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a b s t r a c t 

The exponential growth of connected wireless devices has led to a depletion of the available wireless 

spectrum. To this end, dynamic spectrum access (DSA) has been proposed as a viable framework for max- 

imizing the usability of the wireless spectrum by allowing some portions of it to be accessed and used 

in a dynamic manner. Contrary to the legacy fixed spectrum access policy, DSA enables license-exempt 

users to access licensed bands during their respective owner’s idle times. Specifically, in the database- 

driven DSA model, mobile users issue location-based queries to a white-space database and request idle 

channels in their area. To preserve location privacy, existing solutions suggest the use of private informa- 

tion retrieval (PIR) protocols when querying the database. Nevertheless, these methods are not communi- 

cation efficient and fail to take into account user mobility. In this paper, we address these shortcomings 

and propose an efficient privacy-preserving protocol based on the Hilbert space filling curve. We provide 

optimizations for mobile users that require privacy on-the-fly and users that have full a priori knowledge 

of their trajectory. Results from our experimentation on two real life datasets show that, compared to the 

current state-of-the-art protocol, our methods reduce the query processing cost at the mobile clients by 

a factor of 2 to 8. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The allocation of radio spectrum for mobile wireless network-

ng is governed by federal agencies via a fixed (static) spectrum

haring strategy. However, with the ever growing need for mobile

ireless services and applications, the static sharing method has

ed to the depletion of the available spectrum [1] . Furthermore, the

ctual usage of pre-assigned spectrum bands has been measured

o have a very low average utilization. For example, in the US, the

ederal communications commission (FCC) has reported that many

pectrum bands allocated via static assignment policies have been

sed only in bounded geographical areas and over very limited pe-

iods of time. Such utilization has been measured to be between

5% and 85% [2] . 

Currently, there is wide consensus that the static method of

pectrum allocation has major drawbacks. As a result, the need for

pportunistic and dynamic spectrum access technologies has risen

harply. A flexible and dynamic spectrum access strategy is neces-

ary, in order to eliminate the underutilization and spectrum de-
� This research has been funded by the NSF CAREER Award IIS-0845262. 
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letion effects of the current static allocation scheme. The FCC has

tated that no other technology “holds greater potential for liter-

lly transforming the use of spectrum in the years to come than

he development of software-defined and cognitive/smart radios”

3] . 

Cognitive radio (CR), which is built on top of a software de-

ned radio [4] , is an intelligent wireless communications system

hat is aware of its spectral operational environment. A CR node

ust be able to dynamically adapt to the environmental spectral

hanges, in order to abide by the spectral etiquette set forth by

he FCC. One of the most important functions that a CR node must

erform, is the identification of unoccupied spectrum opportuni-

ies (SOPs). SOPs are space, time, and frequency dependent blocks,

uring which the license-exempt can utilize the registered owner’s

pectrum in a DSA manner. Prior to May 2012, SOP discovery was

ainly done through distributed and cooperative sensing. In such

n approach, CR nodes rely on sheer power detection methods, and

oordinate in order to identify spectrum activity and locate avail-

ble SOPs [5–9] . 

On the opposite end of this approach lies a database-driven

pectral learning technique that allows CR nodes to understand

heir spectral surroundings in a three-step process. A node at-

empting to analyze the surrounding SOPs would first learn its ge-

graphical location through a GPS device. Subsequently, it would

http://dx.doi.org/10.1016/j.adhoc.2017.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2017.02.001&domain=pdf
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Fig. 1. Mobile user geo-located near Tsinghua university (from Microsoft’s GeoLife 

trajectory dataset). 
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1 Note that, the PIR protocol of Trostle and Parrish was recently broken by Lep- 

oint and Tibouchi [15] . 
contact a central repository (database) and issue its GPS coordi-

nates as part of the query. Finally, it would download the centrally

fused and compiled repository report containing the available SOPs

[10] at that location. The compilation and fusion of the SOPs is as-

sumed to be done by specialized entities called spectrum database

operators (SDOs). The available SOPs are compiled by applying ap-

propriate propagation modeling and interference avoidance algo-

rithms for a given geographical location. 

The FCC’s May 2012 ruling [11] obsoletes the distributed and

cooperative sensing method for the white-space TV bands. The rul-

ing requires that all CR nodes operating in the white-space TV

bands utilize the centralized white-space database (WSDB) spec-

trum lookup method. In order to allow mobile television band de-

vices (TVBDs) to learn their spectral surroundings, the FCC has des-

ignated 10 WSDB providers, out of which only Google, Spectrum

Bridge, and Telcordia Technologies have been approved for opera-

tion [12] . 

Nevertheless, the database-driven DSA approach is prone to se-

vere location privacy leakage. According to FCC specifications [13] ,

a mobile TVBD must issue a new query whenever it moves fur-

ther than 100 m from its previous location. Since the GPS coordi-

nates must be part of every query, a WSDB operator could easily

build a detailed history of the mobile TVBD’s trajectories, which

could reveal sensitive information about the underlying user (such

as health condition, habits, etc.). As an example, Fig. 1 shows a

mobile TVBD’s trajectory that is formed by latitude/longitude data

points taken at consecutive time intervals, near Tsinghua univer-

sity. Given the starting point of the trajectory, the WSDB server

can identify (to a certain extent) the user associated with this tra-

jectory (e.g., it may correspond to a home address). In addition,

given the end point of the trajectory, the WSDB server can infer

(with a certain probability) that the aforementioned TVBD user is

affiliated with Tsinghua university. 

To this end, Gao et al. [14] introduce a scheme that leverages a

private information retrieval (PIR) protocol to query the WSDB in

a privacy-preserving manner. A PIR protocol allows any user to re-

trieve a record from a database server, while maintaining the iden-

tity of the record secret from the server. Therefore, Gao et al. par-

tition the space with a fixed n × n grid and require users to down-

load the location-dependent (based on the cell where they are lo-

cated) channel information, through the PIR protocol. This is the

only protocol so far in the literature dealing with location privacy

in database-driven DSA but, unfortunately, it suffers from several

drawbacks. 
First, Gao et al. utilize the PIR scheme of Trostle and Parrish 

1 

16] whose communication cost (for a single query) is equal to a

arge percentage of the database size. Second, most PIR protocols

ypically return multiple records per query that, in the case of mo-

ile users, could be used to answer future queries. However, the

uthors modify [16] so that the PIR reply contains channel avail-

bility information for a single cell (as opposed to n in the original

rotocol). Finally, they view each query as an independent event,

ithout taking into account user mobility. As a result, when a user

s constantly moving, the communication cost of [14] can surpass

he cost of downloading the entire database. 

In this paper, we first argue that dynamic spectrum access will

ost likely be utilized in areas with poor/intermittent cellular con-

ectivity. As such, the underlying query processing protocol should

e communication efficient. Therefore, unlike [14] , our methods

everage the PIR scheme of Gentry and Ramzan [17] , which is the

ost communication efficient protocol to date. Furthermore, to ad-

ress user mobility, we index the WSDB based on the Hilbert space

lling curve (HSFC) [18] . In this way, neighboring cells are typi-

ally stored in consecutive locations on the white-space database.

inally, to allow for the retrieval of multiple cells with a single PIR

uery, we split the WSDB into multiple, disjoint segments. As such,

 PIR query is processed independently on each segment, and the

ser retrieves channel availability information from a large num-

er of consecutive cell IDs. Due to the properties of the underlying

SFC, these cells are spatially close (with a very high probability),

nd could reduce the number of PIR queries in the near future. 

We consider two distinct cases in our work: (i) the user’s tra-

ectory is known a priori and (ii) the user’s trajectory is generated

n-the-fly. For the latter case, we propose two trajectory predic-

ion methods. The first method is based on the simple linear re-

ression line (SLR) generated by recently traveled coordinates. The

redicted values are then used to retrieve the corresponding cells

rom the WSDB and, thus, reduce further the number of future PIR

ueries. The second method is based on prediction using variable

rder Markov models (VMMs). Here, after some initial training,

sers utilize their knowledge of coordinates traveled in the past to

ssign, in real time, movement probabilities to surrounding coordi-

ates. The movement probabilities are considered in the context of

he most recent travel history. Furthermore, predicted coordinates

re evaluated and verified against actual traveled coordinates and

tilized for further, real time re-training of the VMMs. 

In the case of the a priori trajectory knowledge, our approach

nables mobile users to simulate their routes and invoke the opti-

al number of PIR queries. We tested our methods on two real life

atasets, namely Microsoft’s T-Drive dataset [19] and Microsoft’s

eoLife GPS dataset [20] . The experimental results show that, com-

ared to the state-of-the-art computationally efficient PIR protocol

21] , our methods reduce the query processing cost at the mobile

lients by a factor of 2 to 8. 

Note that, this article is an extension of a previously published

onference paper [22] . Compared to the conference version, this

rticle makes the following contributions. 

• We removed Ref. [14] from the experimental evaluation, as its

underlying PIR protocol has been proven insecure. We replaced

it with the current state-of-the-art protocol [21] for computa-

tionally efficient PIR. 

• We employed new trajectory prediction models ( Section 4.6 )

that improve the performance over our previous work by up

to 33%. 
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• We significantly revised the experimental evaluation section to

account for the new PIR protocol and the new trajectory pre-

diction algorithms. 

The remainder of this paper is organized as follows.

ection 2 presents a literature review on location privacy.

ection 3 provides the necessary background on the various

rimitives utilized in our work. Section 4 describes our methods

n detail, and Section 5 presents the results of the experimental

valuation. We conclude our work in Section 6 . 

. Related work 

Most existing approaches for location privacy rely on the notion

f k -anonymity [23] or l -diversity [24] . In location-based services,

 spatial query is said to be k -anonymous, if it is indistinguishable

rom at least k − 1 other queries originating from the same region.

his region is called a spatial cloaking region (SCR), and encloses

he querying user as well as at least k − 1 other users. To compute

he SCR, existing k -anonymity algorithms typically extend the SCR

round the query point until it encloses k − 1 other users [25–27] . 

l -diversity based methods [28,29] , on the other hand, extend

he SCR until l − 1 different locations are included. Although k -

nonymity and l -diversity provide some degree of location privacy,

hey may still leak semantic location information. For example, if

he SCR only contains casinos, the server can infer that the mobile

ser is interested in gambling. To this end, the work of Lee et al.

30] attempts to provide location privacy using location semantics.

The k -anonymity and l -diversity based approaches, as well as

ollaborative location privacy protection methods [31,32] , often

ely on third party trusted anonymizers, which is not always a

iable solution. On the other hand, Ghinita et al. [33] propose

he first privacy-preserving protocol (for nearest neighbor queries)

hat does not require a trusted third party. Instead, their method

chieves perfect location privacy via the cryptographic primitive of

rivate information retrieval [34] . 

Location privacy work in the DSA realm has mainly focused on

he collaborative spectrum sensing aspect. In particular, most of

he existing algorithms aim towards securing the location privacy

f secondary users that submit sensing reports to a malicious fu-

ion center [35–37] . 

Due to the recency of the FCC’s ruling, location privacy research

n database-driven DSA networks is still in its early stages. The

tate-of-the-art protocol is due to Gao et al. [14] , which builds

pon a modified version of Trostle and Parrish’s PIR scheme [16] .

hey assume a fixed grid of n × n cells, where each cell contains

 bitmap that represents the channel availability information (typ-

cally 32 bits). Nevertheless, their scheme incurs a high commu-

ication cost of (2 n + 3) · log p bits, where p is a 2048-bit mod-

lus. For instance, if n = 50 0 0 , the amount of data exchanged to

etrieve the bitmap of a single cell is 2.5 MB, which is approxi-

ately 2.6% of the whole database size. For highly mobile clients,

he cost of this approach can exceed the cost of downloading the

ntire database. 

Troja and Bakiras [38] introduce a protocol that allows mobile

SA users to share their cached channel availability information in

 privacy-preserving manner. The protocol leverages an anonymous

eto protocol that anonymizes the exchange of information among

 group of users. This method is orthogonal to our work and may

e employed independently, in order to further reduce the number

f PIR queries sent to the WSDB server. 

. Preliminaries 

In this section we give a brief overview of the various prim-

tives utilized in our work. Section 3.1 introduces the concept of
rivate information retrieval and Section 3.2 presents the Hilbert

pace filling curve algorithm. Section 3.3 describes variable order

arkov models. 

.1. Private information retrieval 

PIR protocols allow a user to obtain information from a

atabase server, in a manner that prevents the database from

nowing which data was retrieved. Typically, the server holds a

atabase of N records and the user wants to retrieve the i th record,

uch that i remains unknown to the database. The trivial PIR case

onsists of downloading the entire database, which clearly pre-

erves privacy but has an unrealistic communication cost. There-

ore, the objective of a PIR protocol, as applied to mobile applica-

ions, is to reduce the communication cost. 

Information theoretic PIR protocols [39] are secure against com-

utationally unbounded adversaries. However, they require that

he database be replicated into multiple non-colluding servers. This

on-collusion assumption is not realistic in typical applications, so

nformation theoretic protocols are not utilized in practice. On the

ther hand, computational PIR (CPIR) protocols base their security

n well-known cryptographic problems that are hard to solve (such

s discrete logarithm or factorization). As such, their security is es-

ablished against computationally bounded adversaries. Kushilevitz 

nd Ostrovsky [34] introduced the first CPIR protocol for a sin-

le database, whose security is based on the quadratic residuosity

ssumption. The communication complexity of [34] is O ( n ε). Fur-

her work [40,41] demonstrates CPIR schemes with polylogarithmic

ommunication complexity. 

A recent trend in the PIR literature is for computationally effi-

ient protocols with large communication cost (but still better than

he trivial PIR case). The current state-of-the-art protocol is XPIR

21] , which employs the latest results from lattice-based cryptog-

aphy. Nevertheless, as we will show in the experimental evalua-

ion, the communication cost of such schemes is not well-suited

or mobile applications. 

In this work, we leverage the protocol of Gentry and Ramzan

17] , because it is the most communication efficient PIR protocol to

ate. For a particular instantiation, it exhibits a constant communi-

ation cost that is independent of the database size (it typically

nvolves the exchange of three 128-byte numbers). The security of

he protocol is based on “φ-hiding” assumption, and its function-

lity is summarized as follows. 

Setup. We assume a database of N records, where each record

s of size � bits. During a preprocessing phase, the server asso-

iates every record j with a prime power π j = p 
c j 
j 
, where p j is a

mall prime and c j is the smallest integer, such that log π j > � . All

hese values are public knowledge. Next, using the Chinese remain-

er theorem (CRT), the server expresses the entire database as an

nteger e , which is the solution to the congruences e ≡ B j mod π j ,

or all j ∈ { 1 , 2 , . . . , N} . ( B j is the binary representation of record j .)

lient queries are processed on the transformed database e . 

Query generation . Groth et al. [42] show that Gentry and

amzan’s protocol can be used to retrieve multiple records with

 single query. Let i 1 , i 2 , . . . , i k be the indexes of the records to be

etrieved. The client computes π = 

∏ k 
j=1 πi j 

and chooses two large

rime numbers p and q , such that p = 2 π r + 1 and q = 2 st + 1 ,

here r, s , and t are large random integers. The client sets m =
pq and proceeds to select a random element g ∈ Z 

∗
m 

with order

v , where gcd (π, v ) = 1 . Finally, the client sends ( g, m ) to the

erver. For security reasons, it should hold that log m > max (1024,

log π ). 

Database response . The server computes c = g e mod m and

ends the result back to the client. 
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Fig. 2. A level 3 Hilbert space filling curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Summary of symbols . 

Symbol Description 

n Number of rows/columns in the grid 

k Number of DB segments 

N Number of records in each DB segment ( N = � n 2 / 8 k � ) 
u Number of records retrieved from each DB segment 

log m Bit-size of RSA modulus ( Section 3.1 ) 

R Number of rings to explore in the surrounding area 
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Result retrieval . To reconstruct the records, the client com-

putes, for each i j , c 
πv /πi j mod m, which should be equal to

(g 
πv /πi j ) 

B i j mod m . Therefore, the client can retrieve record B i j , us-

ing the Pohlig–Hellman algorithm for discrete logarithms [43] . 

3.2. Hilbert space filling curve 

The Hilbert space filling curve [18] is a continuous fractal that

maps space from 2-D to 1-D. If ( x, y ) are the coordinates of a point

within the unit square and d is the distance along the curve when

it reaches that point, then points with nearby d values will also be

spatially close. As an example, Fig. 2 shows a HSFC of level l = 3 ,

containing 4 l = 64 cells. Each of the cells is identified by its ( x, y )

coordinates, starting with (0, 0) on the lower left hand corner and

ending with (x = 2 l − 1 , y = 2 l − 1) on the right upper hand corner.

The values shown in the individual cells correspond to their Hilbert

IDs ( HID s), i.e., their specific order within that mapping. Note that,

the Hilbert function could be initialized on any of the four corners

(0, 0), (0, 7), (7, 7), and (7, 0), without affecting the 2-D to 1-D

mapping. The mapping of points to their Hilbert IDs might change,

but it would still preserve locality. 

3.3. Variable order markov model 

Variable order Markov models (VMMs) are stochastic processes

that are used to predict discrete sequences over a finite alpha-

bet. Their main usage is to learn probabilistic finite state automata,

which are typically employed to model various real life problems.

Formally, a VMM can be represented as follows. Let � be a fi-

nite alphabet. An initial training sequence q n 
1 

= q 1 q 2 . . . q n is pre-

sented to a trainee, such that q i ∈ � and q i q i +1 is the chaining

of q i and q i +1 . The goal of a trainee is to learn a model ˆ P , which

provides probabilities for future outcomes based on past training

sequences, i.e., for a given context s ∈ �∗ and any given symbol σ
∈ �, the trainee should generate a conditional probability distribu-

tion 

ˆ P (σ | s ) [44] . 

4. Efficient location privacy for mobile DSA clients 

In this section, we present the details of our meth-

ods. Section 4.1 introduces the underlying threat model and

Section 4.2 describes the system architecture. Section 4.3 intro-

duces our basic approach and Section 4.4 presents an enhanced

method that retrieves multiple cells from the area surrounding the

query point. Section 4.5 introduces the trajectory prediction algo-

rithm based on SLR and Section 4.6 presents trajectory prediction
lgorithms based on various VMMs. Lastly, Section 4.7 describes

he case where there is full a priori trajectory knowledge. 

.1. Threat model and security 

In this work we are concerned with privacy against the WSDB

perator (adversary). We assume that the adversary’s goal is to de-

ive any relevant information regarding the location of any user

hat has sent a query to the database. We also assume that the ad-

ersary runs in polynomial time and follows the honest-but-curious

dversarial model, i.e., it follows the protocol correctly but tries

o gain an advantage by examining the communication transcript.

ote that our methods inherit the security of the underlying PIR

rotocol, since the only interaction between the WSDB operator

nd the users is through a series of PIR invocations. 

.2. System architecture 

Similar to previous work [14] , we assume a fixed grid of n

n cells. According to the FCC specifications [13] , each cell is

00m × 100m in size, and users must query the WSDB whenever

hey move into a cell with no prior spectrum availability knowl-

dge. The dimensions of the grid (i.e., n ) can be made arbitrarily

arge, which has a direct effect on the database size. Mobile TVBDs

re allowed to communicate only in the frequency ranges 512–

08 MHz (TV channels 21–36) and 614–698 MHz (TV channels

8–51), i.e., there are a total of 31 possible white-space TV band

hannels that can be accessed in a DSA manner. Therefore, we rep-

esent the daily channel availability as 32 bits (per cell), where bit

 represents a busy channel and bit 1 represents an idle channel. 

.3. Single row retrieval 

Papadopoulos et al. [45] conducted a in-depth study of the PIR

rotocol by Gentry and Ramzan [17] that we employ in our meth-

ds. As they point out, due to the security constraints of the algo-

ithm, the optimal strategy in terms of communication and compu-

ational cost is to set the size of each record to 32 bytes. Therefore,

ased on our system settings, each record can store channel avail-

bility information from 8 distinct cells. A straightforward imple-

entation would then be to (i) sort the cells based on their unique

ilbert IDs, and (ii) create a single database (DB) with N = � n 2 / 8 �
ecords, such that record 0 stores cells 0–7, record 1 stores cells 8–

5, etc. ( Table 1 summarizes the symbols used in the remainder of

his paper.) In the toy example of Fig. 2 , we would have a database

f N = 8 records, and a user located inside cell 30 would retrieve

he record containing cells 24–31. Observe that, due to the proper-

ies of the HFSC, all the retrieved cells are spatially close and could

e useful in subsequent queries. 

Nevertheless, the single DB approach would not work well in

ractice. First, it is beneficial for a client to retrieve a large number

f cells that are in proximity to his current location, so as to reduce

he number of future PIR queries. Second, Gentry and Ramzan’s

rotocol is computationally expensive (at the server side), due to

ts heavy use of cryptographic operations. As such, we would like
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Table 2 

Sample DB segmentation with 4 segments . 

DB segment 0 DB segment 1 DB segment 2 DB segment 3 

0–7 8–15 16–23 24–31 

32–39 40–47 48–55 56–63 

64–71 72–79 80–87 88–95 

96–103 104–111 112–119 120–127 

128–135 136–143 144–151 152–159 

160–167 168–175 176–183 184–191 

192–199 200–207 208–215 216–223 

224–231 232–239 240–247 248–255 
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Fig. 3. Exploring the surrounding area with 2 and 4 sub-segments. 
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Algorithm 2 Surrounding area. 

1: procedure surrounding-area ( HID, k, u, R ) 

2: count[ N] ← { 0 } ; 
3: if ( HID / ∈ cache ) then 

4: r ← HID/ 8 k ; 

5: insert r into rows [ ] ; 

6: for each cell i in the area defined by R do 

′ 
o parallelize its operation, to the extent possible, by utilizing large

PU clusters that are typical in most cloud computing platforms. 

The obvious solution to both limitations is to partition the

atabase into k distinct segments. By doing so, we can employ k

PUs to process each segment in parallel, thus reducing the com-

utational time by a factor of k . The price we have to pay is an

ncrease in the communication cost, since the client receives k PIR

eplies instead of one. Specifically, the communication cost is equal

o (2 + k ) log m, where m is an RSA modulus. Table 2 shows a

ample DB segmentation (for k = 4 ) for a level 4 HFSC, containing

56 cells. The segments are constructed by assigning the original

ecords to each segment in a round-robin manner. 

During query processing, the client first identifies the row r that

ontains his current cell’s HID ( r = HID/ 8 k ). He then constructs the

orresponding PIR query that is processed on all k DB segments,

n parallel. In the example of Table 2 , if the client is located in

ell 180, he will retrieve all cells in row r = 180 / 32 = 5 , i.e., all

ells within the range 160–191. The results are stored in the client’s

ache and may be utilized when the client moves into a new cell.

lgorithm 1 lists the detailed algorithm for the single row retrieval

ethod. 

.4. Exploring the surrounding area 

When a mobile user’s trajectory is generated on-the-fly, i.e.,

ithout any prior planning, retrieving a single row per PIR query

s not the optimal strategy. Consider, for example, a user that is-

ues a PIR query from the cell marked with a white dot in Fig. 3 .

he numbered boxes in this figure indicate the cells that com-

rise the corresponding database rows. According to that figure,

he user first retrieves row 6 and then moves to the next location

hat is part of row 8 (the black dots show the remaining trajectory

oints). He now has to send a new query to the WSDB and all the

nformation contained in row 6 is rendered useless. 

A second drawback of the single row retrieval approach, is the

tructure of the Hilbert curve itself. As evident in Fig. 2 , a cell’s

earest neighbors are not always mapped on consecutive Hilbert

Ds. For instance, cells 5 and 58 are direct neighbors on the grid,

ut their Hilbert IDs are very far apart. These inconsistencies are

ommon on all space filling curves, and are more severe on higher

evel curves (which is typically the case in real life applications). 

To address these shortcomings, we take advantage of Gentry

nd Ramzan’s multi-record retrieval feature, as described by Groth
lgorithm 1 Single row retrieval. 

1: procedure single-row-retrieval ( HID, k ) 

2: if ( HID / ∈ cache ) then 

3: r ← HID/ 8 k ; 

4: cel l s [ ] ← P IR (r) ; 

5: cache ← cel l s [ ] ; 

6: end if 

7: end procedure 
t al. [42] . Specifically, given a database segment containing N 32-

yte records, we partition the segment into u sub-segments, each

toring N (32/ u )-byte records. By doing so, it is possible to retrieve

 records from each sub-segment (as explained in Section 3.1 ),

hile keeping the computational cost unchanged. Therefore, by

acrificing some communication cost, we can retrieve more rele-

ant results with a single query. Note that, the communication cost

n the multi-record retrieval scheme is (2 + ku ) log m . 

As a first step towards improving our basic scheme, we require

he user to explore the area surrounding his current location, and

etrieve the database rows that maximize the coverage of that area.

he intuition is that, if the user has no prior knowledge of his tra-

ectory, we should anticipate his movement towards any possible

irection. Algorithm 2 illustrates the functionality of this approach.

e define as R the number of rings surrounding the user’s current

ell that we want to explore. 

The algorithm maintains an array rows , which stores the row

umbers that should be retrieved from the database. The first row

s always the one containing the user’s current cell (lines 4–5).

ext, the algorithm iterates over all cells within the area defined

y R , and counts how many times the underlying row numbers ap-
7: r ← hid(i ) / 8 k ; 

8: if ( r ′ 	 = r and hid(i ) / ∈ cache ) then 

9: count[ r ′ ] + + ; 

10: end if 

11: end for 

12: find the top (u − 1) values in array count; 

13: insert their indexes into rows [ ] ; 

14: cel l s [ ] ← P IR (rows [ ]) ; 

15: cache ← cel l s [ ] ; 

16: end if 

17: end procedure 
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Fig. 4. Trajectory prediction example. (a) Using 2 sub-segments. (b) Using 4 sub-segments. 
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pear in the result (lines 6–11). Finally, it selects the (u − 1) most

frequent row numbers and adds them into rows (lines 12–13). The

cells from all u rows are then retrieved via the PIR query and are

eventually cached at the client. In the example of Fig. 3 , when

u = 2 we retrieve rows 6 and 8. On the other hand, when u = 4

we retrieve rows 6, 8, 7, and 15. 

4.5. Trajectory prediction using SLR 

Even if a mobile user is unaware of his exact trajectory, he is

very likely to occasionally follow a specific direction (e.g., south-

east) for a sufficiently large period of time. Therefore, in our next

method, we explore the feasibility of employing a trajectory pre-

diction algorithm, in order to maximize the amount of useful in-

formation retrieved from a PIR query. To this end, we assume that

the client maintains a cache v of his most recent GPS measure-

ments that are taken at regular time intervals. 

Algorithm 3 shows the detailed steps of this approach. As in our

previous method, we retrieve a total of u rows, where the first row

is always the one containing the user’s current cell. Next, the client

applies a simple linear regression (SLR) model on the vector v of

GPS measurements, and computes a straight line l that predicts the

following trajectory points (line 5). This line is then extended for-

ward, until it encounters (u − 1) additional cells whose underlying

rows are not present in the cache. The row numbers of these cells

are also added to the PIR query (lines 6–10). 
Algorithm 3 SLR trajectory prediction. 

1: procedure slr-trajectory-prediction ( HID, k, u, v ) 
2: if ( HID / ∈ cache ) then 

3: r ← HID/ 8 k ; 

4: insert r into rows [ ] ; 

5: l ← SLR (v ) ; 
6: for i = 1 to (u − 1) do 

7: extend l until you find cell j: hid( j) / ∈ cache ; 

8: r ← hid ( j ) / 8 k ; 

9: insert r into rows [ ] ; 

10: end for 

11: cel l s [ ] ← P IR (rows [ ]) ; 

12: cache ← cel l s [ ] ; 

13: end if 

14: end procedure 
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Fig. 4 illustrates an example of the prediction algorithm for

 = 2 and u = 4 . The dots in these figures represent the user’s tra-

ectory (starting from the upper left corner), and the shaded boxes

epresent the rows retrieved from the WSDB. When u = 2 ( Fig. 4 a),

he first PIR query is constructed by extending the predicted line,

ntil it encounters the cell marked with the hollow square. As a

esult, the first PIR query retrieves rows 31 and 30. When the user

nters row 28, a new query is issued for rows 28 and 4. This pro-

ess repeats and the user issues a total of four PIR queries, repre-

ented by the white dots in Fig. 4 a. 

On the other hand, when u = 4 ( Fig. 4 b) the client is able

o prefetch more results from the predicted trajectory, thus re-

ulting in just two PIR queries for the entire trajectory. The first

uery retrieves rows 31, 30, 28, and 4, while the second one re-

rieves rows 5, 6, 8, and 9. Note that, reducing the number of

IR queries is very important, as they incur a high computational

ost at the WSDB. Regarding the communication cost in our exam-

le, the 2 sub-segment case requires a total of 40log m bits, while

he 4 sub-segment case requires 36log m bits. In other words,

or approximately the same communication cost, we were able

o reduce the computational cost at the WSDB by 50% (4 vs. 2

IR queries). 

.6. Trajectory prediction using variable order markov models 

SLR-based trajectory prediction is only effective when the user

ravels on the same direction for a sufficiently large period of time.

herefore, our next step is to explore the applicability of more so-

histicated prediction algorithms that utilize the user’s entire tra-

ectory history (i.e., through a training process). Our decision to

mploy VMMs as the prediction engine is based on the repeti-

ive nature of a user’s movement, which can be represented as a

tochastic process. Similar to the SLR-based method, the predicted

uture location coordinates are evaluated in order to maximize the

mount of useful information retrieved by a PIR query. 

Algorithm 4 shows the detailed steps of this approach. The al-

orithm maintains a first in first out (FIFO) buffer c of the database

ows that are retrieved by the most recent PIR queries. This buffer

s used by the underlying VMM engine as the prediction context.

nitially, the algorithm inserts into c the row that corresponds to

he HID of the current coordinate points (line 5). Next, it identifies

he geographically neighboring rows of the last entry in c (line 7).

or each one of those rows, it evaluates the probability that the
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Fig. 5. Identification of the first row to be retrieved. 
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ow will be retrieved in the future, given the past retrieval con-

ext in c (lines 9–14). The algorithm then chooses the row with the

ighest retrieval probability (line 12) to be part of the current PIR

uery. This process is repeated for (u − 1) additional cells, whose

nderlying rows are not present in the cache. The selected rows

re eventually retrieved via the PIR query, and are consequently

dded to the cache (lines 18–19). 

Figs. 5 and 6 illustrate an example of the VMM-based trajectory

rediction method, for u = 2 . The dots represent the user’s trajec-

ory, starting from the upper left corner. We assume that the user

oves into the location coordinate identified by the hollow black

ot, as shown in Fig. 5 a. Here, the user executes Algorithm 4 and

iscovers that the HID of the coordinate is not included in its

ache. Therefore, in Fig. 5 b, the user identifies the row (row 6)

ontaining the HID of the coordinate and adds it to the rows buffer

hat will be retrieved by the following PIR query. 

Next, row 6 is added to buffer c and, since u = 2 , the algorithm

eeds to identify one more row for retrieval. Fig. 6 a illustrates the
lgorithm 4 VMM trajectory prediction. 

1: procedure vmm-trajectory-prediction ( HID, k, u, c[ ] ) 

2: if ( HID / ∈ cache ) then 

3: r ← HID/ 8 k ; 

4: insert r into rows [ ] ; 

5: insert r into c[ ] ; 

6: for i = 1 to (u − 1) do 

7: neighbors [ ] ← find-neighboring-rows( c[ last] ); 

8: maxp = 0 , best = nul l ; 

9: for j = 0 to (neighbors − 1) do 

10: if (VMM-predict( j, c[ ] ) > maxp) then 

11: maxp ← VMM-predict( j, c[ ] ); 

12: best = j; 

13: end if 

14: end for 

15: insert best into rows [ ] ; 

16: insert best into c[ ] ; 

17: end for 

18: cel l s [ ] ← P IR (rows [ ]) ; 

19: cache ← cel l s [ ] ; 

0: end if 

21: end procedure 
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eographically neighboring rows (lightly-shaded regions) that are

iable candidates. Then, the VMM prediction algorithm leverages

he current context c = { 30 , 28 , 4 , 5 , 6 } , in order to identify the row

ith the highest predicted utility. In our toy example, based on

he initial training that the VMM receives, the neighboring row for

hich the VMM predicts to have the highest probability of being

elected (given context c ), is 8. This step is reflected in Fig. 6 b, i.e.,

he two dark-shaded regions (rows 6 and 8) are retrieved in the

ollowing PIR query. 

.7. A Priori trajectory knowledge 

Our last method is designed for mobile users that have full a

riori knowledge of their trajectories. This is not an unrealistic as-

umption, since that feature is common in GPS navigation systems.

n this scenario, users are allowed to choose the trajectory start-

ng and ending points, and then control the route connecting the

wo end points. Knowing the exact trajectory enables us to sim-

late the route on the underlying grid, and identify the cells that

ntersect with that route. Algorithm 5 depicts that simulation. It

imply initializes an empty hash table HT , and inserts therein the

ow numbers of all cells that intersect trajectory T . This method

nvokes the least number of PIR queries. 

Once the algorithm computes the final hash table, the client has

wo options regarding query processing. The first one is to issue

 HT |/ u PIR queries to the WSDB and retrieve all the necessary re-

ults beforehand. The second option is to issue the queries “on-

emand.” That is, when the client moves into a cell without any

hannel availability information, he retrieves the row of that cell

s well as (u − 1) other rows from the hash table (it could be the

nes that are spatially close to the query point). 
lgorithm 5 A priori trajectory simulation. 

1: procedure a-priori-trajectory-simulation ( T , k ) 

2: HT ← ∅ ; 
3: for each cell i intersecting trajectory T do 

4: r ← hid(i ) / 8 k ; 

5: insert r into HT ; 

6: end for 

7: end procedure 
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Fig. 6. Identification of the second row to be retrieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Cost of PIR operations . 

Cost GR [17] XPIR [21] 

Query generation (client) 450 ms 11 ms 

Server processing (64 CPUs) 4560 ms 0 .6 ms 

Server processing (128 CPUs) 2280 ms 0 .3 ms 

Result extraction (client) 125 ms 3 .2 ms 

Communication cost 20 ,800 bytes 5 ,403,4 4 4 bytes 
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5. Experimental evaluation 

In this section, we evaluate experimentally the performance of

our proposed methods. Section 5.1 describes the setup of our ex-

periments, and Section 5.2 provides the detailed results. 

5.1. Experimental setup 

We developed our experiments in Java SDK, running on Ubuntu

14.04 LTS. For the experimental tests, we utilized two real life

datasets, namely Microsoft’s GeoLife GPS Trajectories 2 and Mi-

crosoft’s T-Drive GPS dataset 3 . Both are excellent datasets, contain-

ing real life trajectories from users traveling around Beijing, China.

The GeoLife GPS trajectory dataset [20] was collected as part of the

Microsoft Research Asia GeoLife project. It monitors 182 users for

a period of over five years (from Apr. 2007 to Aug. 2012). A GPS

trajectory from this dataset is represented by a sequence of time-

stamped points, each containing information regarding the user’s

latitude, longitude, and altitude. The dataset contains 17,621 trajec-

tories, with a total distance of 1,292,951 km, and a total duration

of 50,176 hours. These trajectories were recorded by different GPS

loggers and GPS-enabled phones, and have a variety of sampling

rates. 91.5% of the trajectories are logged in a dense representation,

e.g., every 1–5 s or every 5–10 m per point. A sample trajectory

from the GeoLife GPS dataset is depicted in Fig. 7 a. The T-Drive

dataset [19] contains GPS trajectories from 10,357 taxis, during the

period of Feb. 2 to Feb. 8, 2008. The total number of points in the

dataset is about 15 million, and the total distance from all trajecto-

ries reaches up to 9 million kilometers. The average sampling inter-

val is about 177 seconds, with a distance of about 623 m. A sample

trajectory from the T-Drive dataset is shown in Fig. 7 b. 

In our experiments, we set a bounding box of 409.6 km ×
409.6 km (thus setting n = 4096 ) around Beijing’s coordinates,

which are 39.9139 °N, 116.3917 °E. The bounding box’s coordi-

nates are set as minlat = 37 . 7 , maxlat = 41 . 5 , minlong = 114 . 1 , and

maxlong = 118 . 9 . We run our experiments on 17,621 trajectories

belonging to 182 unique users from the GeoLife dataset and 55,712

trajectories belonging to 10,357 unique users from the T-Drive

dataset. Specifically, the experiments were performed as follows.

For each user, we randomly selected 50% of the trajectories and
2 http://research.microsoft.com/en-us/projects/GeoLife/ 
3 http://research.microsoft.com/en-us/projects/tdrive/ 
sed them to train the VMM engine. Then, the remaining 50% of

he trajectories were used to conduct the actual experiments (for

ll methods). Each experiment was repeated 10,0 0 0 times and the

esults were averaged. 

As performance metric, we measure the average cumulative

uery response time from all PIR queries that are issued to the

SDB throughout the duration of a mobile user’s trajectory. This

ost includes (i) the query generation time at the client, (ii) the

rocessing time at the server, (iii) the network transfer time, and

iv) the result extraction time at the client. To provide realistic

esults, we implemented the Gentry-Ramzan protocol using the

MP 4 multiple precision arithmetic library. We also downloaded

nd installed the XPIR 

5 library, as implemented by the authors.

able 3 shows the detailed costs. The client-side computations are

erformed on an iPhone 5 device running iOS 7.1, while the server-

ide computations are performed on a 3.5 GHz Intel Core i7 pro-

essor. 

For XPIR, we fixed the modulus size to 1024 bits. To reduce

he communication cost, we divided the database into 128 rows,

y forming groups of 32 rows from the original 4096 × 4096

atabase. As a result, each row contains channel availability in-

ormation for 32 × 4096 = 131 , 072 cells. Note that, a single XPIR

uery retrieves one of the 128 rows, i.e., 0.78% of the whole

atabase. For comparison, our methods retrieve at most 4096 cells

ith a single query, which is just 0.02% of the database. For Gen-

ry and Ramzan’s protocol we set the modulus size m equal to

280 bits, in order to satisfy the security requirement outlined in

ection 3.1 . The values shown in the table above correspond to the

ingle row retrieval method, where k = 128 and u = 1 . While part

f the query generation algorithm is precomputed offline (prime q
4 http://gmplib.org 
5 https://github.com/XPIR-team/XPIR 

http://research.microsoft.com/en-us/projects/GeoLife/
http://research.microsoft.com/en-us/projects/tdrive/
http://gmplib.org
https://github.com/XPIR-team/XPIR
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Fig. 7. (a) Sample dense data points from the GeoLife trajectories (b) Sample sparse data points from the T-drive trajectories. 
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Fig. 8. Response time for a single PIR query. (a) 64 CPUs (b) 128 CPUs. 
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f the RSA modulus), prime p depends on the queried row(s) and

hould be computed online. 

Fig. 8 shows the query response time for the two PIR protocols

based on Table 3 ) as a function of the cellular bandwidth available

t the mobile client. Clearly, the cost of the XPIR scheme is domi-

ated by the network transfer time, since each PIR query necessi-

ates the exchange of over 5 MB of data. On the other hand, Gen-

ry and Ramzan’s protocol is practically independent of the avail-

ble bandwidth, and its cost is determined solely by the computing

ower at the WSDB (64 vs. 128 CPUs). Nevertheless, as we men-

ioned earlier, the primary deployment targets for database-driven

SA are areas with scarce cellular bandwidth, making Gentry and

amzan’s protocol a better choice as the underlying PIR mecha-

ism. 

Note that, another option for achieving location privacy is

hrough the trivial PIR case, i.e., by downloading the entire spec-

rum WSDB with one query. However, this is only viable when the

atabase size is small or when there is ample bandwidth to do so.

n our experiments, the database size is over 67 MB, which takes

round 536 s to download at 1 Mbps, and 108 s at 5 Mbps. 

.2. Experimental results 

In the first experiment we investigate the performance of

he single row retrieval method ( k = 128 , u = 1 ), as explained in

ection 4.3 . Figs. 9 and 10 depict the average cumulative query re-

ponse time as a function of the available bandwidth. 

Our single row retrieval method outperforms the trivial PIR case

or the GeoLife dataset, and is marginally worse for the T-Drive

ataset (for 64 CPUs) when there is adequate download band-

idth. The difference in performance across the two datasets is

xplained by the structure of the underlying trajectories (as shown
n Fig. 7 ). Recall that the data points in the T-Drive dataset are

ecorded at sparse distances (average 623m). The sparseness of the

ata points mimics well the requirements of a “paging” applica-

ion, where ubiquitous connectivity is not a requirement. In this

cenario, prefetching results from the surrounding area is not al-

ays beneficial, since the user may issue the next query from an

ntirely different area. On the other hand, the data points in the

eoLife dataset are very dense so, with a high probability, several

onsecutive queries may be issued within a small area. XPIR out-

erforms our basic method for low bandwidth situations, because

t reduces the number of PIR queries sent to the server. This is due

o the large number of cells retrieved by each XPIR query (0.78% of

he whole database), which may be utilized throughout a clients’s

rajectory. 

In the remainder of this section, we investigate the performance

f our multi-record retrieval protocols for the case of k = 128 and

 = 4 . We begin by evaluating the surrounding area method, which

as explained in Section 4.4 (we set R = 50 rings as the explored

rea). Figs. 11 and 12 illustrates the cumulative query response

ime as a function of the available bandwidth for the two datasets.

t is evident that our method considerably outperforms XPIR in

lmost all settings. Even though XPIR retrieves a lot more infor-

ation per query, our algorithm is more intelligent in retrieving

ells that have the potential of becoming useful in the future. Com-

ared to the single row retrieval method (which is also included in

he figure for clarity), the surrounding area approach decreases the

verall query cost by 57%, on average, for the GeoLife dataset, and

7% for the T-drive dataset. 

Next, we evaluate the performance of the SLR-based trajectory

rediction method, as described in Section 4.5 . For the rest of our

xperimental evaluation, including this experiment, we purposely

mit the results for the trivial PIR and single row methods, because
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Fig. 9. Cumulative query response time for the single row retrieval method (GeoLife). (a) 64 CPUs (b) 128 CPUs. 
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Fig. 10. Cumulative query response time for the single row retrieval method (T-Drive). (a) 64 CPUs (T-drive)(b) 128 CPUs (T-drive) . 
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Fig. 11. Cumulative query response time for the surrounding area method (GeoLife). (a) 64 CPUs (b) 128 CPUs. 
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Fig. 12. Cumulative query response time for the surrounding area method (T-drive). (a) 64 CPUs (b) 128 CPUs . 
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Fig. 13. Cumulative query response time for the surrounding area method vs. the SLR-based trajectory prediction method (GeoLife). (a) 64 CPUs (b) 128 CPUs. 
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Fig. 14. Cumulative query response time for the surrounding area method vs. the SLR-based trajectory prediction method (T-Drive). (a) 64 CPUs (b) 128 CPUs. 
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hey are clearly inferior to the surrounding area approach. Figs. 13

nd 14 show the cumulative query response times for the sur-

ounding area and SLR-based prediction methods. Our prediction

lgorithm is clearly superior. Utilizing 128 compute units at the

erver results in a response time of just 18 s (for the whole trajec-

ory) in the GeoLife dataset and 42 s in the T-Drive dataset. Fur-

hermore, the SLR-based trajectory prediction algorithm decreases

he query processing cost even further compared to the surround-

ng area method. Specifically, it reduces the cost by an additional

4% in the GeoLife dataset, and 28% in the T-Drive dataset. This

s due to the fact that, with SLR-based trajectory prediction, we

refetch results according to a specific direction of movement in-

tead of a generic rectangular area. Compared to XPIR, SLR-based

rajectory prediction is significantly faster, even for a bandwidth of

 Mbps. Furthermore, for low bandwidth situations, the perfor-

ance is improved by a factor of 5 to 8. 

In the next set of experiments we investigate the performance

f the VMM-based trajectory prediction method, which was ex-

lained in Section 4.6 . Since we already established the superior-

ty of our SLR-based trajectory prediction method, we specifically

mit direct comparison of our VMM-based methods against XPIR

nd exclude its performance from the rest of our figures. We em-

loyed four well-known VMM algorithms, namely the Lempel–Ziv

8 (LZ78) compression algorithm, an improved Lempel–Ziv (LZms)

lgorithm, the Context Tree Weighting (CTW) algorithm, and the

rediction by Partial Match (PPM) algorithm. These methods are

escribed in great detail by Begleiter et al. [44] , and the interested

eader may find references for the corresponding Java source codes

herein. 

Figs. 15 and 16 compare the SLR-based trajectory prediction

lgorithm against the four VMM-based methods. For the T-drive

ataset, VMM-based prediction improves the cumulative query

ost by 29–33%. In the case of GeoLife dataset, the cost sav-
ngs range between 16–24%. As expected, the performance im-

rovement is more significant in the T-drive dataset, due to

he sparseness of the underlying data points. Note that, in both

atasets, the PPM prediction engine exhibits the best overall per-

ormance, so we will set it as the default engine in the following

xperiment. 

In the following experiment, we investigate the performance of

he a priori trajectory knowledge approach, which was explained

n Section 4.7 . Recall that, this method yields the lowest number

f PIR requests, since the client avoids the retrieval of any unnec-

ssary rows from the WSDB. In order to show the efficiency of

he a priori method, we compare it against the PPM-based tra-

ectory prediction approach. Figs. 17 and 18 illustrate the corre-

ponding cumulative query response times. The a priori method

ntails a cost of just 12 s in the GeoLife dataset and 23 s

n the T-drive dataset (for 128 compute units). Compared to the

PM-based trajectory prediction method, the a priori trajectory

nowledge enables us to reduce the query processing cost by

n additional 13% in the GeoLife dataset and 17% in the T-drive

ataset. 

In the last experiment we investigate the performance of our

ethods on large databases. All previous experiments hide the

sers’ locations within an area of 168,772 km 

2 , which is approxi-

ately the size of the state of Florida. Here, we extend the bound-

ng box of the dataset to fit a 32, 768 × 32, 768 grid, which cor-

esponds to an area larger than the entire United States. As a re-

ult, the size of the WSDB is now equal to 4 GB, which adversely

ffects the server processing cost for the Gentry–Ramzan protocol

146 sec/query for 128 CPUs). For the XPIR protocol we formed

roups of 32 rows, resulting in a database of 1024 rows, each con-

aining information from over 1 million cells. The performance of

PIR is still dominated by the communication cost, as each query

ecessitates the exchange of over 41 MB of data. 
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Fig. 15. Comparison of SLR-based and VMM-based trajectory prediction methods (GeoLife) (a) 64 CPUs (b) 128 CPUs. 
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Fig. 16. Comparison of SLR-based and VMM-based trajectory prediction methods (T-drive) (a) 64 CPUs (b) 128 CPUs. 
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Fig. 17. Cumulative query response time for the PPM-based trajectory prediction method vs. the Hilbert a priori method (GeoLife). (a) 64 CPUs (b) 128 CPUs . 
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Fig. 18. Cumulative query response time for the PPM-based trajectory prediction method vs. the Hilbert a priori method (T-Drive). (a) 64 CPUs (b) 128 CPUs. 
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Fig. 19. Cumulative query response time for large WSDB (GeoLife) (a) 64 CPUs (b) 128 CPUs . 
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Fig. 20. Cumulative query response time for large WSDB (Tdrive) (a) 64 CPUs (b) 128 CPUs. 
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Figs. 19 and 20 compare the performance of our methods

gainst XPIR and trivial PIR. Clearly, the computational efficiency

f the XPIR protocol makes it a better choice for large databases.

ur methods outperform XPIR only for low bandwidth scenarios

up to 2 Mbps) and 128 compute units. We thus argue that our

echniques are mostly applicable to state-level WSDBs, while XPIR

s more suitable for a nationwide WSDB. It is also worth noting

hat our optimizations still hold for very fine grids. In particular,

he trajectory prediction method (PPM) outperforms the single row

etrieval approach by a factor of 6 to 10 in all settings. 

. Conclusions 

Database-driven dynamic spectrum access networks allow mo-

ile users to query a white-space database, in order to identify

dle channels in their area. Nevertheless, such location-dependent

ueries pose a serious privacy threat, as they may reveal sensi-

ive information about the individual. Existing methods for loca-

ion privacy in the database-driven DSA model are very inefficient,

ecause they are not optimized for mobile clients. To this end,

ur work introduces an efficient solution, based on a Hilbert space

lling curve indexing of the white-space database. Our meth-

ds leverage a communication-efficient PIR protocol, and employ

rajectory prediction algorithms to minimize the number of PIR

ueries by prefetching results in the direction of the user’s move-

ent. Through extensive experimentation with real life datasets,

e show that, compared to the current state-of-the-art protocol,

ur methods greatly reduce the query processing cost at the mo-

ile clients. 
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