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Abstract. Video surveillance on a massive scale can be a vital tool
for law enforcement agencies. To mitigate the serious privacy concerns
of wide-scale video surveillance, researchers have designed secure and
privacy-preserving protocols that obliviously match live feeds against a
suspects’ database. However, existing approaches provide stringent pri-
vacy guarantees and, as a result, they do not scale well for ubiquitous
deployment. To this end, we introduce a system that relaxes the un-
derlying privacy requirements by giving away some information when a
face is compared against the law enforcement’s database. Specifically, our
protocol reveals a random permutation of obfuscated similarity scores,
where each obfuscated score discloses minimal information about the
actual similarity score. We show that, despite the relaxed security def-
initions, our system protects the privacy of the underlying faces, while
offering significant improvements in terms of performance. In particular,
our protocol necessitates a single round of communication between the
camera and the server and, for a database of 100 suspects, the online
computation time at the camera and the server is 155 ms and 34 ms,
respectively, while the online communication cost is only 12 KB.

Keywords: video surveillance · biometric privacy · homomorphic en-
cryption

1 Introduction

Video surveillance is being deployed in numerous countries around the world.
An effective video surveillance system automatically monitors all available data
feeds, extracts the individual faces (feature vectors), compares them against a
suspects’ database, and raises an alarm when a match is found. Nevertheless, this
approach raises significant privacy concerns, because all individuals with known
feature vectors can be tracked on a daily basis. Analyzing such information-rich
datasets has the potential to reveal sensitive personal information, including
home and work locations, health issues, religious affiliations, etc. Even if we
trust the law enforcement authorities to protect the location privacy of their
citizens, the stored location data may still be accessed by malicious users, such
as rogue insiders or hackers.
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As a result, the research community has proposed several methods [9, 17, 19]
that perform privacy-preserving face recognition. In particular, these methods
execute a secure two-party protocol between the camera and the database server,
which lets the camera learn in zero knowledge whether a captured face matches
one of the suspects in the database. If a match is found, the id number of the
suspect is revealed; otherwise, the protocol discloses no information to either
party. These protocols first compute an encrypted similarity score (Euclidean or
Hamming distance) for each suspect in the database, using an additively homo-
morphic cryptosystem. Then, a variety of techniques are employed to identify
the matching suspect, if and only if the underlying similarity distance is below
a certain threshold. These techniques involve standard cryptographic primitives
for secure computations, such as homomorphic encryption, garbled circuits, and
oblivious transfer.

Nevertheless, all the aforementioned systems suffer from high computational
and communication costs that render them impractical for wide-scale deploy-
ment. For instance, the Eigenfaces implementation by Sadeghi et al. [19] neces-
sitates 40 sec of online computations to match a single face against a database
of 320 suspects. In addition, the online communication cost is over 5 MB. Sim-
ilarly, SCiFI [17] reports 31 sec of online computations for a database of 100
suspects. Another significant limitation of these protocols is their reliance on
offline computation and communication that has to be performed for every face
that is captured by the camera. While the offline tasks reduce the overall online
cost dramatically, it is not feasible to process and store the underlying data for
potentially millions of detected faces on a daily basis.

To this end, our work introduces the first practical system for privacy-
preserving video surveillance on a large scale. The efficiency of our approach
stems mainly from two design decisions. First, the suspects’ database is dis-
tributed to all cameras, after it is encrypted with the public key of the law en-
forcement agency. As such, the expensive operations for computing the encrypted
similarity scores are performed at the surveillance cameras, thus alleviating the
server’s computational load. The local database copy also allows the cameras
to precompute most values that are involved in the encrypted distance compu-
tations. More importantly, unlike existing approaches, the offline computations
are performed only once, during the system’s initialization.

Our second decision is to relax the zero knowledge requirement of the face
recognition protocol. In particular, for each captured face, the database server
will learn a random permutation of obfuscated similarity scores between the
captured face and all suspects in the database. As a result, the protocol involves
a single round of communication for the server to learn the (binary) result of the
identification. If a match is found, an additional verification protocol is invoked,
where the server learns the suspect’s id and optionally receives the image of
the potential suspect. The relaxed privacy requirements also facilitate the use
of an efficient elliptic curve cryptosystem (ElGamal) that reduces significantly
the computational and communication costs. Nevertheless, as we will show, the
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permuted and obfuscated scores are not sufficient for the server to infer any
meaningful information about the underlying individuals.

We built our system on top of the OpenFace [2] platform that implements
the face recognition layer. OpenFace is one of the most accurate open-source face
recognition systems that employs Google’s FaceNet [22] algorithm. Besides its
high accuracy, a notable advantage of FaceNet over other approaches is its com-
pact feature vector (just 128 bytes) that speeds up considerably the encrypted
distance computations. We performed an extensive experimental evaluation of
our system and demonstrated its applicability in a wide-scale video surveillance
environment. Specifically, matching one face against a database of 100 suspects
entails 190 ms of compute time and 12 KB of communication between the cam-
era and the server. These costs are orders of magnitude lower compared to the
current state-of-the-art systems.

The rest of the paper is organized as follows. Section 2 presents a literature
review on privacy-preserving video surveillance and face recognition systems,
and Section 3 discusses the main tools that we utilized in our implementation.
Section 4 introduces our problem definition and describes the underlying threat
model. Section 5 discusses in detail the operation of our system and Section 6
evaluates its security. A performance comparison against other approaches is
introduced in Section 7, while the implementation details are presented in Sec-
tion 8. Section 9 summarizes our experimental results and Section 10 concludes
our work.

2 Related Work

2.1 Face recognition

Face recognition systems face several challenges–such as brightness, face posi-
tion, and facial expression–that can highly influence the appearance of an in-
dividual. The first industrial face recognition applications were based on the
Eigenfaces [26] technique. This groundbreaking study by Turk and Pentlandin
in 1991 is the milestone for many other methods that have been introduced since
then. The original Eigenfaces approach employed Principal Component Analysis
(PCA) to generate the eigenvectors. Following that, other transformations were
adopted, including Linear Discriminant Analysis (LDA) [23], Independent Com-
ponent Analysis (ICA) [15], and Support Vector Machines (SVM) [13]. Addition-
ally, some approaches combined multiple classifiers for dimensionality reduction
and feature extraction [6, 25].

Lately, neural networks have also been employed in the face recognition do-
main to improve the classification accuracy [8, 20]. The current state-of-the-art
algorithms are Facebook’s DeepFace [24] and Google’s FaceNet [22], both of
which are based on Convolutional Neural Networks (CNNs). OpenFace [2] is
a face recognition library written in Python that leverages the aforementioned
CNN systems to provide better accuracy. In 2018, Tadas et al. introduced Open-
Face 2.0 [3] as a C++ toolkit for facial behavior analysis. The implementation
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targets a real-time environment and is, therefore, optimized in terms of compu-
tational cost. OpenFace 2.0 presents a more accurate facial landmark detection,
head pose estimation, facial action unit recognition, and eye-gaze estimation.

2.2 Privacy-preserving video surveillance

The first privacy-preserving face recognition protocol is due to Erkin et al. [9] in
2009. It leverages the Eigenfaces algorithm for face recognition, but is very ineffi-
cient in terms of online performance. Specifically, the protocol requires O(logM)
rounds of online communication (M is the number of suspects in the database)
and heavy public key homomorphic operations over the ciphertexts. Sadeghi et
al. [19] improved the performance of Erkin’s work by shifting some computa-
tions into a precomputation phase, and using garbled circuits [28] to compute
the Minimum function. In a recent work, Xiang et al. [27] further improved
upon the aforementioned protocols [9, 19] by outsourcing the expensive server
computations to the cloud.

SCiFI [17] is the only protocol in the literature that is not based on the
Eigenfaces representation. Instead, the authors proposed a novel face recogni-
tion method that takes into account the appearance of certain facial features.
In SCiFI, each face is represented with a 900-bit vector, while the similarity
score is simply the Hamming distance between two vectors. After the Hamming
distance is computed, the result of the suspect identification is revealed through
a 1-out-of-dmax + 1 oblivious transfer protocol [16], where dmax is the maximum
theoretical Hamming distance. One advantage of this approach is that Hamming
distance computations on the ciphertext space are significantly faster than the
Euclidean ones. Finally, various studies have used similar cryptographic tools,
mainly garbled circuits and oblivious transfer, in the context of biometric iden-
tification. In particular, researchers have proposed several efficient protocols to
compute the similarity scores, including Hamming distance, Euclidean distance,
Mahalanobis distance, and scalar product [5, 10, 11, 14, 29].

3 Tools

3.1 OpenFace

OpenFace [2] is an open-source face verification and recognition system that
maps face images to a compact Euclidean space. It is a deep convolutional net-
work trained method for face recognition that achieves an accuracy of 92.95%
on the Labeled Faces in the Wild (LFW) benchmark, one of the largest publicly-
available datasets. OpenFace matches very well the performance of FaceNet [22]
and DeepFace [24], despite the small size of the trained network. The advantage
of OpenFace is the face representation efficiency that consists of 128 features.
This vector can be reduced to just 128 bytes with a very small loss in recognition
accuracy. The similarity score between two faces is represented by the Euclidean
distance of the two feature vectors, and ranges between 0 (for the same image)
and 4. A threshold t = 0.9 has been set empirically by the system developers of
OpenFace, such that a distance less than t indicates a positive match.
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3.2 Homomorphic encryption

Homomorphic cryptosystems [1] allow for the evaluation of certain arithmetic
operations directly on the ciphertext domain. Fully homomorphic encryption
(FHE) [12] supports both addition and multiplication operations and can, thus,
be used to evaluate any circuit over encrypted data. Nevertheless, FHE schemes
are still very inefficient to be used in real-time applications, such as video surveil-
lance. Instead, similar to previous work, we built our protocol on top of additively
homomorphic cryptosystems, such as Paillier [18] or ElGamal [7]. More specif-
ically, we opted for an implementation of ElGamal’s cryptosystem over elliptic
curves, due to its computational efficiency and compact ciphertexts (128 bytes).
The cryptosystem consists of the following functions:

– Key generation: Instantiate an elliptic curve group of prime order q with
generator P . Choose a private key x uniformly at random from Z∗q and set
the public key Q = x · P .

– Encrypt: Let m be the secret message. Choose r uniformly at random from
Z∗q and compute ciphertext Enc(m) = 〈r · P, (m+ r) ·Q〉.

– Decrypt: Compute m ·Q = (m+ r) ·Q− x · r ·P and solve the discrete log
to recover m.

ElGamal’s scheme is semantically secure and its security is based on the deci-
sional Diffie-Hellman assumption. Note that, in our implementation, we utilized
a look-up table of precomputed m ·Q values (for all theoretically possible values
of m) in order to speed up the discrete log computations at the database server.

4 Problem Definition and Threat Model

We assume a wide-scale surveillance environment, where a large number of cam-
eras, equipped with moderate computational, storage, and communication capa-
bilities, are deployed throughout a city. The database server (law enforcement)
holds a database S = {S1, S2, . . . , SM} of M suspects, where each suspect Si

is represented by an N -th dimensional feature vector xi. More specifically, the
feature vectors are generated from OpenFace’s deep learning model and consist
of N = 128 values. During the system initialization, the database server shares
an encrypted version of S (to be discussed later) with all cameras, using its own
public key Q that is also known to all cameras. Every camera will then capture
all passing-by faces and, for each candidate face Cj , compute its feature vector
yj using OpenFace’s model. What follows, is a two-party protocol between the
camera and the database server, where

– The server learns a random permutation πj of obfuscated similarity scores
between yj and xi,∀i ∈ {1, 2, . . . ,M}.

– The camera learns nothing.

When the protocol’s output is revealed to the server, it will immediately
disclose the identification result. In particular, if all similarity scores are positive,



6 E. Bentafat et al.

then the candidate face does not match any suspect in the database; otherwise, a
negative score is a potential match for a suspect, whose identity is unknown due
to the underlying permutation. In that case, the camera and the server invoke a
separate two-party protocol, where the camera verifies that the similarity score
is indeed negative. During that protocol,

– The server learns the actual id of the matching suspect and (optionally)
receives the captured image from the camera.

– The camera learns the actual similarity score and id of the matching suspect.

We assume that the server and all cameras are semi-honest players. In other
words, they will follow the protocols correctly, but try to infer some non-trivial
information about the other party’s input from the communication transcript.
For example, the camera might want to learn the plaintext content of the sus-
pects’ database, while the server might want to infer some information about the
captured faces that do not produce a database match. We also allow the server
to act maliciously after the initial identification result, by falsely claiming that
a certain similarity score is negative. Such behavior will be discovered during
the subsequent verification protocol. Finally, we should note that our protocol
cannot protect against illegitimate inputs from any of the parties. For instance,
the server can insert into their database S an innocent civilian that it wants to
track, while the camera can test whether a specific individual is part of S by
using their feature vector in the identification protocol. However, none of the ex-
isting privacy-preserving protocols can protect against such attacks, since they
are not cryptographic in nature.

5 System Description

In this section, we present in detail the operation of our privacy-preserving video
surveillance system. We begin by introducing the offline/initialization phase of
the protocol, and then proceed to describe the various elements involved in the
online face identification process.

5.1 Offline phase

The server first instantiates an elliptic curve group of prime order q (as de-
scribed in Section 3) and generates its public and private keys. The public key
is distributed securely to all surveillance cameras in the city. Next, the server
employs OpenFace to generate the feature vectors xi for every suspect Si ∈ S.
By default, OpenFace operates over floating point numbers, so we first had to
convert the vectors into integers before applying any homomorphic operations.
We empirically computed the normalization parameters for a floating point rep-
resentation f as follows: bf × 400 + 128c, where f ∈ Q : −0.32 < f < 0.32. With
this transformation, every element in a feature vector is an integer in the range
[0, 256), thus allowing us to represent a vector with just 128 bytes. Further-
more, the transformation does not result in a significant loss of accuracy, as
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illustrated in Table 1. Specifically, the table depicts the accuracy results from
various state-of-the-art face recognition algorithms, and also quantifies the loss
of accuracy due to the normalization of the features values. For our system, we
trained the CNN model using integers in the range [0, 256) instead of floats and,
out of 13,233 images, we had only one misidentification compared to the original
OpenFace implementation. Note that FaceNet and DeepFace are more accurate
than OpenFace because they are trained on much larger datasets.

Table 1: Accuracy results on the LFW benchmark [2]
Model Accuracy

Human 97.53%
EigenFaces 60.02%± 0.79
FaceNet 99.64%± 0.9
DeepFace 97.35%± 0.25
OpenFace 92.95%± 1.34
OpenFace, normalized 92.92%± 1.36

Given suspect Si’s feature vector xi and a potential candidate’s vector yi, the
first step of FaceNet’s face recognition algorithm is to compute the Euclidean
distance between the two feature vectors. In the ciphertext domain, it is only
feasible to compute the squared Euclidean distance, i.e.,

d2i =

N∑
j=1

(xi,j − yi,j)2 =

N∑
j=1

(x2i,j + y2i,j − 2xi,jyi,j) (1)

where N = 128 is the vector dimensionality. In the ciphertext domain over
elliptic curves, this is equivalent to

Enc(d2i ) =

N∑
j=1

Enc(x2i,j) +

N∑
j=1

Enc(y2i,j) +

N∑
j=1

yi,j · Enc(−2xi,j) (2)

Therefore, for the cameras to correctly compute Enc(d2i ), the server will send
them an encrypted version of the database S, consisting of

–
∑N

j=1 Enc(x
2
i,j),∀i ∈ {1, 2, . . . ,M}.

– Enc(−2xi,j),∀i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N}.

As such, the offline communication cost of our protocol is (N+1)×M×T bytes,
where T is the size of an ElGamal ciphertext (typically 128 bytes). Due to the
semantic security of the cryptosystem, the cameras cannot infer any information
regarding the feature vectors of the suspects.

After a camera receives the encrypted database, it performs a series of offline
precomputations, in order to speed up the online computation of the similarity
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Fig. 1: Heat map of feature vector coefficients for 13095 faces

scores. In particular, the camera will precompute all possible values for the
second and third terms of Equation 2, which is feasible due to the limited range
of yi,j (just 256 distinct values). The computational cost involves 256×N ×M
elliptic curve point multiplications and 256 encryption operations. Additionally,
the storage requirements at the camera (for the database and all precomputed
values) is (256 +M + 256×N ×M)× T bytes. Even for large databases (e.g.,
M = 1000), the storage cost is approximately 4GB, which is very reasonable for
a low-cost camera.

Nevertheless, if a camera does not possess the storage capacity to hold the
entire set of precomputed values, we may still gain a lot in performance if we
store partial information. (We will illustrate this in our experimental results.) As
shown in Fig. 1, the coefficients of a feature vector are not uniformly distributed
over the entire range, but instead, values ranging from 64 to 191 tend to occur
more frequently. As such, the camera may only precompute, say, 50% of the val-
ues (for yi,j ∈ [64, 191]) and perform the remaining elliptic point multiplications,
i.e., yi,j · Enc(−2xi,j), on the spot.

At the server side, the offline cost to compute the encrypted database is
2 × N ×M encryption operations plus N ×M elliptic curve point additions,
which is trivial for a powerful multi-core server. On the other hand, in order to
speed up the decryption operations that constitute the bottleneck of the online
identification protocol, we need to precompute a large number of elliptic curve
points (lookup table), as explained in Section 3. Assuming a maximum bit-length
of k bits for the obfuscated similarity scores, the server will precompute and store
2k 32-byte values with a computational cost of 2k additions (that are relatively
cheap). In our implementation, we set k = 30, which necessitates 32 GB of main
memory.

Finally, it is worth noting that, unlike existing approaches, the offline costs of
our method are incurred only once and are independent of the number of faces
that are captured by the camera.
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5.2 Similarity score computation

Following the offline phase, our system is ready for real-time video surveillance.
A camera will capture all passing-by faces and, for each face Ci, it will generate
the plaintext feature vector yi. Based on the generated yi,j , the camera selects
the corresponding ciphertexts from the precomputed values and evaluates the
encrypted squared Euclidean distances Enc(d2i ) for every suspect i, as given in
Equation 2. This task entails, for all M suspects, (2×N + 1)×M elliptic curve
point additions. Each distance is then adjusted by subtracting the normalized
similarity threshold t, thus generating an encrypted similarity score si that is (i)
positive for a non-match or (ii) negative for a match. Therefore, the encrypted
similarity score for suspect i is computed as

Enc(si) = Enc(d2i − t) = Enc(d2i ) + Enc(−t) (3)

By precomputing the encrypted threshold value (constant), the computational
cost of this step is M point additions. To summarize, the overall cost for com-
puting the similarity score is 2× (N +1)×M point additions. Finally, we should
mention that, based on the normalization parameters given is Section 5.1, the
normalized similarity threshold is set to t = (0.9× 400)2 = 129, 600.

5.3 Similarity score obfuscation

To further strengthen the privacy of our system, each similarity score is obfus-
cated, in order to increase the uncertainty at the database server. In particular,
for every similarity score si, the camera selects two uniformly random numbers
r1, r2 ∈ [0, 2`) and masks the score as δi = si · r1 + r2. In the ciphertext domain
this is computed as

Enc(δi) = r1 · Enc(si) + Enc(r2) (4)

To avoid reversing the sign of the similarity score, we always choose r1 > r2.
The exact value of ` depends on the main memory specifications of the server.
In our experiments, we empirically determined the max value for the similarity
score to be < 219 and set ` = 11, which limits the obfuscated scores to values
< 230. Note that, since r2 < 2048, we may precompute all possible encryptions
of r2 and reduce the computational cost of this step to M point multiplications
and M point additions.

5.4 Matching

When all obfuscated scores δi are computed for a captured face Cj , the camera
applies a random permutation πj and sends the permuted score vector to the
database server. The server then decrypts all ciphertexts with its private key
and, if all M are positive, it infers that Cj is not a potential suspect. On the
other hand, if a score is negative, a verification protocol is invoked in order for
the server to learn the id of the potential suspect and (optionally) receive the
image of the captured face. This step is necessary to prevent a malicious server



10 E. Bentafat et al.

Score verification protocol

Camera Server

Input : A,B

A,B

u←$Z∗
q

D ← u ·A

D

v←$Z∗
q

v

z ← (u + v · x) mod q

z

z ·A ?
= D + v ·B

Fig. 2: Score verification protocol

from requesting footage of random individuals that did not actually produce a
database match.

The verification protocol works as follows. The server first informs the camera
of the suspect’s position and score on the permuted vector, and the camera then
looks up the suspect’s real id and encrypted score in the permutation πj that
is temporarily stored in its local storage. Assume that the stored copy of the
encrypted score is equal to Enc(s) = 〈r1 · P, (s + r1) · Q〉. The camera will
then generate an encryption of the score s′ that the server claims to be true:
Enc(s′) = 〈r2 ·P, (s′+r2) ·Q〉. If s = s′, then a subtraction of the two ciphertexts
will produce an encryption of the value zero. Therefore, the camera will compute

Enc(s)− Enc(s′) = 〈(r1 − r2) · P, (s− s′ + r1 − r2) ·Q〉 (5)

which is supposedly equal to 〈A,B〉 = 〈r ·P, r ·Q〉 for some unknown random r.
As such, it suffices to prove that x · A = B, where x is the server’s private key.
Essentially, the server has to prove to the camera that it knows the value x that
satisfies the above equation. This is trivially done with Schnorr’s identification
protocol [21], as shown in Fig. 2. D represents the server’s commitment in the
protocol, while v is the challenge posed by the camera. The server’s response z
can only be computed by the party who knows x, and the camera accepts the
result if and only if the last equation holds.

Under normal conditions, the overwhelming majority of captured faces will
not produce a database match, so the cost of the matching protocol is dominated
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by the M decryption operations, each requiring one point multiplication and one
point addition (due to the stored lookup table). The communication cost involves
the transmission of M ciphertexts and is, thus, equal to M × T bytes.

6 Security

We consider two types of attacks against our system. The first one is a com-
plete privacy break, where the server is able to retrieve the plaintext version
of the feature vector for some captured face. This is only possible if the server
is able to correctly inverse the camera’s permutation and obfuscation steps and
solve the underlying non-linear equations with N unknowns (assuming M ≥ N).
Nevertheless, this is infeasible due to (i) the exponential number M ! of possible
permutation outcomes and (ii) the unpredictability of FaceNet’s deep learning
approach to feature vector generation that makes it very difficult to link a sim-
ilarity score to a specific face-suspect pair.

To illustrate the second point above, we analyzed the similarity scores gen-
erated by our system for four random faces from the LFW dataset. We selected
500 images from person P1 and computed the (non-obfuscated) similarity scores
against one image of P1, P2, P3, P4. The results are shown in Fig. 3, where it is
evident that the obtained scores follow a Gaussian-like distribution with a large
overlap among the different faces. In particular, for the non-matching faces,
the large majority of similarity scores lie within the interval [50K, 200K], thus
preventing the server from inferring any non-trivial information about the un-
derlying permutation.

The second type of attack is less severe and pertains to the ability of the
database server to distinguish an unknown individual across multiple cameras.
For example, suppose that a captured face generates an identical feature vector
across a series of cameras. While the probability of that event is negligible, it
is worth investigating the effect of the obfuscation step on the generated score
distribution. Fig. 4 depicts the probability distribution of the obfuscated score
bit-lengths against a database of 1000 suspects. P1 is indistinguishable across two
different obfuscations (for an identical feature vector) and all four distributions
are very similar to each other with large overlaps. Note that, we are not interested
in the distribution of negative scores, since a match will trigger the verification
protocol that reveals the suspect’s identity.

7 Performance Comparison

Compared to the current state-of-the-art approaches, such as Eigenfaces [19] and
SCiFI [17], our system offers tremendous improvements (multiple orders of mag-
nitude) in terms of online cost, while still maintaining strong privacy guarantees.
We were able to obtain these results because of (i) the efficiency of FaceNet’s
feature vectors and (ii) the storage of the suspects’ database at the surveillance
cameras. Indeed, the feature vector of Eigenfaces is equal to the number of image
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Fig. 3: Distribution of non-obfuscated similarity scores for 500 images of P1

against one image of P1, P2, P3, P4

pixels, which cannot be less than 10,000; SCiFI also suffers from high vector di-
mensionality, as it utilizes 900-bit vectors. On the other hand, FaceNet achieves
very accurate image classification with only 128 features. Feature vector dimen-
sionality is a major factor that affects the online cost, since every feature has to
be encrypted at the camera and transmitted to the database server (for Eigen-
faces and SCiFI). These methods utilize precomputations to reduce that cost,
but they do not come for free, as they have to be performed for every captured
face, potentially millions per day.

This brings us to our major contribution, i.e., the distribution the suspects’
encrypted database to the entire network of cameras. There are significant ad-
vantages with this approach. First, the cameras do not need to encrypt the
feature vectors, thus alleviating the computational burden at these low-cost de-
vices. Second, the static database facilitates the (one-time) precomputation of
all intermediate results that reduces the computation of the encrypted similarity
scores to a series of cheap elliptic curve point additions. Finally, the server is
no longer involved in the expensive homomorphic operations that compute the
similarity scores (as in Eigenfaces and SCiFI), which is a much more scalable
approach for wide-scale video surveillance.
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Fig. 4: Distribution of obfuscated score bit-lengths against a database of 1000
suspects (r1, r2 < 2048)

Our final contribution towards practical privacy-preserving video surveillance
is the relaxation of the strict privacy guarantees of previous methods without
any measurable consequences on user privacy. This eliminates an expensive zero
knowledge protocol that reveals the id of the potential suspect only if the similar-
ity score is below a certain threshold. Such protocols include garbled circuits [19]
and oblivious transfers [17], which incur a lot of overhead, especially in terms of
communication. Precomputations certainly improve the online costs, but they
have to be performed for every captured face. On the other hand, our proto-
col necessitates a single communication round (with the exception of infrequent
positive matches) and a few KB of communication cost.

8 Implementation Details

We implemented our system on two machines, one to emulate the law enforce-
ment server and the other to simulate the camera operations. The server is a
Ubuntu desktop machine equipped with Intel Xeon CPU E5-2620 2.10 GHz×16,
64 GB of RAM, and a 512 GB SSD. The other machine is a Ubuntu laptop with
Intel Core i7-6500U CPU 2.50 GHz×4 and 8 GB of RAM (it is also equipped
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with a front camera). The two machines are connected via a TCP/IP4 LAN over
Gigabit Ethernet. We also tested our system on a more realistic environment,
with regards to the surveillance cameras, by implementing our code on a Rasp-
berry Pi 3 device. This device has limited computing and storage capabilities,
featuring 1 GB of RAM and a 4ARM Cortex-A53 1.2 GHz CPU. The face recog-
nition layer was based on the original implementation of OpenFace1. It employs
shape predictor 68 face landmarks as face predictor and nn4.small2.v1.t7 as the
network model. The package is written in Python version 2.7 and, with the afore-
mentioned configuration, face recognition and normalization takes about 600 ms
on laptop.

The cryptographic layer (elliptic curve ElGamal) was implemented in C,
using the BIGNUM library of OpenSSL (version 1.1.0g). We also used SWIG
to connect C with Python (version 4.0.1). We set the order of the elliptic curve
to be a 256-bit prime number, as per NIST’s recommendations [4]. As a result,
all ciphertexts, which consist of two elliptic curve points, require 128 bytes of
storage/communication. Under this C/Python environment, the average time
for encryption, decryption, and point multiplication (with 256-bit scalars) is
about 0.3 ms. On the other hand, point addition takes only about 0.02 ms. For
each reported result, we run the experiment 4 times and plot the average time.
Finally, our implementation leverages the parallel computing abilities of the two
multi-core machines, since all our algorithms are easily parallelizable. The source
code of our implementation is available online2.

9 Experimental Results

In this section, we present the results of our experimental evaluation. The re-
ported times correspond to actual measurements collected from the two im-
plementations on the separate devices (laptop and workstation). Starting with
the offline phase, we first evaluate the computation and communication/storage
costs at both the camera and the server, as a function of the database size M .
To this end, Fig. 5(a) illustrates the CPU time at all parties. G represents the
database of precomputed values, so the bottom curve of the plot corresponds
to the cost where only 50% of the precomputations are actually performed. The
cost at the camera is clearly linear in M and is dominated by the computation
of the terms yi,j ·Enc(−2xi,j), as explained in Section 5.1. This is, by any means,
an acceptable cost, as it is incurred only once and can terminate within a few
minutes.

At the server-side, the offline cost includes the generation of the suspects’
feature vectors from the corresponding images (OpenFace), the normalization
of their representations (our algorithm), and the generation of the encrypted
database that is sent to the cameras. Nevertheless, these costs are not evident
in Fig. 5(a), as they are dominated by the cost of the precomputations for the
discrete log lookup table. This operation necessitates over an hour of compute

1 https://github.com/cmusatyalab/openface
2 https://github.com/mahdihbku/BlindGuardian
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Fig. 5: Offline cost

time, but is crucial in our system because it speeds up considerably the decryp-
tion operations at the server. More importantly, this is a one-time cost that is
incurred before the system becomes operational.

Fig. 5(b) depicts the offline communication/storage cost at the two devices.
The compact representation of elliptic curve points makes it feasible to store
the entire database G at the camera with only 4 GB of main memory. On the
other hand, the cost at the server is again dominated by the discrete log lookup
table, whose size is equal to 32 GB. However, this is a trivial requirement for
today’s state-of-the-art servers. Finally, the offline communication cost entails
the transmission of the encrypted database and remains under 10 MB, even for
a database of 1000 suspects.

In the next set of experiments, we evaluate the online cost of our approach,
as a function of the database size M . First, Fig. 6(a) shows the online CPU time
at all parties. Clearly, the cameras absorb most of the computational cost, since
they have to compute the encrypted similarity scores for every suspect in the
database. Nevertheless, the online cost is order of magnitudes lower compared to
existing approaches, and remains below 1 sec for databases of up to 500 suspects.
A notable observation that motivates the partial storage of G (as explained
in Section 5.1) is that the performance penalty from storing 50% of G is not
significant. In particular, for M = 100, the CPU time at the camera when the
full G is available is 155 ms, and it only increases by 35% (to 210 ms) when
50% is available. Finally, a very promising result of our implementation is the
online computation cost at the database server. For M = 100 the cost is just
34 ms, while for M = 1000 it only raises to 50 ms. As mentioned previously,
the database server is the bottleneck in a wide-scale video surveillance system,
because it may potentially process thousands of captured faces every second.

Fig. 6(b) illustrates the online communication cost for our system. It involves
a single round of communication, where the camera transmits M encrypted
similarity scores to the server. For a database of 1000 suspects, this entails a
communication cost of just 128 KB.
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Fig. 7: Round Trip Time to detect a suspect

Our previous experiments focused only on the cryptographic overhead of the
privacy-preserving face recognition system. Alternatively, Fig. 7 illustrates the
true Round Trip Time (RTT) for detecting a suspect. It includes face recognition
and detection at the camera, all the cryptographic operations at both the cam-
era and the server, and the required communication that includes sending the
suspect’s image from the camera to the server. For a database of 100 suspects,
the RTT is less than 0.8 seconds (with a precomputation of the entire database
G), while for M = 1000 the RTT is approximately 2.2 seconds. Nevertheless, a
large portion of the RTT (around 0.6 sec) is consumed on non-cryptographic op-
erations, namely the face recognition and detection by the OpenFace software.
A better combination of hardware/software at the surveillance cameras could
improve that cost considerably.

Finally, Fig. 8 shows the computational costs of our Raspberry Pi 3 imple-
mentation. As we can see, the CPU time on the Raspberry device is around 10×
slower than the laptop. Even so, by storing the entire table of precomputations,
we can match a face against a database with 100 suspects in under 2 seconds.
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Fig. 8: Raspberry Pi 3 computational costs

Therefore, we argue that our system can be featured in a real-life implemen-
tation of privacy-preserving video surveillance, using cameras with moderate
computational capabilities.

10 Conclusions

In this paper, we proposed the first near real-time privacy-preserving video-
surveillance system that is based on the state-of-the-art face recognition algo-
rithm. Our protocol diverges from the standard techniques employed by existing
approaches by (i) replicating the suspects’ database at the surveillance cameras
and (ii) relaxing the stringent privacy requirements by disclosing some trivial
information during the identification process. These design decisions facilitate
the use of extensive precomputations that reduce significantly the computation
of encrypted similarity scores. As a result, our system is able to match a single
person against a database of 100 suspects in under 200 ms, while incurring a net-
work transfer of just 12 KB of data. In our future work, we plan to incorporate
specialized hardware (like GPUs) to further speed up the server computations,
given the fact that our algorithms are highly parallelizable. We also plan to ex-
tend our framework to other domains as well, including biometric authentication
and traffic surveillance.

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: Theory and implementation. ACM Computing Surveys (CSUR) 51(4),
79 (2018)

2. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: A general-purpose face
recognition library with mobile applications. CMU School of Computer Science 6
(2016)



18 E. Bentafat et al.

3. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: Facial behavior
analysis toolkit. In: Proc. IEEE International Conference on Automatic Face &
Gesture Recognition (FG). pp. 59–66 (2018)

4. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: NIST special publication
800-57. NIST Special publication, Recommendation for Key Management–Part 1:
General (Revision 3) 800(57), 1–142 (2012)

5. Bringer, J., Chabanne, H., Favre, M., Patey, A., Schneider, T., Zohner, M.:
GSHADE: faster privacy-preserving distance computation and biometric identifi-
cation. In: Proc. ACM Workshop on Information Hiding and Multimedia Security.
pp. 187–198 (2014)

6. Dagher, I.: Incremental PCA-LDA algorithm. In: Proc. IEEE International Con-
ference on Computational Intelligence for Measurement Systems and Applications.
pp. 97–101 (2010)

7. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

8. Er, M.J., Wu, S., Lu, J., Toh, H.L.: Face recognition with radial basis function
(RBF) neural networks. IEEE Transactions on Neural Networks 13(3), 697–710
(2002)

9. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Proc. International Symposium on Privacy
Enhancing Technologies (PETS). pp. 235–253 (2009)

10. Evans, D., Huang, Y., Katz, J., Malka, L.: Efficient privacy-preserving biomet-
ric identification. In: Proc. Network and Distributed System Security Symposium
(NDSS). vol. 68 (2011)
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