy-
efficient outsourced authentication for smartphones, IEEE Trans. Inf. Forensics
Secur. 11 (11) (2016) 2556-2571.

C. Karabat, M.S. Kiraz, H. Erdogan, E. Savas, THRIVE: threshold homomorphic
encryption based secure and privacy preserving biometric verification system,
EURASIP J. Adv. Signal Process. 2015 (1) (2015) 71.

K. Zhou, J. Ren, PassBio: Privacy-preserving user-centric biometric authentica-
tion, IEEE Trans. Inf. Forensics Secur. 13 (12) (2018) 3050-3063.

C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proc. ACM
Symposium on Theory of Computing (STOC), 2009, pp. 169-178.

P. Paillier, Public-key cryptosystems based on composite degree residuosity
classes, in: Proc. International Conference on the Theory and Applications of
Cryptographic Techniques, 1999, pp. 223-238.

H. Vaishnav, A. Mathuria, Fast private license plate matching using symmetric
homomorphic encryption, in: 2018 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), IEEE, 2018, pp. 1-6.

J. Dyer, M. Dyer, J. Xu, Practical homomorphic encryption over the integers for
secure computation in the cloud, Int. J. Inf. Secur. 18 (5) (2019) 549-579.
J.T. Trostle, A. Parrish, Efficient computationally private information retrieval
from anonymity or trapdoor groups, in: Proc. International Conference on
Information Security (ISC), 2010, pp. 114-128.

H.W. Lenstra, A.K. Lenstra, L. Lovfiasz, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982) 515-534.

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to human-
level performance in face verification, in: Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014, pp. 1701-1708.

G. Bradski, A. Kaehler, Opencv, Dr. Dobb’s J. Softw. Tools 3 (2000).

R. Smith, Z. Podobny, et al., Tesseract OCR, 2005, URL https://github.com/
tesseract-ocr/tesseract.

A. Acar, H. Aksu, A.S. Uluagac, M. Conti, A survey on homomorphic encryption
schemes: Theory and implementation, ACM Comput. Surv. 51 (4) (2018) 79.
C. Schnorr, Efficient signature generation by smart cards, J. Cryptol. 4 (3) (1991)
161-174.

Y. Lindell, B. Pinkas, Secure multiparty computation for privacy-preserving data
mining, J. Priv. Confid. 1 (1) (2009).

E. Barker, NIST special publication 800-57, in: NIST Special Publication, Rec-
ommendation for Key Management-Part 1: General (Revision 5), Vol. 800, (57)
2020, pp. 1-171.

C. Jost, H. Lam, A. Maximov, B.J. Smeets, Encryption performance improvements
of the paillier cryptosystem, IACR Cryptol. EPrint Arch. 2015 (2015) 864.

http://refhub.elsevier.com/S0140-3664(21)00338-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb4
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb5
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb6
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb6
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb6
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb7
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb7
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb7
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb7
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb7
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb8
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb8
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb8
https://github.com/openalpr/openalpr
https://github.com/openalpr/openalpr
https://github.com/openalpr/openalpr
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb12
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb13
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb13
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb13
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb16
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb17
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb18
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb21
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb21
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb21
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb21
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb21
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb22
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb22
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb22
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb24
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb24
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb24
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb26
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb28
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb28
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb28
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb29
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb29
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb29
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb30
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb30
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb30
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb31
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb31
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb31
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb31
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb31
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb32
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb32
http://refhub.elsevier.com/S0140-3664(21)00338-8/sb32

	Towards real-time privacy-preserving video surveillance
	Introduction
	Related work
	Privacy-preserving face recognition
	Privacy-preserving license plate recognition

	Tools
	OpenFace
	OpenALPR
	Homomorphic encryption

	Security definition and threat model
	Privacy-preserving surveillance framework
	Offline phase
	Similarity score computation
	Similarity score obfuscation
	Matching

	Use-case 1: Face recognition
	Offline phase
	Similarity score computation
	Similarity score obfuscation
	Matching

	Use-case 2: License plate recognition
	Offline phase
	Similarity score computation
	Similarity score obfuscation
	Matching

	Security
	Face recognition system
	License plate recognition system

	Experimental results
	Implementation details
	Face recognition
	License plate recognition
	Comparison with the state-of-the-art

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

